JPS61292295A - Programmable read only memory and its writing method - Google Patents

Programmable read only memory and its writing method

Info

Publication number
JPS61292295A
JPS61292295A JP60133836A JP13383685A JPS61292295A JP S61292295 A JPS61292295 A JP S61292295A JP 60133836 A JP60133836 A JP 60133836A JP 13383685 A JP13383685 A JP 13383685A JP S61292295 A JPS61292295 A JP S61292295A
Authority
JP
Japan
Prior art keywords
voltage
writing
capacitor
memory cell
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60133836A
Other languages
Japanese (ja)
Inventor
Tetsuo Suzuki
哲雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60133836A priority Critical patent/JPS61292295A/en
Publication of JPS61292295A publication Critical patent/JPS61292295A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5692Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency read-only digital stores using storage elements with more than two stable states

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)

Abstract

PURPOSE:To prevent the breakdown of a diode or a transistor which constitutes a memory cell and a capacitor for a non-writing memory cell by performing a writing using three or more potentials. CONSTITUTION:A programmable read-only memory connects a memory cell which consists of a capacitor C connected in series and a diode D or a transistor Q between each word line WL and each bit line BL respectively. When the writing is performed with breaking down the capacitor C, assuming that a selecting word line impression voltage is set as VrS, a selecting bit line impression voltage as VcS, a non-selecting word line impression voltage as VrN, a non-selecting bit line impression voltage VcN, a writing threshold voltage which breaks down the capacitor as VWT and the breakdown voltage of the diode or the transistor as VB, the writing can be performed by the selection of each voltage so as to satisfy expressions (1)-(4). Assuming that VcN=VrS, the writing condition can be satisfied on three voltage levels.

Description

【発明の詳細な説明】 〔概要〕 BIC−PROM (Breakdown of In
5ulator for Cond−uction−P
rogramable Read 0nly Memo
ry)の書込時に、非書込メモリセルのキャパシタに高
電圧が印加されて、これが絶縁破壊を起こすのを防止し
、かつメモリセルを構成するダイオードもしくはトラン
ジスタの破壊を防止する電源電圧レベルの組合せを考慮
したBIC−PROMおよびその書込方法を提案する。
[Detailed Description of the Invention] [Summary] BIC-PROM (Breakdown of In
5ulator for Cond-uction-P
rogramable Read 0nly Memo
ry), a high voltage is applied to the capacitor of the non-written memory cell, which prevents dielectric breakdown, and also prevents damage to the diode or transistor constituting the memory cell. We propose a BIC-PROM and its writing method that takes combinations into consideration.

〔産業上の利用分野〕[Industrial application field]

本発明はメモリセルを構成するダイオードもしくはトラ
ンジスタと、非書込メモリセルのキャパシタの破壊を防
止するBIC−FROMおよびその書込方法に関する。
The present invention relates to a BIC-FROM that prevents destruction of diodes or transistors constituting memory cells and capacitors of non-written memory cells, and a writing method therefor.

BIC−PRO?lはメモリセルを構成するキャパシタ
に高電圧を印加して絶縁破壊を起こさせて導通状態にす
ることにより書込を行うFROMで、書込時間が数μs
ecと短かく、書込後もダイオードもしくはトランジス
タにより論理を構成することができるため、各種情報機
器に用いられることが予想される。  ′ しかしながらBIC−FROMを実用化するためには、
非書込メモリセルのキャパシタに高電圧が印加されて、
これが絶縁破壊を起こすのを防止し、かつメモリセルを
構成するダイオードもしくはトランジスタの破壊を保護
する書込方法、書込回路の工夫が必要となってくる。
BIC-PRO? l is a FROM that writes by applying a high voltage to the capacitor that makes up the memory cell to cause dielectric breakdown and make it conductive, and the writing time is several μs.
Since it is short as ec and logic can be configured using diodes or transistors even after writing, it is expected that it will be used in various information devices. ' However, in order to put BIC-FROM into practical use,
A high voltage is applied to the capacitor of the non-programmed memory cell,
It is necessary to devise a writing method and a writing circuit to prevent this from causing dielectric breakdown and to protect the diode or transistor constituting the memory cell from being destroyed.

〔従来の技術と発明が解決しようとする問題点〕BIC
−FROMの構造は本出願人によって提案された新規の
構造のため、その書込方法も新規な方法が必要となる。
[Problems to be solved by conventional technology and invention] BIC
- Since the structure of FROM is a new structure proposed by the applicant, a new writing method is also required.

従来のフユーズROMのように、書込を単に高レベルと
低レベルの組合せだけで行うのでは、メモリセルを構成
するダイオードもしくはトランジスタを破壊し、非書込
メモリセルのキャパシタの絶縁破壊をj起こす場合が生
ずるので、これらを防止する工夫が必要となる。
If writing is performed only by a combination of high and low levels, as in conventional fuse ROMs, the diode or transistor that constitutes the memory cell will be destroyed, and dielectric breakdown of the capacitor of the non-written memory cell will occur. Since such cases may occur, it is necessary to devise ways to prevent these situations.

c問題点を解決するための手段〕 上記問題点の解決は、各ワード線(WL)と各ビット線
(BL)間に、直列接続されたキャパシタ(C)とダイ
オード(D)もしくはトランジスタ(Q)とよりなるメ
モリセルをそれぞれ接続してなるメモリセルアレイ(1
1)と、 該メモリセルアレイにつぎの関係式、 選択ワード線(誓いに印加する電圧を■75、選択ビッ
ト線(BL)に印加する電圧をVcS、非選択ワード線
(WL)に印加する電圧をVrN、非選択ビット線(B
L)に印加する電圧をVCN、キャパシタ(C)を絶縁
破壊する、書込しきい値電圧をVtm丁・ ダイオード(D)もしくはトランジスタ([1)の破壊
電圧をv8とすると、 VWt≦v1.−vcs、・・・・・・(1)VB <
 VrS  vcN< VwT、  ・・・(2)VB
 <V、N<Vwt+  ・・・−−−(3)VB <
 VrNV(N< VPt、  ・・・(4)を満足す
る電圧レベルVrS、V(5、V rNs VeNを与
えるドライバ′回路 とを含む本発明によるプログラマブルリードオンリメモ
リおよび 各ワード線(札)と各ビット線(BL)間に、直列接続
されたキャパシタ(C)とダイオード(D)もしくはト
ランジスタ(Q)とよりなるメモリセルをそれぞれ接続
してなる読出専用メモリの所定のメモリセルを選択して
、該キャパシタ(C)を絶縁破壊して書き込む際に、 選択ワード線(WL)に印加する電圧を■゛13、選択
ビットvA(BL)に印加する電圧をVCS、非選択ワ
ード線(WL)に印加する電圧をVrN、非選択ビット
線(BL)に印加する電圧をVcN、キャパシタ(C)
を絶縁破壊する、書込しきい値電圧をV。T1 ダイオード(D)もしくはトランジスタ(Q)の破壊電
圧をV、とすると、 VWt≦Vrs−■35.・・・・・・(1)V、l<
 Vrs  vCN< Vwt+  ・・・(2)V 
R〈V r N <V WT +  ・ ・ ・ ・ 
・ ・(3)V B < V rN  V c、l< 
Vwr、  ・・・(4)の関係式を満足して書込を行
う本発明による書込方法により達成される。
Means for Solving Problem c] The solution to the above problem is to connect a capacitor (C) and a diode (D) or a transistor (Q) in series between each word line (WL) and each bit line (BL). ) are connected to each other to form a memory cell array (1
1), and the following relational expression for the memory cell array: The voltage applied to the selected word line (75), the voltage applied to the selected bit line (BL) is VcS, and the voltage applied to the unselected word line (WL). VrN, unselected bit line (B
Assuming that the voltage applied to L) is VCN, the write threshold voltage that causes dielectric breakdown of the capacitor (C) is Vtm, and the breakdown voltage of the diode (D) or transistor ([1) is v8, VWt≦v1. -vcs,...(1)VB<
VrS vcN < VwT, ... (2) VB
<V, N<Vwt+ ...---(3) VB<
A programmable read-only memory according to the present invention including a driver' circuit that provides a voltage level VrS, V(5, VrNsVeN) satisfying VrNV(N<VPt, (4), and each word line (tag) and each Selecting a predetermined memory cell of a read-only memory formed by connecting memory cells each consisting of a capacitor (C) and a diode (D) or a transistor (Q) connected in series between the bit lines (BL), When writing by breaking down the capacitor (C), the voltage applied to the selected word line (WL) is set to 13, the voltage applied to the selected bit vA (BL) is set to VCS, and the voltage applied to the unselected word line (WL) is set to VCS. The voltage to be applied is VrN, the voltage to be applied to the unselected bit line (BL) is VcN, and the capacitor (C)
The write threshold voltage that causes dielectric breakdown is V. T1 If the breakdown voltage of the diode (D) or transistor (Q) is V, then VWt≦Vrs-■35.・・・・・・(1) V, l<
Vrs vCN< Vwt+...(2)V
R〈V r N <V WT + ・ ・ ・ ・
・ ・(3) V B < V rN V c, l <
This is achieved by the writing method according to the present invention, which performs writing while satisfying the relational expression (4).

前記の関係式において、 V CM = V rs。In the above relational expression, VCM = Vrs.

とすれば、3つの電圧レベルで書込条件を満足できる。If so, the write conditions can be satisfied with three voltage levels.

〔作用〕[Effect]

第1図(1)と(21(3)はそれぞれ本発明の詳細な
説明するBIC−FROMのメモリセルアレイのブロッ
ク図とメモリセルの等価回路図である。
FIGS. 1(1) and 1(21(3)) are a block diagram of a BIC-FROM memory cell array and an equivalent circuit diagram of a memory cell, respectively, which explain the present invention in detail.

第1図(2)のメモリセルはダイオードDとキャパシタ
Cを直列に接続してなる例を示し、第1図(3)のメモ
リセルはトランジスタロとキャパシタCを接続してなる
例を示す。
The memory cell in FIG. 1(2) shows an example in which a diode D and a capacitor C are connected in series, and the memory cell in FIG. 1(3) shows an example in which a transistor D and a capacitor C are connected in series.

図において、ロウ(row) O、ロウ1はワード線W
L、コラム(column) O、コラム1、コラム2
はビット線BLを構成し、(Q0)、(Q1)、(Q2
)、(10)、(11)、(12)はそれぞれのワード
線とビット線間に接続されたメモリセル、Dはダイオー
ド、Cはキャパシタである。
In the figure, row O and row 1 are word lines W.
L, column O, column 1, column 2
constitutes the bit line BL, (Q0), (Q1), (Q2
), (10), (11), and (12) are memory cells connected between respective word lines and bit lines, D is a diode, and C is a capacitor.

いま、メモリセル(Q0)を選択して、これに書込を行
う場合を考える。
Now, consider the case where a memory cell (Q0) is selected and data is written to it.

書込時にメモリセルに印加される電圧を■い、ダイオー
ドDの逆耐圧を■8とすると、選択セルでは、  V、
≧■い、。
Assuming that the voltage applied to the memory cell during writing is ■ and the reverse breakdown voltage of diode D is ■8, in the selected cell, V,
≧■I,.

非選択セルでは、 −V、l<Vいく■。T。In non-selected cells, -V, l<V. T.

であることが必要となる。It is necessary that

選択ロウ線の電圧をVrS、 選択コラム線の電圧をVCS、 非選択ロウ線の電圧を■0、 非選択コラム線の電圧を■。The voltage of the selected row line is VrS, VCS the voltage of the selected column line, Set the voltage of the unselected row wire to ■0, ■ Unselect column line voltage.

とすると、 (1)選択セルでは、 vwr≦■r ’J  ” CS +  ・・・・・・
(11になるように、VrS、■6を選ふことにより、
書込を可能とし、 (2)非選択セルでは、 (2−1)選択ロウ線上の非選択セルにおいては、Vc
N〉0にして、 Vn <VrS  VcN<VWT、  H+ ・(2
1’(2−2)選択コラム線上の非選択セルにおいては
、VB <VrN<VWT、HHHH+ ・(31(2
−3)非選択ロウ線上の非選択セルにおいては、Vll
  〈VrN  VcN<VWT、  ・ ・ ・(4
)になるように、VrS、V (e、、V、、、V−を
選ぶことにより、ダイオードDを破壊しないで、かつキ
ャパシタCは絶縁破壊を起こさない。従って書込は行わ
れない。
Then, (1) In the selected cell, vwr≦■r 'J ” CS + ・・・・・・
(By selecting VrS, ■6 so that it becomes 11,
(2) In unselected cells, (2-1) In unselected cells on the selected row line, Vc
When N>0, Vn<VrS VcN<VWT, H+ ・(2
1'(2-2) In unselected cells on the selected column line, VB <VrN<VWT, HHHH+ ・(31(2
-3) In unselected cells on unselected row lines, Vll
<VrN VcN<VWT, ・ ・ ・(4
), by selecting VrS,V (e, ,V, ,V-), the diode D is not destroyed and the capacitor C does not suffer dielectric breakdown.Therefore, writing is not performed.

以上のように4つの電圧を未知数とする、上記4つの式
を満足するように各電圧を選ぶことにより書込を行うこ
とができる。
As described above, writing can be performed by selecting each voltage so as to satisfy the above four equations in which the four voltages are unknowns.

前記の関係式において、 V (H=V rl とすれば、3つの電圧レベルで書込条件を満足できる。In the above relational expression, V (H=V rl If so, the write conditions can be satisfied with three voltage levels.

〔実施例〕〔Example〕

第1図(4)は本発明によるBIC−PROMの構成を
示すブロック図である。
FIG. 1(4) is a block diagram showing the configuration of a BIC-PROM according to the present invention.

図に・おいて、11はBIC−PROMのセルアレイで
ある。
In the figure, 11 is a BIC-PROM cell array.

周辺回路はロウデコーダ12、コラムデコーダ13、読
出/書込(R/W)アンプ14、アドレスレジスタ15
よりなる。
Peripheral circuits include a row decoder 12, a column decoder 13, a read/write (R/W) amplifier 14, and an address register 15.
It becomes more.

ロウデコーダ12、コラムデコーダ13、(R/W)ア
ンプ14は本発明のドライ八回路を含む周辺回路である
The row decoder 12, column decoder 13, and (R/W) amplifier 14 are peripheral circuits including the dry eight circuit of the present invention.

アドレスレジスタ15はバス16よりアドレス信号を受
けて、プログラムコントロールを行い、その出力をロウ
デコーダ13とコラムデコーダ14へ送る。
Address register 15 receives an address signal from bus 16, performs program control, and sends its output to row decoder 13 and column decoder 14.

(R/W)アンプ14はセルアレイ11のコラム線に接
続され、バス16との間でデータの授受を行う。
The (R/W) amplifier 14 is connected to the column line of the cell array 11 and exchanges data with the bus 16.

第2図はBIC−FROMを用いたマイクロコントロー
ラの構成を示すブロック図である。
FIG. 2 is a block diagram showing the configuration of a microcontroller using BIC-FROM.

図において、21はROMで、ここではBIC−PI?
OMを用いる。
In the figure, 21 is a ROM, here BIC-PI?
Use OM.

22は中央処理装置(CPII) 、23はランダムア
クセスメモリ(IIAM) 、24は入出力装置(Il
o) 、25はバスである。
22 is a central processing unit (CPII), 23 is a random access memory (IIAM), and 24 is an input/output device (Il
o), 25 is a bus.

第3図は本発明を説明するBIC−PROMのメモリセ
ルの構造を示す断面図である。
FIG. 3 is a sectional view showing the structure of a BIC-PROM memory cell for explaining the present invention.

図のメモリセルは第1図(2)のダイオードとキャパシ
タを直列に接続してなる例を示す。
The illustrated memory cell is an example in which the diode and capacitor shown in FIG. 1(2) are connected in series.

図において、1は半導体基板で珪素(Si)基板、2は
n型Si層、3はp型5iJiJ、4は素子分離層で二
酸化珪素(SiOz)層、5は高濃度にドープされた多
結晶珪素(ポリSt)層、6はキャパシタの誘電体層で
SiO□層、7は配線層兼キャパシタの電極でアλレミ
ニウム(AI)層である。
In the figure, 1 is a semiconductor substrate, which is a silicon (Si) substrate, 2 is an n-type Si layer, 3 is a p-type 5iJiJ, 4 is an element isolation layer, which is a silicon dioxide (SiOz) layer, and 5 is a heavily doped polycrystalline layer. 6 is a dielectric layer of the capacitor, which is a SiO□ layer; and 7 is a wiring layer and electrode of the capacitor, which is an aluminum (Al) layer.

n型Si層2とn型Si層3で構成されるダイオードと
、ポリ5iFi5と5層02層6とAI層7で構成され
るキャパシタとが直列に接続して素子分離層4内に形成
される。
A diode composed of an n-type Si layer 2 and an n-type Si layer 3, and a capacitor composed of a poly5iFi5, a 5-layer 02 layer 6, and an AI layer 7 are connected in series and formed in an element isolation layer 4. Ru.

いま、このような構造を有するメモリセルに書き込む場
合について述べる。
Now, the case of writing to a memory cell having such a structure will be described.

SiO□層6を例えば200人程度に薄く形成し、キャ
パシタの両電極(ポリSi層5と111層7)間に例え
ばVPy=14Vを印加し、SiO□層6を絶縁破壊し
て書き込み、プログラムする。
The SiO□ layer 6 is formed as thin as, for example, about 200 layers, and VPy=14V, for example, is applied between both electrodes of the capacitor (poly-Si layer 5 and 111 layer 7) to break down the SiO□ layer 6 and write and program. do.

プログラム後にワード線とビット線間に接続されるダイ
オードの逆耐圧は比較的低く、例えばVB=8vとする
The reverse breakdown voltage of the diode connected between the word line and the bit line after programming is relatively low, for example, VB=8V.

まず、VC,= OVとすると、 (1)式より、   14≦V r S +つぎに、V
 −s =15Vとおくと、(2)式より、  1 <
VeN<23゜(3)式より、    8 < V r
u <14゜(4)式より、   −8< VrN−V
(N<14゜となり、これらの条件を満足するVrNと
VCNを選択することにより書込を行う。
First, if VC, = OV, then from equation (1), 14≦V r S + next, V
If −s = 15V, then from equation (2), 1 <
VeN<23° From formula (3), 8<V r
u < 14° From formula (4), -8 < VrN-V
(N<14°, and writing is performed by selecting VrN and VCN that satisfy these conditions.

さらに、vcN=vrs=15Vとおくと、(4)式よ
り、   7<V、H<2g。
Furthermore, if vcN=vrs=15V, then from equation (4), 7<V, H<2g.

となり、例えばV、N=8Vとすると、この電圧レベル
と、V−5=VcN−15Vと、VC,= OVとの3
つの電圧レベルがあれば、上記の条件を満足することが
できる。
For example, if V, N = 8V, this voltage level, V-5 = VcN-15V, and VC, = OV.
The above conditions can be satisfied with one voltage level.

以上の方法をとることにより、BIC−FROMに対す
る書込を行うことができる。
By using the above method, writing to BIC-FROM can be performed.

第4図(1)、および(2)は3つ以上の電位を制御す
るロウ、およびコラムドライバの一例を示す回路図であ
る。
FIGS. 4(1) and 4(2) are circuit diagrams showing an example of a row and column driver that controls three or more potentials.

図において、01〜Q1□はMIS  )ランジスタで
、奇数番のQl、Q3、Q3.07、Q7、Q、ははn
チャネル型で太線の記号で表し、その他はnチャネル型
である。
In the figure, 01 to Q1□ are MIS) transistors, and odd numbered Ql, Q3, Q3.07, Q7, Q, haha n
The channel type is represented by a thick line symbol, and the others are n-channel type.

電源は15.8.5νの3種類の電圧レベルを用い、そ
れぞれ図示の記号で区別した。
Three types of voltage levels of 15.8.5v were used for the power supply, and each was distinguished by the symbol shown in the figure.

各ドライバを制御する人力信号は、バスからのアドレス
をデコードした信号とデータ信号とより得られる。
The human input signal for controlling each driver is obtained from a signal obtained by decoding the address from the bus and a data signal.

第4図(1)はロウドライバで、Q、と0□、Q3と0
4.0、と口、。はそれぞれC?lOSインバータを構
成する。
Figure 4 (1) is a row driver, Q, and 0□, Q3 and 0
4.0, I said. are each C? Configure the lOS inverter.

書込時はR/W信号は低レベル“0″で、従ってnチャ
ネルの06はオフ、nチャ2ルの0.は人力に高レベル
“1”が入るためオン、nチャネルの07は入力に低レ
ベル“O”が入るためオンとなる。
During writing, the R/W signal is at a low level "0", so 06 of n channel is off and 0. of n channel 2 is off. is turned on because a high level "1" is input to the input, and n-channel 07 is turned on because a low level "O" is input to the input.

このような状態においては、Q3とQ4で構成されるイ
ンバータは、デコータ出力より入るインパークの入力信
号の“0”、“1”に応じて、その出力(ロウ線に接続
される)は15ν、8vとなり、電圧の切り換えができ
る。
In this state, the inverter composed of Q3 and Q4 outputs 15ν (connected to the row line) in response to the impark input signal “0” or “1” input from the decoder output. , 8V, and the voltage can be switched.

Qlと02、Q、とQIOで構成されるインバータは通
常レベルの5νより15Vに振幅の変換を行う。
The inverter composed of Ql and 02, Q, and QIO converts the amplitude from the normal level of 5v to 15V.

続出時は、R/−信号は高レベル“1”で、nチャネル
の06はオン、nチャネルの07はオフで、pチャネル
のQ、はゲート・ソース間を短絡して負荷トランジスタ
となり、Offと04で構成されるインバータは通常の
5vレベルの動作を行う。
At the time of continuous output, the R/- signal is at a high level "1", n-channel 06 is on, n-channel 07 is off, and p-channel Q is short-circuited between the gate and source and becomes a load transistor, turning off. The inverter consisting of 04 and 04 performs normal 5V level operation.

第4図(2)はコラムドライバで、Ql+ と0.2で
構成されるCMOSインパークの振幅変換回路である。
FIG. 4(2) shows a column driver, which is a CMOS impulse amplitude conversion circuit composed of Ql+ and 0.2.

デコータ出力より入るインバータの入力信号の“0”、
“1”に応じて、その出力(ロウ線に接続される)は1
5V 、OVとなり、電圧の切り換えができる。
“0” of the inverter input signal input from the decoder output,
In response to “1”, its output (connected to the row line) is 1
5V, OV, and the voltage can be switched.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、3個以上の
電位を使うことにより、メモリセルを構成するダイオー
ドもしくはトランジスタを破壊しないで、かつ非書込メ
モリセルのキャパシタの絶縁破壊をを起こすことのない
BIC−FROMが得られ、かつその書込を行うことが
できる。
As explained in detail above, according to the present invention, by using three or more potentials, dielectric breakdown of the capacitor of the non-written memory cell is caused without destroying the diode or transistor constituting the memory cell. It is possible to obtain a BIC-FROM without any problem and to write to it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)と(21(3)はそれぞれ本発明の詳細な
説明するBTC−FROMのメモリセルアレイのブロッ
ク図とメモリセルの等価回路図、 第1図(4)は本発明によるBIC−FROMの構成を
示すブロック図、 第2図はBIC−FROMを用いたマイクロコントロー
ラの構成を示すブロック図、 第3図は本発明を説明するBIC−FROMのメモリセ
ルの構造を示す断面図である。 第4図(1)、および(2)は3つ以上の電位を制御す
るロウ、およびコラムドライバの一例を示す回路図であ
る。 図において、 11はBIC−FROMのセルアレイ、12はロウデコ
ーダ、 13はコラムデコーダ、 14はR/−アンプ、 15はアドレスレジスタ、 16はバス、 畦はロウO、ロウlよりなるワード線、BLはコラム0
、コラム1、コラム2 よりなるビット線、 (Q0)、(Q1)、(Q2)、(10)、(11)、
(12)はメモリセル、 Dはダイオード、 Qはトランジスタ、 Cはキャパシタ、 1は半導体基板でSi基板、 2はn型S4層、 3はp型Si層、 4は素子分離層でSiO□層、 5は高濃度にドープされたポリSiF、6はキャパシタ
の誘電体層でSiO□層、7は配線層兼キャパシタの電
極でΔ1層である。 ビ゛フL羞腎 BL 阜 1 ■ 纂 2 (6) ;(j)コ#E肛Sa三rl”−二;1.〆)−リーc
ン1.=と;7)断面[;3]茅 3 口
FIGS. 1(1) and 21(3) are a block diagram of a BTC-FROM memory cell array and an equivalent circuit diagram of a memory cell, respectively, which explain the present invention in detail, and FIG. 1(4) is a BIC-FROM according to the present invention. FIG. 2 is a block diagram showing the structure of a microcontroller using BIC-FROM; FIG. 3 is a cross-sectional view showing the structure of a BIC-FROM memory cell to explain the present invention. 4(1) and (2) are circuit diagrams showing an example of a row and column driver that controls three or more potentials. In the figure, 11 is a BIC-FROM cell array, and 12 is a row decoder. , 13 is a column decoder, 14 is an R/- amplifier, 15 is an address register, 16 is a bus, the ridge is a word line consisting of row O and row I, and BL is column 0.
, column 1, column 2, (Q0), (Q1), (Q2), (10), (11),
(12) is a memory cell, D is a diode, Q is a transistor, C is a capacitor, 1 is a semiconductor substrate (Si substrate), 2 is an n-type S4 layer, 3 is a p-type Si layer, 4 is an element isolation layer and is a SiO□ layer , 5 is a heavily doped polySiF, 6 is a dielectric layer of the capacitor, which is a SiO□ layer, and 7 is a wiring layer and an electrode of the capacitor, which is a Δ1 layer. Beef L Shyness BL 阜 1 ■ 纂 2 (6);
1. = and ;7) Cross section [;3] Thatch 3 mouths

Claims (3)

【特許請求の範囲】[Claims] (1)各ワード線(WL)と各ビット線(BL)間に、
直列接続されたキャパシタ(C)とダイオード(D)も
しくはトランジスタ(Q)とよりなるメモリセルをそれ
ぞれ接続してなるメモリセルアレイ(11)と、該メモ
リセルアレイに、つぎの関係式 選択ワード線(WL)に印加する電圧をV_r_S、選
択ビット線(BL)に印加する電圧をV_c_S、非選
択ワード線(WL)に印加する電圧をV_r_N、非選
択ビット線(BL)に印加する電圧をV_c_N、キャ
パシタ(C)を絶縁破壊する、書込しきい値電圧をV_
W_T、 ダイオード(D)もしくはトランジスタ(Q)の破壊電
圧をV_Bとすると、 V_W_T≦V_r_S−V_c_S、・・・・・・(
1)−V_B<V_r_S−V_c_N<V_W_T、
・・・(2)−V_B<V_r_N<V_W_T、・・
・・・・(3)−V_B<V_r_N−V_c_N<V
_W_T.・・・(4)を満足する電圧レベルV_r_
S、V_c_S、V_r_N、V_c_Nを与えるドラ
イバ回路 とを含むことを特徴とするプログラマブルリードオンリ
メモリ。
(1) Between each word line (WL) and each bit line (BL),
A memory cell array (11) is formed by connecting memory cells each consisting of a capacitor (C) and a diode (D) or a transistor (Q) connected in series, and a word line (WL) selected by the following relational expression is connected to the memory cell array (11). ), V_r_S is the voltage applied to the selected bit line (BL), V_r_N is the voltage applied to the unselected word line (WL), V_c_N is the voltage applied to the unselected bit line (BL), and V_c_N is the voltage applied to the unselected bit line (BL). The write threshold voltage that causes dielectric breakdown of (C) is V_
When the breakdown voltage of W_T, diode (D) or transistor (Q) is V_B, V_W_T≦V_r_S−V_c_S,...
1) −V_B<V_r_S−V_c_N<V_W_T,
...(2)-V_B<V_r_N<V_W_T,...
...(3)-V_B<V_r_N-V_c_N<V
_W_T. ...Voltage level V_r_ that satisfies (4)
A programmable read-only memory comprising: a driver circuit that provides S, V_c_S, V_r_N, and V_c_N.
(2)各ワード線(WL)と各ビット線(BL)間に、
直列接続されたキャパシタ(C)とダイオード(D)も
しくはトランジスタ(Q)とよりなるメモリセルをそれ
ぞれ接続してなる読出専用メモリの所定のメモリセルを
選択して、該キャパシタ(C)を絶縁破壊して書き込む
際に、 選択ワード線(WL)に印加する電圧をV_r_S、選
択ビット線(BL)に印加する電圧をV_c_S、非選
択ワード線(WL)に印加する電圧をV_r_N、非選
択ビット線(BL)に印加する電圧をV_c_N、キャ
パシタ(C)を絶縁破壊する、書込しきい値電圧をV_
W_T、 ダイオード(D)もしくはトランジスタ(Q)の破壊電
圧をV_Bとすると、 V_W_T≦V_r_S−V_c_S、・・・・・・(
1)−V_B<V_r_S−V_c_N<V_W_T、
・・・(2)−V_B<V_r_N<V_W_T、・・
・・・・(3)−V_B<V_r_N−V_c_N<V
_W_T.・・・(4)の関係式を満足して書込を行う
ことを特徴とするプログラマブルリードオンリメモリの
書込方法。
(2) Between each word line (WL) and each bit line (BL),
A predetermined memory cell of a read-only memory formed by connecting memory cells each consisting of a capacitor (C) and a diode (D) or a transistor (Q) connected in series is selected, and the capacitor (C) is dielectrically broken down. When writing, the voltage applied to the selected word line (WL) is V_r_S, the voltage applied to the selected bit line (BL) is V_c_S, the voltage applied to the unselected word line (WL) is V_r_N, and the unselected bit line is V_r_N. The voltage applied to (BL) is V_c_N, and the write threshold voltage that breaks down the capacitor (C) is V_
When the breakdown voltage of W_T, diode (D) or transistor (Q) is V_B, V_W_T≦V_r_S−V_c_S,...
1) −V_B<V_r_S−V_c_N<V_W_T,
...(2)-V_B<V_r_N<V_W_T,...
...(3)-V_B<V_r_N-V_c_N<V
_W_T. A method of writing to a programmable read-only memory characterized by performing writing while satisfying the relational expression (4).
(3)前記の関係式において、 V_c_N=V_r_S. が成立することを特徴とする特許請求の範囲第2項記載
のプログラマブルリードオンリメモリの書込方法。
(3) In the above relational expression, V_c_N=V_r_S. 3. The method of writing in a programmable read-only memory according to claim 2, wherein:
JP60133836A 1985-06-19 1985-06-19 Programmable read only memory and its writing method Pending JPS61292295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60133836A JPS61292295A (en) 1985-06-19 1985-06-19 Programmable read only memory and its writing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60133836A JPS61292295A (en) 1985-06-19 1985-06-19 Programmable read only memory and its writing method

Publications (1)

Publication Number Publication Date
JPS61292295A true JPS61292295A (en) 1986-12-23

Family

ID=15114175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60133836A Pending JPS61292295A (en) 1985-06-19 1985-06-19 Programmable read only memory and its writing method

Country Status (1)

Country Link
JP (1) JPS61292295A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6777757B2 (en) 2002-04-26 2004-08-17 Kilopass Technologies, Inc. High density semiconductor memory cell and memory array using a single transistor
US6791891B1 (en) 2003-04-02 2004-09-14 Kilopass Technologies, Inc. Method of testing the thin oxide of a semiconductor memory cell that uses breakdown voltage
US6798693B2 (en) 2001-09-18 2004-09-28 Kilopass Technologies, Inc. Semiconductor memory cell and memory array using a breakdown phenomena in an ultra-thin dielectric
US6822888B2 (en) 2001-09-18 2004-11-23 Kilopass Technologies, Inc. Semiconductor memory cell and memory array using a breakdown phenomena in an ultra-thin dielectric
US6898116B2 (en) 2002-04-26 2005-05-24 Kilopass Technologies, Inc. High density semiconductor memory cell and memory array using a single transistor having a buried N+ connection
US6924664B2 (en) 2003-08-15 2005-08-02 Kilopass Technologies, Inc. Field programmable gate array
US6940751B2 (en) 2002-04-26 2005-09-06 Kilopass Technologies, Inc. High density semiconductor memory cell and memory array using a single transistor and having variable gate oxide breakdown
US6956258B2 (en) 2001-10-17 2005-10-18 Kilopass Technologies, Inc. Reprogrammable non-volatile memory using a breakdown phenomena in an ultra-thin dielectric
US6972986B2 (en) 2004-02-03 2005-12-06 Kilopass Technologies, Inc. Combination field programmable gate array allowing dynamic reprogrammability and non-votatile programmability based upon transistor gate oxide breakdown
US6992925B2 (en) 2002-04-26 2006-01-31 Kilopass Technologies, Inc. High density semiconductor memory cell and memory array using a single transistor and having counter-doped poly and buried diffusion wordline
US7031209B2 (en) 2002-09-26 2006-04-18 Kilopass Technology, Inc. Methods and circuits for testing programmability of a semiconductor memory cell and memory array using a breakdown phenomenon in an ultra-thin dielectric
US7042772B2 (en) 2002-09-26 2006-05-09 Kilopass Technology, Inc. Methods and circuits for programming of a semiconductor memory cell and memory array using a breakdown phenomenon in an ultra-thin dielectric
US9123572B2 (en) 2004-05-06 2015-09-01 Sidense Corporation Anti-fuse memory cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798693B2 (en) 2001-09-18 2004-09-28 Kilopass Technologies, Inc. Semiconductor memory cell and memory array using a breakdown phenomena in an ultra-thin dielectric
US6822888B2 (en) 2001-09-18 2004-11-23 Kilopass Technologies, Inc. Semiconductor memory cell and memory array using a breakdown phenomena in an ultra-thin dielectric
US6956258B2 (en) 2001-10-17 2005-10-18 Kilopass Technologies, Inc. Reprogrammable non-volatile memory using a breakdown phenomena in an ultra-thin dielectric
US6992925B2 (en) 2002-04-26 2006-01-31 Kilopass Technologies, Inc. High density semiconductor memory cell and memory array using a single transistor and having counter-doped poly and buried diffusion wordline
US6856540B2 (en) 2002-04-26 2005-02-15 Kilopass Technologies, Inc. High density semiconductor memory cell and memory array using a single transistor
US6898116B2 (en) 2002-04-26 2005-05-24 Kilopass Technologies, Inc. High density semiconductor memory cell and memory array using a single transistor having a buried N+ connection
US6777757B2 (en) 2002-04-26 2004-08-17 Kilopass Technologies, Inc. High density semiconductor memory cell and memory array using a single transistor
US6940751B2 (en) 2002-04-26 2005-09-06 Kilopass Technologies, Inc. High density semiconductor memory cell and memory array using a single transistor and having variable gate oxide breakdown
US7042772B2 (en) 2002-09-26 2006-05-09 Kilopass Technology, Inc. Methods and circuits for programming of a semiconductor memory cell and memory array using a breakdown phenomenon in an ultra-thin dielectric
US7031209B2 (en) 2002-09-26 2006-04-18 Kilopass Technology, Inc. Methods and circuits for testing programmability of a semiconductor memory cell and memory array using a breakdown phenomenon in an ultra-thin dielectric
US6791891B1 (en) 2003-04-02 2004-09-14 Kilopass Technologies, Inc. Method of testing the thin oxide of a semiconductor memory cell that uses breakdown voltage
US6924664B2 (en) 2003-08-15 2005-08-02 Kilopass Technologies, Inc. Field programmable gate array
US6977521B2 (en) 2003-08-15 2005-12-20 Klp International, Ltd. Field programmable gate array
US6972986B2 (en) 2004-02-03 2005-12-06 Kilopass Technologies, Inc. Combination field programmable gate array allowing dynamic reprogrammability and non-votatile programmability based upon transistor gate oxide breakdown
US9123572B2 (en) 2004-05-06 2015-09-01 Sidense Corporation Anti-fuse memory cell

Similar Documents

Publication Publication Date Title
KR970023375A (en) Data holding circuit
JPS61292295A (en) Programmable read only memory and its writing method
JPS61253695A (en) Semiconductor memory device
US4259731A (en) Quiet row selection circuitry
KR930000963B1 (en) Non-volatile memory circuit device
US4054865A (en) Sense latch circuit for a bisectional memory array
US4680734A (en) Semiconductor memory device
JPS6376193A (en) Semiconductor memory device
JPH0421277B2 (en)
JPS59124094A (en) Latent image memory cell
JPH02116082A (en) Semiconductor memory
JPS6161479B2 (en)
JP3020561B2 (en) Semiconductor storage device
JPS633395B2 (en)
JPH023148A (en) Semiconductor memory circuit
JP2530125B2 (en) Semiconductor memory device
JP2834364B2 (en) Semiconductor storage device
JP2738793B2 (en) Semiconductor storage device
JPS60151895A (en) Semiconductor memory
JP3198584B2 (en) Static semiconductor memory device
JPH11176153A (en) Semiconductor integrated circuit
JPH0373959B2 (en)
JPH09162365A (en) Dynamic random access memory
JPH033319B2 (en)
JP2543058B2 (en) Semiconductor memory device