JPS61292617A - Light frequency modulation method - Google Patents

Light frequency modulation method

Info

Publication number
JPS61292617A
JPS61292617A JP60134782A JP13478285A JPS61292617A JP S61292617 A JPS61292617 A JP S61292617A JP 60134782 A JP60134782 A JP 60134782A JP 13478285 A JP13478285 A JP 13478285A JP S61292617 A JPS61292617 A JP S61292617A
Authority
JP
Japan
Prior art keywords
light
port
emitted
light source
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60134782A
Other languages
Japanese (ja)
Other versions
JPH0711643B2 (en
Inventor
Katsumi Emura
克己 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60134782A priority Critical patent/JPH0711643B2/en
Publication of JPS61292617A publication Critical patent/JPS61292617A/en
Publication of JPH0711643B2 publication Critical patent/JPH0711643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To realize light frequency modulation without using direct modulation of a light source by switching light from >=2 light sources of different oscillation wavelength conforming to information signals, and sending out different wavelength for each information. CONSTITUTION:Light emitted from the first light source 1 and the second light source 2 is led respectively to input ports A and B of a light switch 5 by the first single polarization fiber 3 and the second single polarization fiber 4. Voltage impressed to the light switch is controlled by a signal generator 6. Thereby, the port A input is emitted from a port C, and the port B input is emitted from the port C at the time of transmitting a mark signal, and the port A input is emitted from the port D and the port B input is emitted from the port C at the time of transmitting a space signal. Accordingly, the output of the port C and port D differs in frequency according to information signals and the frequency shift keying (FSK) is performed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光通信に関連し、特に送信光の周波数を変調す
る方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to optical communications, and particularly to a method of modulating the frequency of transmitted light.

(従来技術とその問題点) 近年、光通信方式のひとつとして、光の、周波数や位相
の情報を用いるコヒーレント光伝送方式の検討が各所で
進められている。特に光の周波数情報を用いる周波数シ
フトキーイング(FSK)光ヘテロゲイン光通信方式の
場合、多値伝送が可能であシ、この多値化を行なった場
合、各種コヒーレント光伝送方式のうち最も嶋い光受信
感度を実現できるという特徴がある。
(Prior Art and its Problems) In recent years, as an optical communication system, a coherent optical transmission system that uses information on the frequency and phase of light has been studied in various places. In particular, in the case of a frequency shift keying (FSK) optical heterogain optical communication system that uses optical frequency information, multilevel transmission is possible. It has the characteristic of being able to achieve high reception sensitivity.

通常、光通信において周波数変調を行なう場合、半導体
レーザの注入電流を微小に変化させて、その発振周波数
を変える直接変調が用いられている。
Normally, when performing frequency modulation in optical communications, direct modulation is used in which the injection current of a semiconductor laser is slightly changed to change its oscillation frequency.

しかし一般に半導体レーザはスペクトル拡が9を持って
おシ、PgK光ヘテロゲイン通信方式では、このスペク
トル拡が)が受信感度の劣化をもたらすという問題点が
あった。また多値化を行なう場合にもこのスペクトル拡
がυによ多信号間の周波数間隔が制限され、多値化でき
る範囲が制限されるという問題もあった。
However, semiconductor lasers generally have a spectral broadening of 9, and the PgK optical heterogain communication system has a problem in that this spectral broadening causes deterioration of reception sensitivity. Furthermore, when performing multi-value conversion, there is also the problem that the frequency interval between the multi-signals is limited by this spectral broadening υ, which limits the range in which multi-value conversion can be performed.

このレーザのスペクトル拡が9の問題を解決する方法と
して半導体レーザに外部鏡を付加するという方法が考え
られている。しかじ通研実報第31巻第12号1982
に掲載の白木らによる文献“半導体レーザの直接周波数
変調特性とFM雑音特性1に示されるように、外部鏡を
付加した半導体レーザの周波数変調効率は半導体レーザ
単体に比べ大幅に劣ることが知られている。このため、
2値の周波数変調で調速伝送を行なう場合や多値周波数
変調を行なう場合に必要な周波数偏移がとれない場合が
あるという問題点があった。
A method of adding an external mirror to a semiconductor laser has been considered as a method for solving the problem of 9 spectral broadening of the laser. Shikaji Tsuken Jitsugou Volume 31 No. 12 1982
It is known that the frequency modulation efficiency of a semiconductor laser with an external mirror added is significantly inferior to that of a single semiconductor laser, as shown in the paper “Direct frequency modulation characteristics and FM noise characteristics of semiconductor lasers 1” by Shiraki et al. For this reason,
There has been a problem in that it may not be possible to obtain a necessary frequency shift when performing speed-controlled transmission using binary frequency modulation or when performing multi-value frequency modulation.

(発明の目的) そこで本発明の目的は以上の問題点を解決し、スペクト
ル純度の關い光源を用いる場合でも、光源の直接変調を
用いることなく光周波数変調を実現する方法を提供する
ことにある。
(Objective of the Invention) Therefore, the object of the present invention is to solve the above problems and provide a method for realizing optical frequency modulation without using direct modulation of the light source even when using a light source with a high spectral purity. be.

(発明の構成) 本発明の光周波数変調方法は、発振周波数がわずかに異
なる少なくとも2個以上の光源と、これらの光源からの
光を入力光とし、制御信号によ)、入力光のうちのいず
れかひとつを選択的に出力できる光スイッチとを具備し
、情報信号に応じて光スイッチからの出力光を切シ変え
て送信される光の周波数を切シ換え、信号光の周波数変
調を行なうことにより実現される。
(Structure of the Invention) The optical frequency modulation method of the present invention uses at least two or more light sources with slightly different oscillation frequencies, the light from these light sources as input light, and a control signal). It is equipped with an optical switch that can selectively output one of them, and changes the output light from the optical switch according to the information signal to change the frequency of the transmitted light and perform frequency modulation of the signal light. This is achieved by

(発明の作用、原理) 本発明は発振波長の異なる2つ以上の光源からの光を情
報信号に合わせてスイッチングし、情報ごとに異なった
波長を送シ出すものである。この場合、送出される光は
情報信号に合わせたFSK変調を受けていることになる
。以下に光のスイッチング素子′として2X2導波路形
光スイツチを用いた場合を例にとって本発明の作用・原
理を詳しく説明する。
(Operation and Principle of the Invention) The present invention switches light from two or more light sources with different oscillation wavelengths in accordance with an information signal, and transmits a different wavelength for each piece of information. In this case, the transmitted light is subjected to FSK modulation in accordance with the information signal. The operation and principle of the present invention will be explained in detail below, taking as an example a case where a 2×2 waveguide type optical switch is used as the optical switching element.

第2図は2X2導波路形光スイツチの構成を示した図、
第3図はこの光スイッチの印加電圧に対する光出力の関
係を示した図である。
Figure 2 is a diagram showing the configuration of a 2X2 waveguide type optical switch.
FIG. 3 is a diagram showing the relationship between the optical output and the applied voltage of this optical switch.

この光スイッチのボート人、ボー)Hにわずかに波長が
異なる光源の光をそれぞれ入射した場合を考える。ここ
で光スイッチに印加電圧が加えられていない場合にはボ
ートCからはボートAから入射した波長λiの光がその
まま出射される。これに対して光スイッチにスイッチン
グ電圧Vsが印加された場合には、ボートCからはボー
トBから入射した波長λ2の光のみが出射される。一方
、ボートDからは、ボートCから出射されないほうの光
が出射されている。従って情報信号に応じて光スイッチ
に印加する電圧をスイッチング電圧だけ変化させてやれ
ば各出力ポートから出力される光の周波数が情報信号に
応じて変化することになる。
Let us consider a case where light from light sources with slightly different wavelengths is incident on the light switch (Boat) and (Bo)H of this optical switch. Here, when no voltage is applied to the optical switch, the light of wavelength λi incident from boat A is directly emitted from boat C. On the other hand, when the switching voltage Vs is applied to the optical switch, only the light having the wavelength λ2 incident from the boat B is emitted from the boat C. On the other hand, the light that is not emitted from boat C is emitted from boat D. Therefore, if the voltage applied to the optical switch is changed by the switching voltage in accordance with the information signal, the frequency of light output from each output port will be changed in accordance with the information signal.

(実施例) 第1図は本発明の第1の実施例を説明するためのブロッ
ク図である。
(Embodiment) FIG. 1 is a block diagram for explaining a first embodiment of the present invention.

第1の光源1および第2の光源2からの出射光はそれぞ
れ第1の単一偏波ファイバ3、第2の単一偏波ファイバ
4によシ光スイッチ5の入力ボート人5人カポ−)Hに
導びかれる。ここで光スイッチ5には、ニオブ酸リチウ
ム(LiNbO5)基板上に作製した2X24波路形光
スイツチを用いた。
The light emitted from the first light source 1 and the second light source 2 is input to the optical switch 5 through a first single-polarized fiber 3 and a second single-polarized fiber 4, respectively. ) led to H. Here, as the optical switch 5, a 2×24 waveform optical switch fabricated on a lithium niobate (LiNbO5) substrate was used.

光スイッチ5に印加される電圧は信号発生器6で制御さ
れている。これによシマーク信号送信時にはポート人入
力がボートCから、ボー)B入力がボートCから出射さ
れ、またスは−ス信号送信時には、ボー)A入力がボー
)Dから、ボートB入力がボートCから出射される。こ
れによシボートC,ボー)Dの出力はともに情報信号に
応じて周波数が変わっており、いわゆる周波数シフトキ
ーイング(FSX)変調が行なわれている。ボートC,
ボートDの出力はそれぞれ第1の伝送路7および第2の
伝送路8に入射され、それぞれ異なった端局に情報が伝
播される。
The voltage applied to the optical switch 5 is controlled by a signal generator 6. As a result, when sending a mark signal, the port human input is emitted from boat C, the baud) B input is emitted from boat C, and when sending a space signal, the baud) A input is emitted from baud) D, and the boat B input is emitted from boat C. It is emitted from C. As a result, the frequencies of the outputs of the baud C and baud D are changed in accordance with the information signal, and so-called frequency shift keying (FSX) modulation is performed. Boat C,
The outputs of the boat D are input to the first transmission line 7 and the second transmission line 8, respectively, and the information is propagated to different terminal stations.

本実施例において第1の光源1および第2の光源2とし
ては外部鏡を付加しスペクトル幅100 kHzとスペ
クトル純度を高めた波長1.5μmのInGaAsP分
布#還形半導体レーザを用すた。
In this embodiment, as the first light source 1 and the second light source 2, InGaAsP distributed #recirculated semiconductor lasers having a wavelength of 1.5 μm and having an increased spectral width of 100 kHz and spectral purity by adding an external mirror were used.

ここでは送信側でF8に変調を行なうが、この光を受信
側で、ヘテロダイン検波することを考えると、少なくと
も変調光の周波数偏移は一定の大きさに保たれていなけ
ればならない。そこで本実施例では以下のような制御系
で2つの半導体レーザの発振周波数差を一定値にコント
ロールして、FSK変調時の周波数偏移を一定に保った
。まず、第1の光源1および第2の光源2の裏面からの
出力光を単一モードファイバで構成したカップラ9に入
射して合波しGe−APDと増幅回路からなる光検出器
10によシヘテログイン検波した。このヘテロダイン検
波によシ2つの半導体レーザの周波数差に対応した周波
数を有するビート信号が得られるが、このビート信号周
波数の設定値からのずれを周波数弁別器11で検出し、
ここで得られた誤差信号をバイアス制御回路12を介し
て第2の光源2の注入電流に滞還した。この制御系によ
#)2つのレーザの発振周波数差は常に一定に保たれた
Here, modulation is performed at F8 on the transmitting side, but considering that this light is subjected to heterodyne detection on the receiving side, at least the frequency shift of the modulated light must be kept constant. Therefore, in this embodiment, the oscillation frequency difference between the two semiconductor lasers was controlled to a constant value using the following control system, and the frequency shift during FSK modulation was kept constant. First, the output lights from the back surfaces of the first light source 1 and the second light source 2 are incident on a coupler 9 composed of a single mode fiber and multiplexed. Signal detection was performed. Through this heterodyne detection, a beat signal having a frequency corresponding to the frequency difference between the two semiconductor lasers is obtained, and the deviation of this beat signal frequency from the set value is detected by the frequency discriminator 11.
The error signal obtained here was fed back to the injection current of the second light source 2 via the bias control circuit 12. With this control system, the oscillation frequency difference between the two lasers was always kept constant.

本実施例では400 Mb/ sの情報の伝送を行なっ
た。ここで受信側で高い光受信感度を得るためには受信
帯域をあまシ広くせず、しかもF8に復調信号の各周波
数成分間に干渉が生じない範囲に周波数偏移量を設定す
る必要がある。そこで本実施例では伝送速度を考慮し第
1の光源lと第2の光源20周波数間隔が400 MH
zになるように制御を行なった。400 Mb/ sの
F8に変調は光スイッチ5のスイッチング電圧である5
’ Vの振幅をもつ400 Mb/ sノン・リターン
・トウ・ゼのときの2つのレーザ光のクロストークは一
20dB以下におさえられていた。第1の伝送路7を伝
播した光を光ヘテロダイン周波数弁別検波して受信感度
を調べたところ光源のスペクトル幅が十分に狭いので符
号誤シ率特性にフロアが生じることはなく、誤り率10
1で−47dBm という高い値が得られた。
In this example, information was transmitted at 400 Mb/s. In order to obtain high optical reception sensitivity on the receiving side, it is necessary not to widen the reception band too much, and to set the amount of frequency shift in F8 within a range that does not cause interference between each frequency component of the demodulated signal. . Therefore, in this embodiment, considering the transmission speed, the frequency interval between the first light source l and the second light source 20 is set to 400 MH.
Control was performed so that z. The modulation at F8 of 400 Mb/s is the switching voltage of optical switch 5.
The crosstalk between the two laser beams at 400 Mb/s non-return with an amplitude of 'V was suppressed to less than -20 dB. When we investigated the receiving sensitivity by optical heterodyne frequency differential detection of the light propagated through the first transmission line 7, we found that the spectral width of the light source was sufficiently narrow, so there was no floor in the code error rate characteristics, and the error rate was 10.
1, a high value of -47 dBm was obtained.

第4図は本発明の第2の実施例を説明するためのブロッ
ク図である。
FIG. 4 is a block diagram for explaining a second embodiment of the present invention.

本実施例では4値F8に変調を行なった。本実施例で用
いた光スイッチ5は、LiNbO34X 1光スイツチ
で印加電圧を変えることによシ4つの入力光のうちの1
つが選択的に出射されるものである。この光スイッチ5
への光の入射は第1の光源1、第2の光源2、第3の光
源13、第4の光源14の光をそれぞれ第1の単一偏波
ファイバ3、第2の単一偏波ファイバ4、第3の単一偏
波ファイバ15、第4の単一偏波ファイバ16で導びい
て行なった。光源の発振周波数差のコントロールは第1
の制御系21、第2の制御系22、第3の制御系23に
よシ行なった。各制御系の構成は第1の実施例で述べた
制御系の構成と同様である。
In this embodiment, modulation is performed to four-value F8. The optical switch 5 used in this example is a LiNbO34X 1 optical switch that selects one of the four input lights by changing the applied voltage.
are selectively emitted. This light switch 5
The light from the first light source 1, the second light source 2, the third light source 13, and the fourth light source 14 is input into the first single-polarized fiber 3 and the second single-polarized fiber, respectively. The fiber 4, the third single polarization fiber 15, and the fourth single polarization fiber 16 were used for guiding. Controlling the oscillation frequency difference of the light source is the first step.
The control system 21, the second control system 22, and the third control system 23 were used. The configuration of each control system is similar to the configuration of the control system described in the first embodiment.

本実施例においても400 Mb/ sの情報によシ4
値FSK変調を行なった。この場合出力光が4つの発振
周波数をとシうるので変調は200 Mb/s’の速さ
で行なえばよい。そこで光スイッチ5に印加する制御信
号は信号発生器6からの信号を符号変換器17で4値の
信号に変換することによシ作成した。この場合、各光源
間の周波数差も200 MHzあれば十分であシ、本実
施例では第1の光源1を基準として、第2の光源2が2
00MHz高い周波数、第3の光源11が400 MH
z高い周波数、第4の光源が600 MHz高い周波数
になるように第1、第2、第3の制御系21.22.2
3で発振周波継のコントロールを行なった。
In this example, 400 Mb/s information is also used.
Value FSK modulation was performed. In this case, since the output light can pass through four oscillation frequencies, modulation can be performed at a speed of 200 Mb/s'. Therefore, the control signal to be applied to the optical switch 5 was created by converting the signal from the signal generator 6 into a four-value signal using the code converter 17. In this case, it is sufficient if the frequency difference between each light source is 200 MHz, and in this embodiment, the first light source 1 is used as a reference, and the second light source 2 is
00MHz high frequency, third light source 11 is 400MHz
z high frequency, the first, second and third control system 21.22.2 so that the fourth light source has a 600 MHz high frequency
The oscillation frequency was controlled in step 3.

本実施例においても光スイッチ5の出力を伝送路7を通
して伝送した後受信感にの評価を行なった。本実施例で
は変調を光スイッチ5で行なっているので、変調時にも
ほとんどf調による歪金生じることはなく、多値変調を
行なったことが原因の感度劣化も、はとんど見られなか
った。本実施例では4値F8に変調と多値化を行なった
ため、第1の実施例より2 dB受信感度が改善され、
誤シ率lO″−11で−49dBmと高い光受信感度が
得られた。
In this example as well, the reception feeling was evaluated after the output of the optical switch 5 was transmitted through the transmission line 7. In this example, modulation is performed by the optical switch 5, so distortion due to f-key hardly occurs during modulation, and deterioration in sensitivity due to multilevel modulation is hardly observed. Ta. In this embodiment, modulation and multi-leveling are performed to 4-level F8, so the reception sensitivity is improved by 2 dB compared to the first embodiment.
A high optical reception sensitivity of -49 dBm was obtained with an error rate of lO''-11.

本発明には以上の実施例の他にも様々な変形例が考えら
れる。例えば光スイッチ5の規模に合わせて多値化の度
合を増すことが可能である。また出力も光スイッチ5の
出力ボート数と同数までとることができ、ローカルエリ
アネットワーク等への利用が考えられる。また多波長集
積化レーザと光スイッチ5を組合せることによシコンパ
クトな送信部を構成することも可能である。また多値化
の方法としては光源1、光源2等を多値周波数変調して
おきそれらの光をさらに光スイッチ5でスイッチングす
ることにより多値化の度合を増すことも可能である。光
源としては半導体レーザの他にもガスレーザ、固体レー
ザ等の使用が可能で、光源間の周波数差の制御の方法と
しても使用するレーザに合わせて温得コントロール、共
振器長のコントロール等を用いることができる。
In addition to the above-described embodiments, various modifications of the present invention can be considered. For example, it is possible to increase the degree of multileveling according to the scale of the optical switch 5. Furthermore, the output can be up to the same number as the number of output ports of the optical switch 5, and it is possible to use it for local area networks and the like. Furthermore, by combining a multi-wavelength integrated laser and the optical switch 5, it is also possible to construct a compact transmitter. Further, as a method of multi-value conversion, it is also possible to increase the degree of multi-value conversion by subjecting the light source 1, light source 2, etc. to multi-value frequency modulation and then switching those lights with the optical switch 5. As a light source, in addition to semiconductor lasers, gas lasers, solid-state lasers, etc. can be used, and as a method of controlling the frequency difference between the light sources, temperature control, resonator length control, etc. can be used depending on the laser used. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例を説明するためのブロッ
ク図、第2図はLiNb01の2×2光スイツチの構成
を示した図、第3図は第2図の光スイッチの印加電圧に
対する光出力の関係を示した図、第4図は本発明の第2
の実施例を説明するためのブロック図である。 図において 1.2,13.14・・・光源、3,4.15.16・
・・単一偏波ファイバ、5・・・元スイッチ、6・・・
信号発生器、7,8.・・・伝送路、9−・カップラ、
10・・・光検出器、11・・・周波数弁別器、12・
・・バイアス制御回路、17・・・符号変換器、21,
22.23・・・制御系である。
Fig. 1 is a block diagram for explaining the first embodiment of the present invention, Fig. 2 is a diagram showing the configuration of a 2x2 optical switch of LiNb01, and Fig. 3 is a diagram showing the configuration of the optical switch of Fig. 2. FIG. 4 is a diagram showing the relationship of light output to voltage.
FIG. 2 is a block diagram for explaining an embodiment of the present invention. In the figure, 1.2, 13.14... light source, 3, 4.15.16...
...Single polarization fiber, 5... Original switch, 6...
Signal generator, 7, 8. ...Transmission line, 9-・Coupler,
10... Photodetector, 11... Frequency discriminator, 12.
...bias control circuit, 17... code converter, 21,
22.23... Control system.

Claims (1)

【特許請求の範囲】[Claims] 発振周波数がわずかに異なる少なくとも2個以上の光源
とこれらの光源からの光を入力光とし、制御信号により
前記入力光のうちいずれかひとつを選択的に出力できる
光スイッチとを用意し、情報信号に応じて、前記光スイ
ッチから送信される光を切り変えることを特徴とする光
周波数変調方法。
At least two or more light sources with slightly different oscillation frequencies and an optical switch that takes the light from these light sources as input light and can selectively output one of the input lights according to a control signal are prepared, and an information signal is generated. An optical frequency modulation method, characterized in that the light transmitted from the optical switch is switched depending on the optical switch.
JP60134782A 1985-06-20 1985-06-20 Optical frequency modulation method Expired - Lifetime JPH0711643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60134782A JPH0711643B2 (en) 1985-06-20 1985-06-20 Optical frequency modulation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60134782A JPH0711643B2 (en) 1985-06-20 1985-06-20 Optical frequency modulation method

Publications (2)

Publication Number Publication Date
JPS61292617A true JPS61292617A (en) 1986-12-23
JPH0711643B2 JPH0711643B2 (en) 1995-02-08

Family

ID=15136425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60134782A Expired - Lifetime JPH0711643B2 (en) 1985-06-20 1985-06-20 Optical frequency modulation method

Country Status (1)

Country Link
JP (1) JPH0711643B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147437A (en) * 1987-12-02 1989-06-09 Nec Corp Optical heterodyne and homodyne detecting and receiving device
JPH02114241A (en) * 1988-10-25 1990-04-26 Matsushita Electric Ind Co Ltd Optical coherent frequency shift keying transmitter
JPH0591052A (en) * 1991-09-27 1993-04-09 Nec Corp Wavelength switching device and method
JP2006050614A (en) * 2004-08-05 2006-02-16 Samsung Electronics Co Ltd Device and method for optical transmission of frequency shift modulation system
JP2014050002A (en) * 2012-09-03 2014-03-17 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable light source, wavelength variable transmitter and optical transmission system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276049A (en) * 1975-12-17 1977-06-25 Western Electric Co Optical switch
JPS5465050A (en) * 1977-10-11 1979-05-25 Western Electric Co Electromagnetic wave device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5276049A (en) * 1975-12-17 1977-06-25 Western Electric Co Optical switch
JPS5465050A (en) * 1977-10-11 1979-05-25 Western Electric Co Electromagnetic wave device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147437A (en) * 1987-12-02 1989-06-09 Nec Corp Optical heterodyne and homodyne detecting and receiving device
JPH02114241A (en) * 1988-10-25 1990-04-26 Matsushita Electric Ind Co Ltd Optical coherent frequency shift keying transmitter
JPH0591052A (en) * 1991-09-27 1993-04-09 Nec Corp Wavelength switching device and method
JP2006050614A (en) * 2004-08-05 2006-02-16 Samsung Electronics Co Ltd Device and method for optical transmission of frequency shift modulation system
US7450860B2 (en) 2004-08-05 2008-11-11 Samsung Electronics Co., Ltd. Apparatus and method for frequency-shift-keying optical transmission
JP4532367B2 (en) * 2004-08-05 2010-08-25 三星電子株式会社 Optical transmission apparatus and method using frequency shift keying
JP2014050002A (en) * 2012-09-03 2014-03-17 Nippon Telegr & Teleph Corp <Ntt> Wavelength variable light source, wavelength variable transmitter and optical transmission system

Also Published As

Publication number Publication date
JPH0711643B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
US6359716B1 (en) All-optical analog FM optical receiver
US7382986B2 (en) Signal converter, optical transmitter and optical fiber transmission system
US6473214B1 (en) Methods of and apparatus for optical signal transmission
US4807227A (en) Optical wavelength-division switching system with coherent optical detection system
US8073342B2 (en) Method and apparatus for transmitting optical signals
US4704741A (en) Bidirectional optical communication system
JPS63500069A (en) Digital information transmission method and device
US5784506A (en) Frequency-encoded optical CDMA transmission system and optical receiver therefor
JPH0321126A (en) Direct frequency modulation psk system
JPS61134134A (en) Frequency shift modulation light transmitting device
EP0325815B1 (en) Method and device for compensating at the receiving side the phase noise of a transmitting laser and of a local laser in a coherent optical communication system with heterodyne detection
US20130101290A1 (en) Method and apparatus to overcome linewidth problems in fast reconfigurable networks
JPS61292617A (en) Light frequency modulation method
US20030072333A1 (en) NRZ to RZ conversion in mode-locked laser using wavelength locked loops
EP0382417B1 (en) Full duplex lightwave communicating system
ALEXANDER et al. Demonstration of a 4-ary FSK coherent optical communication system
JPS6218133A (en) Optical communication method using optical frequency modulation
JPS63198426A (en) Intermediate frequency stabilization method
WO2002061981A2 (en) Fiber optic communications
Taylor et al. Optically coherent direct modulated FM analog link with phase noise canceling circuit
JP3210152B2 (en) Driving method and driving device for semiconductor laser, and optical communication method and optical communication system using the same
JP2809796B2 (en) Coherent optical transmission equipment
JP3093535B2 (en) Driving method and driving device for semiconductor laser, and optical communication method and optical communication system using the same
JPH0591046A (en) Data transmitter
JPH0583203A (en) Optical transmitter and optical receiver and optical communication system provided with the same