JPS613048A - Measurement using biosensor - Google Patents

Measurement using biosensor

Info

Publication number
JPS613048A
JPS613048A JP59124860A JP12486084A JPS613048A JP S613048 A JPS613048 A JP S613048A JP 59124860 A JP59124860 A JP 59124860A JP 12486084 A JP12486084 A JP 12486084A JP S613048 A JPS613048 A JP S613048A
Authority
JP
Japan
Prior art keywords
electrode
substance
measured
detecting
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59124860A
Other languages
Japanese (ja)
Inventor
Akiyoshi Miyawaki
宮脇 明宜
Haruyuki Date
伊達 晴行
Yoshiaki Kobayashi
義昭 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP59124860A priority Critical patent/JPS613048A/en
Publication of JPS613048A publication Critical patent/JPS613048A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To measure a specimen with high sensitivity and high accuracy by removing the interaction between an electrode for detecting the quantity of a substance to be measured and an electrode for detecting the quantity of a measurement obstructing substance, by providing both electrodes in a mutually separated state. CONSTITUTION:The electrode 8 for detecting the quantity of a substance to be measured is constituted by providing a platinium electrode on which glucoseoxidase is imobilized, as an working electrode 8a and a Ag-AgCl electrode as a counter electrode 8b. As the acting electrode 7a of an electrode 7 for detecting the quantity of a measurement obstructing substance, a platinum electrode is provided and a Ag-AgCl electrode is provided as a counter electrode 7b. The electrodes 8, 7 are separated through a liquid passing part (l) so as to generate no interaction. Then, a buffer solution 1 is sent and a specimen is introduced from an injection port 6 and both of them are sent to the electrodes 7, 8 at a constant flow speed. The quantity of the substance to be measured is calculated by subtracting the current IA corresponding to the quantity of the obstructing substance at the electrode 7 from the current IB corresponding to the sum of the quantities of the substance to be measured and the obstructing substance at the electrode 8. Because the electrodes for respectively detecting the substance to be measured and the obstructing electrode are provided, highly accurate measurement is enabled.

Description

【発明の詳細な説明】 〔ブ女j(肯/?r計〕 この発明は、バイオセンサを用いた測定法に関する。[Detailed description of the invention] [Bujo j (affirmation/?r total)] The present invention relates to a measurement method using a biosensor.

〔背景技術〕[Background technology]

バイオセンサは、被測定物質の選択性、!14度。 Biosensor has selectivity of the substance to be measured! 14 degrees.

応答性等が優秀であるので、近年、臨床検査用。Due to its excellent responsiveness, it has recently been used for clinical testing.

食品工業用をはじめとして広く普及しつつある。It is becoming widespread, including in the food industry.

この傾向は、酵素等の生理活性物質の固定化技術の向上
とともにさらに強まると考えられる。
This trend is thought to become even stronger with the improvement of immobilization technology for physiologically active substances such as enzymes.

電極式バイオセンサは、電気化学的デバイスに酵素等の
生理活性物質を固定化したもので、固定化した酵素等と
被測定物質との反応により、消費あるいは生成した物質
の量を、電気化学的デバイスにより、電圧あるいは電流
等の電気量に変換して検知している。電気化学デバイス
としては、酸素電極、過酸化水素電極をはしめ各種電極
があり、バイオセンサは、一般に、このような電極に生
理活性物質の膜が設けられてなる。
Electrode-type biosensors are electrochemical devices in which physiologically active substances such as enzymes are immobilized, and the amount of substances consumed or produced is measured electrochemically by the reaction between the immobilized enzymes and the target substance. It is detected by converting it into an electrical quantity such as voltage or current using a device. Electrochemical devices include various types of electrodes such as oxygen electrodes and hydrogen peroxide electrodes, and biosensors generally consist of such electrodes provided with a membrane of a physiologically active substance.

このようなバイオセンサは、目的物質以外の、被検体中
に存在するアスコルビン酸等の還元物質(測定妨害物質
)にも反応(電極反応)するといった欠点がある。この
欠点を解消する方法とじては、被測定物質は、通すが妨
害物質は通さない多孔質の膜をバイオセンサに装着する
とか、妨害物質を電解酸化してしまう、あるいは、カラ
ムに妨害物質を吸着させるといった方法があるが、いで
れも、妨害物質の電解酸化に時間がかがる、カラムが目
づまりするといった理由で感度、応答性を犠牲にせざる
を得ない。
Such a biosensor has a drawback in that it reacts (electrode reaction) with reducing substances (measurement interfering substances) such as ascorbic acid present in the subject, in addition to the target substance. Methods to overcome this drawback include attaching a porous membrane to the biosensor that allows the analyte to pass through but not the interfering substances, electrolytically oxidizing the interfering substances, or adding interfering substances to the column. Although there are methods such as adsorption, sensitivity and responsiveness have to be sacrificed because electrolytic oxidation of interfering substances takes time and columns become clogged.

そこで、もうひとつの妨害物質の影響を除去する方法と
して、妨害物質のみに反応する電極を設け、被測定物質
量検知用(目的物質用)の電極(生理活性物質が固定さ
れた電極とその夕1極)による測定値(出力)より、妨
害物質量検知用の電極による値定値を差引く方法がある
。しかし、この方法には、妨害物質を電解酸化したり、
カラムに吸着さセたりしないので、感度、応答性は、犠
牲になるという欠点はないが、測定精度があまり良くな
いといった欠点かあった。
Therefore, as another method to eliminate the influence of interfering substances, we installed an electrode that reacts only to the interfering substance, and used an electrode for detecting the amount of the substance to be measured (for the target substance) (an electrode on which a physiologically active substance is immobilized and an electrode that reacts only to the interfering substance). There is a method of subtracting the fixed value obtained by the electrode for detecting the amount of interfering substances from the measured value (output) obtained by the 1-pole. However, this method requires electrolytic oxidation of interfering substances,
Since it is not adsorbed to the column, it does not have the disadvantage of sacrificing sensitivity or responsiveness, but it does have the disadvantage that measurement accuracy is not very good.

〔発明の目的〕[Purpose of the invention]

この発明は、このような事情に鑑みてなされたもので、
感度、応答性に優れ、しかも、測定精度の高いバイオセ
ンサを用いた測定法を提供することを目的としている。
This invention was made in view of these circumstances,
The purpose of the present invention is to provide a measurement method using a biosensor with excellent sensitivity and responsiveness, and high measurement accuracy.

〔発明の開示〕[Disclosure of the invention]

発明者らは、前記妨害物質量検知用の電極を用いる方法
を改良することにより、目的を達成しようとして研究を
重ねた。その結果、従来の方法では、被測定物質量検知
用電極と妨害物質量検知用電極とが余りにも近接しすぎ
ていたため、両極間で相互作用が起き、そのノイズのた
め測定精度が落ちることが分かった。そこで、この相互
作用を少なくすれば測定精度が向上すると考え、ここに
この発明を完成した。
The inventors have conducted repeated research in an attempt to achieve the objective by improving the method of using the electrode for detecting the amount of interfering substances. As a result, in the conventional method, the electrode for detecting the amount of the substance to be measured and the electrode for detecting the amount of the interfering substance were too close to each other, and interaction occurred between the two electrodes, resulting in noise that reduced measurement accuracy. Do you get it. Therefore, we thought that reducing this interaction would improve measurement accuracy, and thus completed this invention.

したがって、この発明は、被測定物質量検知用の電極の
ほかに測定妨害物質量検知用の電極をも用い、前者で得
られた電気量を後者で得られた電気量で補正して、被測
定物質の定量を行うにあたり、前記両電極を相互間に試
料溶液相が介在するよう互いに離間させておくことを特
徴とするバイオセンサを用いた測定法をその要旨として
いる。
Therefore, the present invention uses an electrode for detecting the amount of a substance interfering with measurement in addition to an electrode for detecting the amount of the substance to be measured, and corrects the amount of electricity obtained by the former with the amount of electricity obtained from the latter. The gist of the present invention is a measurement method using a biosensor, which is characterized in that, when quantifying a substance to be measured, the two electrodes are separated from each other so that a sample solution phase is interposed between them.

以下に、この発明の詳細な説明する。The present invention will be explained in detail below.

第1図は、この発明にかかる測定法の実施に用いられる
測定装置をあられす。図にみるよう、この測定装置は、
フロー式の測定装置であって、溶媒(緩衝液)1が入れ
られる溶媒溜め2.溶媒lが通る通路3.溶媒1の受器
(廃液溜め)4をそれぞれ備えている。通路3は一端が
溶媒溜め2に臨み他端が受器4に臨んでいる。そして、
通路3の中間部には、溶媒溜め2側から順にポンプ(定
量ポンプ)5.試料の注入口6.妨害物質検知装置7お
よびバイオセンサ8がそれぞれ配置されている。妨害物
質検知装置7には、測定妨害物質量検知用電極としての
作用極7aおよび対極7bが配置されており、両電極7
a、7bには電源および電流針を備えた装置9aが接続
されている。バイオセンサ8には、生理活性物質が固定
された電極(作用極)8aおよびその対極8bが配置さ
れており、両電極(目的物質検知極)8a、8bには電
源および電流針を備えた装置9bが接続されている。妨
害物質検知袋W7とバイオセンサ8とは、両者の電極間
で相互作用が起こらないよう通路(通液部)3を介して
離されている。電極7a、7bと電極8a、8bとは3
0cm以上離すようにするのが好ましい。装置9a、9
bにはレコーダ等の記録装置IOが接続されている。
FIG. 1 shows a measuring device used to carry out the measuring method according to the present invention. As shown in the figure, this measuring device
It is a flow type measurement device, and includes a solvent reservoir into which a solvent (buffer solution) 1 is placed. Passage through which the solvent l passes3. Each of them is provided with a receiver (waste liquid reservoir) 4 for the solvent 1 . The passage 3 has one end facing the solvent reservoir 2 and the other end facing the receiver 4. and,
In the middle part of the passage 3, there are pumps (metering pumps) 5. Sample injection port6. An interfering substance detection device 7 and a biosensor 8 are respectively arranged. The interfering substance detection device 7 is provided with a working electrode 7a and a counter electrode 7b as electrodes for detecting the amount of interfering substances to be measured.
A device 9a equipped with a power source and a current needle is connected to a and 7b. The biosensor 8 is provided with an electrode (working electrode) 8a to which a physiologically active substance is immobilized and its counter electrode 8b, and both electrodes (target substance detection electrodes) 8a and 8b are equipped with a device equipped with a power source and a current needle. 9b is connected. The interfering substance detection bag W7 and the biosensor 8 are separated via a passage (liquid passage) 3 to prevent interaction between their electrodes. Electrodes 7a, 7b and electrodes 8a, 8b are 3
It is preferable that the distance be 0 cm or more. Devices 9a, 9
A recording device IO such as a recorder is connected to b.

この説明にかかる測定法は、前記測定装置を用い、たと
えば、つぎのようにして実施される。まず、ポンプ5に
より18媒1を通路3に通ず。そして、装置9a、9b
により電極7a、Vb問および電極13a、13b間に
一定の電圧を印加しておく。このあと、試料注入口6よ
り試料を注入し、電流の変化を装置9a、9bの電流計
で測定して結果を記録装置10で記録する。装置9aに
より測定された電流変化の大きさAは妨害物質量に対応
する値となり、装置9bにより測定された電流変化の大
きさBは、妨害物質量に対応する電流変化の大きさと被
側定物質量に対応する電流変化の大きさの和になる。し
たがって、電流変化の大きさBから電流変化の大きさA
を引いたものが被測定物質量に正確に対応したものとな
る。この発明にかかる測定法では、生理活性物質が固定
された電極8aおよび対極8bと、妨害物yt検知用の
電極7a、7bとが、相互作用が起きないよう試料溶液
相を介して舗されているので、電流変化の大きさA、B
を正確に測定することができるようになり、電流変化の
大きさBから電流変化の大きさΔを引いたものが正確に
被測定物質量に対応したものとなる。したがって、測定
精度が高い。しかも、操作が簡単であり、妨害物質を電
解酸化したり、カラムに吸着させたりしないので、感度
や応答性も優れている。
The measuring method according to this description is carried out using the measuring device, for example, in the following manner. First, the pump 5 passes the 18 medium 1 through the passage 3. And devices 9a, 9b
A constant voltage is applied between the electrodes 7a and Vb and between the electrodes 13a and 13b. Thereafter, a sample is injected through the sample injection port 6, changes in current are measured with the ammeters of the devices 9a and 9b, and the results are recorded with the recording device 10. The magnitude A of the current change measured by the device 9a is a value corresponding to the amount of the interfering substance, and the magnitude B of the current change measured by the device 9b is a value that corresponds to the magnitude of the current change corresponding to the amount of the interfering substance. It is the sum of the magnitude of the current change corresponding to the amount of material. Therefore, from the magnitude of current change B to the magnitude of current change A
The value obtained by subtracting the value accurately corresponds to the amount of the substance to be measured. In the measurement method according to the present invention, an electrode 8a and a counter electrode 8b on which a physiologically active substance is immobilized, and electrodes 7a and 7b for detecting an obstruction yt are separated through a sample solution phase so that no interaction occurs. Therefore, the magnitude of the current change A, B
can now be measured accurately, and the value obtained by subtracting the magnitude of current change Δ from the magnitude of current change B corresponds precisely to the amount of the substance to be measured. Therefore, measurement accuracy is high. Moreover, it is easy to operate, and since interfering substances are not electrolytically oxidized or adsorbed to the column, the sensitivity and response are excellent.

なお、前記の測定ではフロー式の測定装置を用いた例に
ついて説明したが、ハツチ式の測定装置であっても生理
活性物質が固定された電極およびその対極と、妨害物質
量検知用の電極とを相互作用を起こさないよう試料溶液
相を介して離せば測定精度が高くなる。
In the above measurement, an example was explained using a flow-type measuring device, but even a hatch-type measuring device has an electrode on which a physiologically active substance is immobilized, a counter electrode thereof, and an electrode for detecting the amount of interfering substances. If the two are separated via the sample solution phase so that no interaction occurs, measurement accuracy will be increased.

つぎに、実施例および比較例について説明する第1図の
測定装置を用いて実施例および比較例の測定法を実施し
た。ただし、溶媒lとして30’c、pH7,5の緩(
ji i皮、妨害物質検知装置7の作用極7aとして白
金電極、対極7bとしてAg−AgC1電極、バイオセ
ンサ8の作用極8aとしてグルコースオキンダーゼが固
定された白金電極。
Next, the measurement methods of the Examples and Comparative Examples were carried out using the measuring apparatus shown in FIG. 1 to explain the Examples and Comparative Examples. However, the solvent is 30'C, pH 7.5,
A platinum electrode is used as the working electrode 7a of the interfering substance detection device 7, an Ag-AgC1 electrode is used as the counter electrode 7b, and a platinum electrode on which glucose okindase is immobilized as the working electrode 8a of the biosensor 8.

対極8bとしてへg−AgC1電極をそれぞれ用いるこ
ととし、妨害物質検知装置7とバイオセンサ8は、直接
あるいは内径0.5 mmφのテフロンチューブを介し
て連結することとした。テフロンチューブの長さpを0
〜2mまで変化させることとし、i1!=Omとしたと
きを比較例、N=0.3.0゜8.1.1.5.2mと
したときを実施例1〜5とした。
A Heg-AgC1 electrode was used as the counter electrode 8b, and the interfering substance detection device 7 and the biosensor 8 were connected directly or via a Teflon tube with an inner diameter of 0.5 mmφ. The length p of the Teflon tube is 0
It is decided to change it to ~2m, and i1! =Om was used as a comparative example, and when N = 0.3.0°8.1.1.5.2m was used as Examples 1 to 5.

通路3に溶媒1を一定の流量で流すとともに、妨害物質
検知装置の電極7a、7b問およびバイオセンサの電極
8a、8b間に、いずれも+〇、6Vの電圧を印加して
おき、試料注入口6より標準血清10μeを注入した。
While flowing the solvent 1 through the passage 3 at a constant flow rate, a voltage of +6V was applied between the electrodes 7a and 7b of the interfering substance detection device and the electrodes 8a and 8b of the biosensor, and the sample was injected. 10 μe of standard serum was injected through inlet 6.

電極7a、7b問および電極3a、3b間の出力電流を
記録装置10により記録した。比較例(ji = Om
)の結果を第2図の(a)、実施例3(ff=1m)の
結果を第2図の(b)にそれぞれ示す。ただし、図中、
実線はバイオセンサ8で生した出力電流をあられし、破
線は妨害物質検知装置で生じた出力電流をあられす。
The output current between electrodes 7a and 7b and between electrodes 3a and 3b was recorded by a recording device 10. Comparative example (ji = Om
) and the results of Example 3 (ff=1 m) are shown in FIG. 2(a) and FIG. 2(b), respectively. However, in the figure,
The solid line represents the output current generated by the biosensor 8, and the broken line represents the output current generated by the interfering substance detection device.

比較例および実施例3では、第2図の(a)。In Comparative Example and Example 3, (a) of FIG.

(b)より実線の出力電流ピークの高さと破線の出力電
流ピークの高さの差を求めて標準血清中のグルコースの
定量を行った。実施例1,2.4゜5でも同様にしてグ
ルコースの定量を行った。
(b) Glucose in the standard serum was determined by determining the difference between the output current peak height of the solid line and the output current peak height of the broken line. Glucose was determined in the same manner as in Example 1 and 2.4°5.

第2図の(a)、  (b)より、バイオセンサで生し
た出力電流の測定結果において、比較例では、出力電流
ピークの立ち上がり時に出力か落ち込んでノイズが生し
ているが、実施例では、被測定物質にター1応する出力
電流ピークの高さこそ多少低くなっているが、ノイズは
全くないことかわかる。そのため、実施例3では比較例
に比べてクルコースの定量を正確に行うことができた。
From (a) and (b) in Figure 2, in the measurement results of the output current generated by the biosensor, in the comparative example, the output drops at the rise of the output current peak, causing noise, but in the example, the output drops and noise occurs. It can be seen that there is no noise at all, although the height of the output current peak corresponding to the measured substance is somewhat lower. Therefore, in Example 3, it was possible to quantify crucose more accurately than in the comparative example.

実施例1.2.4.5についても実施例3と同じ結果が
得られ、比較例に比べてクルコースの定量を正確に行う
ことができた。
The same results as in Example 3 were obtained for Example 1.2.4.5, and it was possible to quantify crucose more accurately than in the comparative example.

比較例および実施例1〜5における、バイオセンサで生
した出力電流のピークの高さh (第2図の(b)参照
)およびノイズの大きさn(第2図の(a)参照)とテ
フロンチューブの長さpとの関係を第3図に示す。ただ
し、図中、○はhの大きさをあられし、△はnの大きさ
をあられす。
The peak height h of the output current generated by the biosensor (see (b) in Figure 2) and the noise size n (see (a) in Figure 2) in Comparative Examples and Examples 1 to 5. The relationship with the length p of the Teflon tube is shown in FIG. However, in the figure, ○ represents the size of h, and △ represents the size of n.

第3図より、30cn以上離せば、感度をほとんど犠牲
にすることなく  (hがあまり小さくなることなく)
、ノイズを低減させることができたことがわかる。
From Figure 3, if the distance is 30cn or more, the sensitivity will hardly be sacrificed (h will not become too small).
It can be seen that the noise could be reduced.

〔発明の効果〕〔Effect of the invention〕

この発明にがかるバイオセンサを用いた測定法は、被測
定物質量検知用の電極のほかに測定妨害物質量検知用の
電極をも用い、前者で得られた電気量を後者で得られた
電気量で補正して、被測定物質の定量を行うにあたり、
前記両電極を相互間に試料溶液相が介在するよう互いに
離間させておくので、感度、応答性が優れ、しかも、測
定精度が高い。
The measurement method using the biosensor according to the present invention uses an electrode for detecting the amount of a substance interfering with measurement in addition to an electrode for detecting the amount of the substance to be measured, and the amount of electricity obtained with the former is used as the amount of electricity obtained with the latter. When quantifying the substance to be measured by correcting the amount,
Since both electrodes are separated from each other so that the sample solution phase is present between them, sensitivity and responsiveness are excellent, and measurement accuracy is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかる測定法の1実施伊jで使用さ
れる測定装置の構造説明図、第2図の(a)は比較例に
おける出力電流測定結果をあられずグラフ、同(b)は
実施例3における出力電流測定結果をあられすグラフ、
第3図は、比較例および実施例1〜5における1、バイ
オセンサで生した出力電流のピークの高さhおよびノイ
ズの大きさnと、テフロンチューブの長さpとの関係を
あられずグラフである。
Fig. 1 is an explanatory diagram of the structure of the measuring device used in the first implementation of the measuring method according to the present invention, Fig. 2 (a) is a graph showing the output current measurement results in a comparative example, and Fig. 2 (b) is a graph showing the output current measurement results in a comparative example. is a graph showing the output current measurement results in Example 3,
Figure 3 is a graph showing the relationship between the peak height h of the output current generated by the biosensor, the noise size n, and the Teflon tube length p in Comparative Example and Examples 1 to 5. It is.

Claims (3)

【特許請求の範囲】[Claims] (1)被測定物質量検知用の電極のほかに測定妨害物質
量検知用の電極をも用い、前者で得られた電気量を後者
で得られた電気量で補正して、被測定物質の定量を行う
にあたり、前記両電極を相互間に試料溶液相が介在する
よう互いに離間させておくことを特徴とするバイオセン
サを用いた測定法。
(1) In addition to the electrode for detecting the amount of the substance to be measured, an electrode for detecting the amount of the substance interfering with the measurement is also used, and the amount of electricity obtained with the former is corrected with the amount of electricity obtained with the latter. A measurement method using a biosensor, characterized in that, in performing quantitative determination, the two electrodes are separated from each other so that a sample solution phase is interposed between them.
(2)被測定物質量検知用の電極と妨害物質量検知用の
電極との離間距離が、30cm以上である特許請求の範
囲第1項記載のバイオセンサを用いた測定法。
(2) A measurement method using the biosensor according to claim 1, wherein the distance between the electrode for detecting the amount of the substance to be measured and the electrode for detecting the amount of interfering substance is 30 cm or more.
(3)フロー式測定法である特許請求の範囲第1項また
は第2項記載のバイオセンサを用いた測定法。
(3) A measurement method using the biosensor according to claim 1 or 2, which is a flow measurement method.
JP59124860A 1984-06-18 1984-06-18 Measurement using biosensor Pending JPS613048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59124860A JPS613048A (en) 1984-06-18 1984-06-18 Measurement using biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59124860A JPS613048A (en) 1984-06-18 1984-06-18 Measurement using biosensor

Publications (1)

Publication Number Publication Date
JPS613048A true JPS613048A (en) 1986-01-09

Family

ID=14895886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59124860A Pending JPS613048A (en) 1984-06-18 1984-06-18 Measurement using biosensor

Country Status (1)

Country Link
JP (1) JPS613048A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576117B1 (en) 1998-05-20 2003-06-10 Arkray Method and apparatus for electrochemical measurement using statistical technique
JP2007524846A (en) * 2003-10-31 2007-08-30 ライフスキャン・スコットランド・リミテッド A method to mitigate the effects of direct interference currents in electrochemical test strips
CN103994980A (en) * 2014-04-28 2014-08-20 中国农业科学院兰州畜牧与兽药研究所 Method for determination of aluminum ion content by alizarin red S complexation spectrophotometry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576117B1 (en) 1998-05-20 2003-06-10 Arkray Method and apparatus for electrochemical measurement using statistical technique
JP2007524846A (en) * 2003-10-31 2007-08-30 ライフスキャン・スコットランド・リミテッド A method to mitigate the effects of direct interference currents in electrochemical test strips
CN103994980A (en) * 2014-04-28 2014-08-20 中国农业科学院兰州畜牧与兽药研究所 Method for determination of aluminum ion content by alizarin red S complexation spectrophotometry

Similar Documents

Publication Publication Date Title
US4935105A (en) Methods of operating enzyme electrode sensors
US6193873B1 (en) Sample detection to initiate timing of an electrochemical assay
Zen et al. A selective voltammetric method for uric acid detection at Nafion®-coated carbon paste electrodes
JPH0617889B2 (en) Biochemical sensor
Zen et al. Voltammetric determination of serotonin in human blood using a chemically modified electrode
Torres Pio dos Santos et al. Simultaneous flow injection analysis of paracetamol and ascorbic acid with multiple pulse amperometric detection
KR20100008260A (en) Protein measurement apparatus by using biosensor
US4085009A (en) Methods for determination of enzyme reactions
Paeschke et al. Highly sensitive electrochemical microsensensors using submicrometer electrode arrays
Du et al. Direct electrochemical detection of glucose in human plasma on capillary electrophoresis microchips
CN103267783B (en) A kind of method being detected hydrogen oxide, uric acid or uriKoxidase
Han et al. Alternating current adsorptive stripping voltammetry in a flow system for the determination of ultratrace amounts of folic acid
JPS613048A (en) Measurement using biosensor
JP4170336B2 (en) Catecholamine sensor
JPH02501162A (en) Electrochemical cell noise reduction method
SU1113744A1 (en) Method of determination of glucose concentration in blood in vivo
JP2006105615A (en) Electrochemical measuring method and measuring apparatus using it
Zhou et al. Studies on the biomedical sensor techniques for real-time and dynamic monitoring of respiratory gases, CO2 and O2
Wang Electrochemical transduction
CN117030820B (en) Measuring method of biosensor
Vokhmyanina et al. Prussian Blue-Based Thin-Layer Flow-Injection Multibiosensor for Simultaneous Determination of Glucose and Lactate
Kriz et al. SIRE-technology. Part I. Amperometric biosensor based on flow injection of the recognition element and differential measurements
RU2696499C1 (en) Biosensor for simultaneous glucose and blood lactate determination
JPH0375552A (en) Enzyme electrode
SU1180771A1 (en) Method of glucose electrochemical determination and electrode for accomplishment of same