JPS6130514B2 - - Google Patents

Info

Publication number
JPS6130514B2
JPS6130514B2 JP55146647A JP14664780A JPS6130514B2 JP S6130514 B2 JPS6130514 B2 JP S6130514B2 JP 55146647 A JP55146647 A JP 55146647A JP 14664780 A JP14664780 A JP 14664780A JP S6130514 B2 JPS6130514 B2 JP S6130514B2
Authority
JP
Japan
Prior art keywords
voltage
command
motor
compensation
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55146647A
Other languages
Japanese (ja)
Other versions
JPS5771282A (en
Inventor
Keiji Sakamoto
Yukio Toyosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP55146647A priority Critical patent/JPS5771282A/en
Publication of JPS5771282A publication Critical patent/JPS5771282A/en
Publication of JPS6130514B2 publication Critical patent/JPS6130514B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41156Injection of vibration anti-stick, against static friction, dither, stiction

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Direct Current Motors (AREA)
  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】 本発明はDCモータの回転方向反転時に生じる
応答の遅れを改善した閉ループ方式採用のサーボ
モータ制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a servo motor control device employing a closed loop method that improves the delay in response that occurs when the rotational direction of a DC motor is reversed.

一般に、位置フイードバツクループをもつサー
ボモータ制御装置は、例えば第1図に示すよう
に、DCモータ10の回転位置または機械可動部
(図示せず)の位置を制御するための位置フイー
ドバツクループの他に、DCモータ10の回転速
度を制御するための速度フイードバツクループ
と、DCモータ10のモータ電流を制御するため
の電流フイードバツクループとが設けられてい
る。そして、電流フイードバツクループでは、抵
抗11で検出したモータ電流Idと位相補償回路
12からの電流指令値Isとの偏差が零になるよ
うに制御され、速度フイードバツクループでは、
速度発電機などの速度検出器13で検出したモー
タ速度vdとDA変換器器14からの速度指令値v
sとの偏差が零になるように制御されて、最終的
には、レゾルバやリニアスケール等の位置検出器
15で検出されたモータ位置ldと指令パルス発
生回路16から与えられる位置指令値lsとの差
が零になるように位置フイードバツクループによ
りモータ位置が制御される。なお、図中、17は
増幅器、18a〜18cは加算器である。
Generally, a servo motor control device having a position feedback loop has a position feedback loop for controlling the rotational position of a DC motor 10 or the position of a mechanical movable part (not shown), as shown in FIG. In addition to the loop, a speed feedback loop for controlling the rotation speed of the DC motor 10 and a current feedback loop for controlling the motor current of the DC motor 10 are provided. In the current feedback loop, the deviation between the motor current I d detected by the resistor 11 and the current command value I s from the phase compensation circuit 12 is controlled to be zero, and in the speed feedback loop,
Motor speed v d detected by speed detector 13 such as a speed generator and speed command value v from DA converter 14
The motor position ld detected by the position detector 15 such as a resolver or linear scale is controlled so that the deviation from s becomes zero, and the position command value l given from the command pulse generation circuit 16 is finally The motor position is controlled by a position feedback loop so that the difference from s becomes zero. In addition, in the figure, 17 is an amplifier, and 18a to 18c are adders.

第2図は第1図の加算器18b、位相補償回路
12及び加算器18c部分の従来における構成を
表わす電気回路図であり、演算増幅器Q1と抵抗
R1〜R5で加算器18bを構成し、演算増幅器
Q1、抵抗R6〜R9及びコンデンサC1で位相補償回
路12を構成し、演算増幅器Q3と抵抗R10〜R13
で加算器18cを構成していた。
FIG. 2 is an electrical circuit diagram showing the conventional configuration of the adder 18b, phase compensation circuit 12, and adder 18c shown in FIG.
R1 to R5 constitute an adder 18b, and an operational amplifier
Q 1 , resistors R 6 to R 9 and capacitor C 1 constitute a phase compensation circuit 12, and operational amplifier Q 3 and resistors R 10 to R 13
constituted the adder 18c.

ところで、第2図に示したような構成を有する
従来のサーボモータ制御装置において、DCモー
タの回転方向反転時におけるモータ電流Iとモー
タ速度vとの関係を、縦軸にモニタ電流I及びモ
ータ速度vをとり、横軸に方向反転指令入力時を
原点として時間tをとつて図示すると、例えば第
3図の曲線30i,31vに示するものとなる。
ここで、I0は機械の摩擦トルクをモータ電流に換
算した値であり、図示例ではt<0即ち方向反転
前は回転が停止している場合を示す。
By the way, in the conventional servo motor control device having the configuration shown in FIG. 2, the relationship between the motor current I and the motor speed v when the rotational direction of the DC motor is reversed is expressed as the monitor current I and the motor speed on the vertical axis. If v is plotted and time t is plotted on the horizontal axis with the origin at the time when the direction reversal command is input, the result will be, for example, curves 30i and 31v in FIG. 3.
Here, I 0 is a value obtained by converting the friction torque of the machine into a motor current, and the illustrated example shows the case where t<0, that is, the rotation is stopped before the direction is reversed.

同図から判るようにt=0で反対方向の指令パ
ルスが入力されると曲線30iで示すモータ電流
Iは徐々に増加していくが、曲線31vで示すモ
ータ速度vはモータ電流Iが+I0を越える時点ま
で零であり、モータ電流Iが+I0を越えてはじめ
てDCモータは逆回転し始める。即ち、反対方向
の指令パルスが入力されてからDCモータが逆回
転を開始するまでT1の時間遅れが生じる。
As can be seen from the figure, when a command pulse in the opposite direction is input at t=0, the motor current I shown by curve 30i gradually increases, but when the motor speed v shows by curve 31v, motor current I increases to +I 0 The DC motor starts to rotate in reverse only when the motor current I exceeds + I0 . That is, there is a time delay of T1 after the command pulse in the opposite direction is input until the DC motor starts rotating in the reverse direction.

このような時間遅れは、当然数値制御加工誤差
となつて現れ、具体的には例えば第4図に示すよ
うに、真円の指令パルス列の分配が行なわれて同
図の曲線40に示す真円に沿つて切削が行なわれ
るべきところが、回転方向反転時に応答遅れがあ
るために円弧切削の象限切換え部分において、実
際の切削物の形状は曲線41に示すようにふくら
みをもつという不具合を生じる。
Such a time delay naturally appears as a numerical control machining error, and specifically, as shown in FIG. 4, a perfectly circular command pulse train is distributed, resulting in a perfect circle as shown by curve 40 in the same figure. However, since there is a delay in response when the direction of rotation is reversed, the actual shape of the cut object has a bulge as shown by curve 41 at the quadrant switching portion of arc cutting.

本発明はこのような従来の欠点を改善したもの
であり、その目的は、DCモータの方向反転時に
摩擦トルクによつて引き起こされるDCモータの
応答遅れを補償して制御精度を高めることにあ
る。本発明に依ればこの目的は、方向反転信号入
力時における電流指令値を決定している電圧が摩
擦トルクに比例した電圧であることを利用し、そ
の電圧とほぼ絶対値が等しい逆極性の補償電圧を
発生させて、この補償電圧により方向反転信号入
力直後に前記指令電流値を形成している電圧を速
かに摩擦トルクに対応する電圧にプリセツトする
ことにより達成される。以下実施例について詳細
に説明する。
The present invention improves on these conventional drawbacks, and its purpose is to improve control accuracy by compensating for the response delay of the DC motor caused by frictional torque when the direction of the DC motor is reversed. According to the present invention, this purpose is achieved by utilizing the fact that the voltage that determines the current command value when the direction reversal signal is input is a voltage that is proportional to the friction torque. This is achieved by generating a compensation voltage and using this compensation voltage to quickly preset the voltage forming the command current value to a voltage corresponding to the frictional torque immediately after the direction reversal signal is input. Examples will be described in detail below.

第5図は本発明実施例装置構成を表わす要部伝
気回路図であり、第2図と同一符号は同一部分を
示し、50は補償電圧発生回路、51は応答補償
回路、FN1は第1図における加算器18bの出力
が加えられる入力端子、IN2はピーク値セツト信
号S1が加えられる入力端子、IN3は摩擦トルク補
償信号S2が加えられる入力端子、OUTは電流指
令値Isを第1図における加算器18cに加える
出力端子、Q4〜Q6は図示の極性を有する演算増
幅器、SW1,SW2はスイツチング素子、R14〜R22
は抵抗、C2はコンデンサである。
FIG. 5 is a main part air transmission circuit diagram showing the configuration of the device according to the embodiment of the present invention, in which the same reference numerals as in FIG . IN 2 is the input terminal to which the output of the adder 18b in Figure 1 is applied, IN 2 is the input terminal to which the peak value set signal S 1 is applied, IN 3 is the input terminal to which the friction torque compensation signal S 2 is applied, and OUT is the current command value I. s to the adder 18c in FIG. 1, Q 4 to Q 6 are operational amplifiers with the polarities shown, SW 1 and SW 2 are switching elements, and R 14 to R 22
is a resistor and C 2 is a capacitor.

本実施例装置が第2図に示した従来装置と異な
るところは、補償電圧発生回路50及び応答補償
回路51を設けたところにある。
The device of this embodiment differs from the conventional device shown in FIG. 2 in that a compensation voltage generation circuit 50 and a response compensation circuit 51 are provided.

補償電圧発生回路50は、数値制御装置におけ
る指令パルス発生回路からDCモータの回転方向
反転信号が出力されたとき、その時点における電
流指令値を決定している電圧即ち位相補償回路1
2の出力電圧(以下指令電圧と称す)を検出し、
その指令電圧にほぼ絶対値が等しく極性が反対の
補償電圧Vcを発生するものであり、抵抗R14とコ
ンデンサC2からなる積分回路と、その動作を制
御するスイツチング素子SW1と、演算増幅器
Q5,Q6と抵抗R15〜R17からなる極性反転回路と
で構成されている。
The compensation voltage generation circuit 50 generates a voltage that determines the current command value at that time, that is, the phase compensation circuit 1, when a rotation direction reversal signal of the DC motor is output from the command pulse generation circuit in the numerical control device.
2 output voltage (hereinafter referred to as command voltage) is detected,
It generates a compensation voltage Vc whose absolute value is almost equal to the command voltage and whose polarity is opposite, and it consists of an integrating circuit consisting of a resistor R14 and a capacitor C2 , a switching element SW1 that controls its operation, and an operational amplifier.
It consists of Q 5 , Q 6 and a polarity inversion circuit consisting of resistors R 15 to R 17 .

また応答補償回路51は、DCモータの回転方
向反転指令入力直後に、速やかに指令電圧をほぼ
補償電圧に等しくするように動作するものであ
り、指令電圧と補償電圧Vcとの差分を増幅する
演算増幅器Q6とその出力を位相補償回路12の
入力側にフイードバツクするよう動作するスイツ
チング素子SW2等とから構成されている。
In addition, the response compensation circuit 51 operates to immediately make the command voltage almost equal to the compensation voltage immediately after inputting a command to reverse the rotational direction of the DC motor, and performs a calculation to amplify the difference between the command voltage and the compensation voltage Vc. It consists of an amplifier Q 6 and a switching element SW 2 that operates to feed back its output to the input side of the phase compensation circuit 12.

第6図は第5図示装置を動作させた場合におけ
る各部の信号波形を表わす線図であり、以下同図
を参照して第5図示装置の動作を詳細する。
FIG. 6 is a diagram showing signal waveforms of various parts when the apparatus illustrated in the fifth figure is operated, and the operation of the apparatus illustrated in the fifth figure will be described in detail below with reference to the figure.

指令パルス発生回路から例えば第6図Aに示す
ような方向反転信号が出力されると、図示しない
制御回路で例えば第6図Bに示すようにその立上
りが方向反転信号の立上りにほぼ一致した時間幅
T2のピーク値セツト信号S1が発生される。
When a direction reversal signal as shown, for example, in FIG. 6A is output from the command pulse generation circuit, a control circuit (not shown) determines the time at which the rising edge almost coincides with the rising edge of the direction reversing signal, as shown in FIG. 6B, for example. width
A peak value set signal S1 of T2 is generated.

このピーク値セツト信号S1は補償電圧発生回路
50のスイツチング素子SW1に加えられ、このス
イツチング素子SW1を時間T2だけオン状態にす
る。その結果、コンデンサC2はそのときの指令
電圧によつて充電され、演算増幅器Q5の出力に
は指令電圧にほぼ絶対値が等しい逆極性の補償電
圧Vcがほぼτ=C2×R14の時定数で現れる。そこ
で、ピーク値セツト信号S1の時間幅T2を2τ〜
3τ程度に設定しておくと、補償電圧発生回路5
0からは例えば第6図のCに示すように指令電圧
とほぼ絶対値が等しい逆極性の補償電圧が得ら
れ、この補償電圧はスイツチング素子SW1のオフ
後も保持される。
This peak value set signal S1 is applied to the switching element SW1 of the compensation voltage generating circuit 50, and turns on the switching element SW1 for a time T2 . As a result, the capacitor C 2 is charged by the command voltage at that time, and the compensation voltage Vc of the opposite polarity, which is almost equal in absolute value to the command voltage, is at the output of the operational amplifier Q 5 as approximately τ = C 2 × R 14 . Appears as a time constant. Therefore, the time width T 2 of the peak value set signal S 1 is set to 2τ~
If set to about 3τ, the compensation voltage generation circuit 5
0, a compensating voltage of opposite polarity having substantially the same absolute value as the command voltage is obtained, for example as shown in C in FIG. 6, and this compensating voltage is maintained even after switching element SW1 is turned off.

次に、図示しない制御回路によつて例えば第6
図Dに示すようにほぼピーク値セツト信号S1の立
下り時に立上るような時間幅T3の摩擦トルク補
償信号S2が発生され、これが応答補償回路51の
スイツチング素子SW2に加えられてこれを導通さ
せる。その結果、指令電圧と補償電圧Vcとの差
を増幅している演算増幅器Q6の出力によつて指
令電圧は補償電圧Vcにほぼ等しくなるようにフ
イードバツク制御され、指令電圧は例えば第6図
Eに示すように速やかに下降(ただし、反対の方
向反転が行なわれた場合には速やかに上昇する)
するものとなる。ここで、指令電圧の補償速度は
抵抗R22の値を調整することにより自由に変更し
得るものである。
Next, a control circuit (not shown) controls, for example, the sixth
As shown in Figure D, a friction torque compensation signal S2 with a time width T3 that rises approximately at the time of the fall of the peak value set signal S1 is generated, and this signal is applied to the switching element SW2 of the response compensation circuit 51. Make this conductive. As a result, the command voltage is feedback-controlled to be approximately equal to the compensation voltage Vc by the output of the operational amplifier Q6 which amplifies the difference between the command voltage and the compensation voltage Vc. (However, if the opposite direction is reversed, it will rise quickly) as shown in
Become something to do. Here, the compensation speed of the command voltage can be freely changed by adjusting the value of the resistor R22 .

本実施例装置におけるDCモータ回転方向反転
時のモータ電流Iとモータ速度の変化は例えば第
3図の曲線32i,33vに示すものとなり、モ
ータ電流曲線32iは補償動作の働きで従来より
早く反対側摩擦トルクI0を越えるから、モータ速
度曲線33vもそれだけ早く立上り、モータの反
転遅れ時間T4は大幅に改善される。なお、反転
遅れ時間T4は抵抗R22の値を調整することにより
自由に変更することができる。
Changes in motor current I and motor speed when the rotational direction of the DC motor is reversed in this embodiment device are as shown, for example, in curves 32i and 33v in FIG. Since the friction torque I 0 is exceeded, the motor speed curve 33v also rises earlier, and the motor reversal delay time T 4 is significantly improved. Note that the reversal delay time T 4 can be freely changed by adjusting the value of the resistor R 22 .

以上の説明から判るように、本発明は、指令パ
ルス発生回路からDCモータの回転方向反転指令
が入力されたときに、そのときの電流指令値を決
定している指令電圧とほぼ絶対値が等しく且つ極
性の反対な補償電圧を補償電圧発生回路で発生さ
せ、この補償電圧を用いて、指令電圧を方向反転
信号入力直後に速やかに反転側摩擦トルクに対応
する電圧にほぼ等しくなるようにしたものであ
り、摩擦トルクに対応する電圧が速やかに補償さ
れるから、摩擦トルクによるサーボ系の遅れを大
幅に改善することができる。従つて、本発明を数
値制御装置のサーボモータ制御装置に適用すれば
加工精度の向上等が図れて非常に有効である。
As can be seen from the above description, the present invention provides a method in which when a command to reverse the rotational direction of the DC motor is input from the command pulse generation circuit, the absolute value of the current command value is approximately equal to the command voltage that determines the current command value at that time. In addition, a compensation voltage of opposite polarity is generated in a compensation voltage generation circuit, and this compensation voltage is used to immediately make the command voltage almost equal to the voltage corresponding to the reverse side friction torque immediately after the direction reversal signal is input. Since the voltage corresponding to the friction torque is quickly compensated, the delay in the servo system due to the friction torque can be significantly improved. Therefore, if the present invention is applied to a servo motor control device of a numerical control device, it will be very effective to improve processing accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は位置フイードバツクループを有するサ
ーボモータ制御装置の一般的な構成を表わすブロ
ツク図、第2図は従来のサーボモータ制御装置の
構成を表わす要部電気回路図、第3図は第2図及
び第5図示装置を動作させた場合におけるモータ
電流I及びモータ速度vの変化を表わす線図、第
4図は方向反転時の応答遅れが加工に与えられる
影響を説明するための線図、第5図は本発明実施
例装置の要部電気回路図、第6図は第5図示装置
を動作させた場合における各部の信号波形を表わ
す線図である。 10はDCモータ、12は位相補償回路、13
は速度検出器、15は位置検出器、16は指令パ
ルス発生回路、17は増幅器、18a〜18cは
加算器、50は補償電圧発生回路、51は応答補
償回路である。
Fig. 1 is a block diagram showing the general configuration of a servo motor control device having a position feedback loop, Fig. 2 is a main part electric circuit diagram showing the structure of a conventional servo motor control device, and Fig. 3 is a block diagram showing the general configuration of a servo motor control device having a position feedback loop. Figures 2 and 5 are diagrams showing changes in motor current I and motor speed v when the apparatus shown in Figures 2 and 5 are operated, and Figure 4 is a diagram illustrating the influence of response delay upon direction reversal on machining. , FIG. 5 is an electrical circuit diagram of a main part of the apparatus according to the embodiment of the present invention, and FIG. 6 is a diagram showing signal waveforms of various parts when the apparatus shown in FIG. 5 is operated. 10 is a DC motor, 12 is a phase compensation circuit, 13
15 is a speed detector, 15 is a position detector, 16 is a command pulse generation circuit, 17 is an amplifier, 18a to 18c are adders, 50 is a compensation voltage generation circuit, and 51 is a response compensation circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 DCモータを数値制御装置の指令パルス発生
回路から与えられる指令値通りに制御する閉ルー
プ方式採用のサーボモータ制御装置において、前
記指令パルス発生回路からの方向反転信号入力時
にそのときの前記DCモータの電流指令値を決定
している指令電圧とほぼ絶対値が等しく且つ極性
が反対の補償電圧を発生する補償電圧発生回路
と、該補償電圧発生回路で発生された前記補償電
圧を用いて前記指令電圧を方向反転信号入力直後
に速やかに反転側摩擦トルクに対応する電圧にほ
ぼ等しく応答補償回路とを具備したことを特徴と
するサーボモータ制御装置。
1. In a servo motor control device adopting a closed-loop method that controls a DC motor according to a command value given from a command pulse generation circuit of a numerical control device, when a direction reversal signal is input from the command pulse generation circuit, a compensation voltage generation circuit that generates a compensation voltage that is approximately equal in absolute value and opposite in polarity to the command voltage that determines the current command value; A servo motor control device comprising: a response compensation circuit that responds immediately after inputting a direction reversal signal to a voltage approximately equal to a voltage corresponding to reverse friction torque.
JP55146647A 1980-10-20 1980-10-20 Servo motor controller Granted JPS5771282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55146647A JPS5771282A (en) 1980-10-20 1980-10-20 Servo motor controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55146647A JPS5771282A (en) 1980-10-20 1980-10-20 Servo motor controller

Publications (2)

Publication Number Publication Date
JPS5771282A JPS5771282A (en) 1982-05-04
JPS6130514B2 true JPS6130514B2 (en) 1986-07-14

Family

ID=15412454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55146647A Granted JPS5771282A (en) 1980-10-20 1980-10-20 Servo motor controller

Country Status (1)

Country Link
JP (1) JPS5771282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576070B2 (en) * 1991-06-28 1997-01-29 豊田合成株式会社 Automotive windmall

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3590662T1 (en) * 1984-12-22 1987-02-19
JPS61150689A (en) * 1984-12-22 1986-07-09 Yaskawa Electric Mfg Co Ltd Method of controlling servo motor for compensating frictional torque
JPS61269687A (en) * 1985-05-21 1986-11-29 Yaskawa Electric Mfg Co Ltd Servo controlling method for compensating frictional torque
JP2638594B2 (en) * 1986-11-08 1997-08-06 フアナツク株式会社 Digital servo system
JPS63148315A (en) * 1986-12-12 1988-06-21 Fanuc Ltd Servo motor controller
JPS63148314A (en) * 1986-12-12 1988-06-21 Fanuc Ltd Controller for semiclosed loop servo control system
JPH07104729B2 (en) * 1987-04-07 1995-11-13 株式会社安川電機 Non-linear friction compensation method for servo system
WO1990012448A1 (en) * 1989-04-10 1990-10-18 Kabushiki Kaisha Yaskawa Denki Seisakusho Device for controlling servo motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576070B2 (en) * 1991-06-28 1997-01-29 豊田合成株式会社 Automotive windmall

Also Published As

Publication number Publication date
JPS5771282A (en) 1982-05-04

Similar Documents

Publication Publication Date Title
JP2709969B2 (en) Servo motor control method
FR2378397A1 (en) AM CONTROL CIRCUIT
EP0423357A4 (en) Device for controlling servo motor
JPS63274385A (en) Speed controller for servo-motor
JPS6353795B2 (en)
JPS6130514B2 (en)
US4137677A (en) Constant horsepower control for grinding wheel drives
US3206663A (en) Machine tool position control servomechanism with positioning rate control
EP0207166A4 (en) Method and apparatus for controlling servo motor.
EP0116912B1 (en) Method of controlling motor speed
JPS5534716A (en) Positioning control system
JPS61150690A (en) Method of controlling servo motor
JPH0118672B2 (en)
JPH07322664A (en) Controller for electric motor
Grotstollen Comparison of speed controlled dc drives with and without subordinate current loop
JPS58144582A (en) Controller for servo motor
RU2628757C1 (en) Method of electric drive control and device for its implementation (versions)
JP2673994B2 (en) Thyristor Leonard device current limiting method
JPH0690648B2 (en) Direct teaching robot
JP2641430B2 (en) Industrial robot controller
JPH0231407B2 (en) ICHIGIMEKIKONOSEIGYOHOSHIKI
JPH10146080A (en) Speed controller of servo motor
SU868960A1 (en) Induction electric motor control device
JPS6016969Y2 (en) Rotating body stop position control device
KR910001965B1 (en) Arangement for speed regulation of ac electric motor