JPS61286203A - Reforming method for methanol - Google Patents

Reforming method for methanol

Info

Publication number
JPS61286203A
JPS61286203A JP12821385A JP12821385A JPS61286203A JP S61286203 A JPS61286203 A JP S61286203A JP 12821385 A JP12821385 A JP 12821385A JP 12821385 A JP12821385 A JP 12821385A JP S61286203 A JPS61286203 A JP S61286203A
Authority
JP
Japan
Prior art keywords
methanol
catalyst
gas
ratio
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12821385A
Other languages
Japanese (ja)
Inventor
Shigeo Yokoyama
横山 成男
Tetsuya Imai
哲也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP12821385A priority Critical patent/JPS61286203A/en
Publication of JPS61286203A publication Critical patent/JPS61286203A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To produce catalytically gas contg. H2 and CO from methanol or a mixture of methanol with water with high efficiency for a long period by specifying the order of arrangement of the catalyst depending upon the temp. gradient of the heat source. CONSTITUTION:In the production of gas contg. H2 and CO from methanol or methanol-water mixture utilizing a heat source at >=100 deg.C, a methanol decomposing catalyst A is arranged to a high temp. side and a steam reforming catalyst B for methanol is arranged to a low temp. side in accordance with the temp. gradient of the heat source. Exhaust gas of an engine or gas turbine, etc., is introduced from an inlet 1a in order to utilized the sensible heat of the gas and the gas is discharged from an outlet 1b after feeding heat to the catalyst bed A, B at the low temp. side. Further, above-described raw materials are introduced from an inlet 2a and methanol decomposing reaction is proceeded in the first stage in the catalyst bed A. Then, steam is fed to the discharged gas from an intermediate feeding port 4, and the gaseous mixture is fed to the catalyst bed B where steam reforming reaction for methanol is proceeded and reacted gas is discharged from an outlet 2b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はメタノール改質方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a methanol reforming method.

更に詳しくは、メタノール又はメタノールと水の混合物
t−原料として触媒を利用し水素及び一酸化炭素を含有
するガスt−製造する方法に関するものである。
More specifically, the present invention relates to a method for producing a gas containing hydrogen and carbon monoxide using a catalyst as a raw material for methanol or a mixture of methanol and water.

〔従来の技術〕[Conventional technology]

現在、発電用ボイラ、内燃機関などに用いられる液体燃
料や気体燃料及び還元ガス製造用原料には原油及びそれ
から精製された石油類が使用されているが、最近の石油
価格の高騰のため燃料の多様化が指向されて、原油以外
の化石燃料から合成されるメタノールがこれら燃料及び
還元ガス製造用原料として注目されている。
Currently, crude oil and petroleum products refined from it are used as raw materials for producing liquid fuel, gaseous fuel, and reducing gas used in power generation boilers, internal combustion engines, etc., but due to the recent rise in oil prices, fuel With diversification in mind, methanol synthesized from fossil fuels other than crude oil is attracting attention as a raw material for producing these fuels and reducing gases.

またメタノールはナフサニジはるかに低温で水素及び一
酸化炭素を含有するガスに分解されるので、上記メタノ
ール分解反応、水蒸気改質反応の熱源として廃熱の利用
が可能であるという優位性をもっている。
Furthermore, since methanol is decomposed into a gas containing hydrogen and carbon monoxide at a much lower temperature than naphthalene, it has the advantage that waste heat can be used as a heat source for the methanol decomposition reaction and steam reforming reaction.

メタノール分解反応は次のfl)、 +21式のとおシ
である。
The methanol decomposition reaction is the following fl), +21 formula.

C!H30H−’) Co + 2H1ΔH25℃==
21.7 koal/mol ・(1)CH10B+n
H10→(2+n)H1+(1−n)OO+nC!01
  =(2)ここで O(n (1 メタノール水蒸気改質反応は次の(3)式のとおりでめ
る。
C! H30H-') Co + 2H1ΔH25℃==
21.7 koal/mol ・(1) CH10B+n
H10→(2+n)H1+(1-n)OO+nC! 01
= (2) where O(n (1) The methanol steam reforming reaction is expressed as the following equation (3).

CH30H+H10→00B+5H2a2IIC=1)
.8koal、/mol ++ (3)上記反応で生成
し九ガスは、反応の吸熱量(、U)相当分だけ生成ガス
の発熱量が増加するという利点と、さらにこの生成ガス
は高オクタン価で高出力設計の内燃機関に適用すると圧
縮比をめげて熱効率を改善することや、メタノール燃焼
時のアルデヒド類などの排出もなく、クリーン燃焼が可
能などの利点があシ、自動車用さらには発電用無公害燃
料としての利用が可能である。
CH30H+H10→00B+5H2a2IIC=1)
.. 8 koal, /mol ++ (3) The nine gases produced in the above reaction have the advantage that the calorific value of the produced gas increases by the amount equivalent to the endothermic amount (, U) of the reaction, and furthermore, this produced gas has a high octane number and high output. When applied to a designed internal combustion engine, it has the advantage of improving thermal efficiency by lowering the compression ratio, and enables clean combustion without emitting aldehydes when burning methanol, and is non-polluting for use in automobiles and power generation. It can be used as fuel.

さらに上記反応(り〜(3)Kより生成し九ガスから水
素全分離し、この水素を燃料電池発電用燃料として、ま
念石油精製、化学工業における各種有機化合物の水素化
反応などの水素源として利用できるし、また、反応(1
),+21より生成したガスから一酸化炭素を分離し一
酸化炭素源として利用できる。
Furthermore, hydrogen is completely separated from the nine gases generated from the above reaction (3) K, and this hydrogen is used as a fuel for fuel cell power generation as a hydrogen source for use in petroleum refining, hydrogenation reactions of various organic compounds in the chemical industry, etc. It can also be used as a reaction (1
), +21, carbon monoxide can be separated from the gas produced and used as a carbon monoxide source.

従来、エンジン、ガスタービンなどの排ガ″スの顕熱を
熱源として利用し、メタノール又はメタノールと水の混
合wt−i科として分解又は水蒸気改質反応を行わせる
場合、特許の触媒を用いてメタノール分解反応のみを行
わせるか、まれはメタノール水蒸気改質反応のみを行わ
せるだけであった。
Conventionally, when decomposition or steam reforming reactions are performed using methanol or a mixture of methanol and water using the sensible heat of exhaust gas from engines, gas turbines, etc. as a heat source, patented catalysts have been used. Only the methanol decomposition reaction or, in rare cases, only the methanol steam reforming reaction was performed.

〔発明が解決し=9としている問題点〕しかし、上記従
来の方法では反応が進行するとともに熱移動が行われ、
これと同時に排ガスの温度レベルが低下する。この温度
低下にともない触媒層温度の低下、ついては反応速度の
激減をひきおこすことから、効率が非常に悪くなるとい
う問題がある。
[Problems solved by the invention = 9] However, in the above conventional method, heat transfer occurs as the reaction progresses,
At the same time, the temperature level of the exhaust gas decreases. This temperature drop causes a drop in the catalyst layer temperature, which in turn causes a drastic reduction in the reaction rate, resulting in a problem of extremely poor efficiency.

具体的には、従来の方法は第4図に示すように排ガスは
入口1aから、出口1bを通過する間に触媒層3に熱を
供給し、メタノール又はメタノールと水の混合−は入口
2aから導入され、触媒ff13t−通過する間に反応
し、生成ガス出口2bから水素、一酸化炭素、二酸化炭
素全含有するガスを得ていた。
Specifically, as shown in FIG. 4, in the conventional method, heat is supplied to the catalyst layer 3 while the exhaust gas passes through an inlet 1a and an outlet 1b, and methanol or a mixture of methanol and water is supplied from an inlet 2a. was introduced and reacted while passing through the catalyst ff13t, and a gas containing all hydrogen, carbon monoxide, and carbon dioxide was obtained from the product gas outlet 2b.

しかし、排ガスの温度は均一でなく入口1a付近で高く
、出口1b付近で低い大きな温度勾配を有するため、触
媒層3においても同様大きな温度勾配を有し、排ガス入
口付近の高温部分では熱により触媒は劣化しやすく、ま
た排ガス出口付近の低温部分では反応速度は極めて遅く
′fLシ、十分な性能が得られないという問題があつ九
However, the temperature of the exhaust gas is not uniform and has a large temperature gradient that is high near the inlet 1a and low near the outlet 1b, so the catalyst layer 3 also has a large temperature gradient, and the high temperature part near the exhaust gas inlet is catalyzed by heat. There is also the problem that the reaction rate is extremely slow in the low temperature area near the exhaust gas outlet, making it difficult to obtain sufficient performance.

本発明は、上記の問題点を解決し、長時間にわたって高
効率で運転を行うことが可能なメタノール改質方法全提
供することにある。
The present invention aims to solve the above-mentioned problems and provide an entire methanol reforming method that can be operated with high efficiency over a long period of time.

〔問題点を解決する九めの手段〕[Ninth way to solve the problem]

本発明者らは、上記の問題点を解決すべく、鋭意実験検
討を重ねた結果、排ガス(熱源)の温度勾配に応じて高
温側にメタノール分解触媒を、ま次低温側にメタノール
水蒸気改質触媒の順に配列することにより、一種類の触
媒のみを用いるよシも熱源から有効に熱を回収するとと
もに、触媒に適し次温度で反応を進行させようとするも
のである。
In order to solve the above-mentioned problems, the present inventors conducted intensive experimental studies and found that, depending on the temperature gradient of the exhaust gas (heat source), a methanol decomposition catalyst was installed on the high temperature side, and methanol steam reforming was performed on the low temperature side. By arranging the catalysts in this order, heat can be effectively recovered from the heat source even if only one type of catalyst is used, and the reaction can proceed at a temperature suitable for the catalyst.

すなわち、本発明は、100℃以上の温度の熱源を利用
してメタノール又はメタノールと水の混合物t−原料と
して水素及び一酸化炭素を含有するガスヲ農造する方法
において、前記熱源の温度勾配に応じて高直側のメタノ
ール分解触媒から低温側のメタノール水蒸気改質触媒の
順に配列すること全特徴とするメタノール改質方@を提
供する。
That is, the present invention provides a method for producing methanol or a mixture of methanol and water (t-gas) containing hydrogen and carbon monoxide as raw materials using a heat source with a temperature of 100° C. or higher, in which To provide a methanol reforming method, which is characterized in that methanol decomposition catalysts are arranged in the order of methanol decomposition catalysts on the high vertical side and methanol steam reforming catalysts on the low temperature side.

本発明でいうメタノール分解触媒とは、反応(1)、(
21選択的に進行させる触媒で、白金、パラジウム、ニ
ッケルなどV層族元素全含有する触媒又は酸化クロムを
含有する触媒などであル、具体例としては例えば下記の
触媒がある。
The methanol decomposition catalyst referred to in the present invention refers to reaction (1), (
21. Catalysts that selectively advance the process include catalysts containing all group V elements such as platinum, palladium, and nickel, or catalysts containing chromium oxide. Specific examples include the following catalysts.

■ アルミナ’46らかしめアルカリ土類金属酸化物、
アルカリ金属酸化物、希土類元素酸化物、酸化亜鉛、酸
化クロムなどで被覆した担体上に白金、パラジウムから
なる群の一種以上の金属を担持させた触媒(特開昭57
−68140%特開FIE59−199045、特願昭
58−190669.190670号)■ チタニアを
あらかじめアルカリ土類金属酸化物、アルカリ金属酸化
物、希土類元素酸化物、酸化亜鉛、酸化クロムなどで被
覆した担体又はルチル製チタニア担体上に白金、パラジ
ウムからなる群の一種以上の金属を担持させ念触媒(特
開昭59−1)2855、特願昭58−229087.
229088.245787号) ■ アルカリ土類金属元素の酸化物を含有する担体又は
アルカリ土類金属元素の酸化物及び希土類元素の酸化物
を含有する担体上に白金、パラジウムからなる群の一種
以上の金属全担持させた触媒(特願昭59−53549
.55550号) ■ アルミナを担体に酸化ニッケル、酸化クロム、酸化
銅を担持した触媒(特公昭58−46346、同58−
45286号] ■ アルミナにニッケル及びカリウムを担持した触媒(
特開昭57−144031号)■ 銅、亜鉛、クロムか
らなる群の一種以上の酸化物をベースに酸化ニッケル金
担持又は混合した触媒(特開昭57−1)4158、同
57−1)4159号) 本発明でいうメタノール水蒸気改質とは反応(3)全選
択的に進行させる触媒で、銅を含有する触媒などであり
、具体例としては例えば下記の触媒がある。
■ Alumina '46 caulked alkaline earth metal oxide,
Catalysts in which one or more metals from the group consisting of platinum and palladium are supported on a carrier coated with an alkali metal oxide, a rare earth element oxide, zinc oxide, chromium oxide, etc.
-68140% Japanese Patent Application FIE59-199045, Japanese Patent Application No. 190669.190670/1986) ■ Support coated with titania in advance with alkaline earth metal oxide, alkali metal oxide, rare earth element oxide, zinc oxide, chromium oxide, etc. Alternatively, one or more metals from the group consisting of platinum and palladium are supported on a rutile titania carrier as a psychocatalyst (Japanese Patent Application Laid-Open No. 59-1) 2855, Japanese Patent Application No. 58-229087.
229088.245787) ■ One or more metals from the group consisting of platinum and palladium on a carrier containing an oxide of an alkaline earth metal element or a carrier containing an oxide of an alkaline earth metal element and an oxide of a rare earth element. Fully supported catalyst (Patent application No. 59-53549)
.. 55550) ■ Catalyst with nickel oxide, chromium oxide, and copper oxide supported on alumina (Japanese Patent Publication No. 58-46346, No. 58-58)
No. 45286] ■ Catalyst with nickel and potassium supported on alumina (
JP-A-57-144031) ■ Catalysts supported or mixed with nickel gold oxide based on one or more oxides of the group consisting of copper, zinc, and chromium (JP-A-57-1) 4158, JP-A-57-1) 4159 No.) Methanol steam reforming in the present invention is a catalyst that allows reaction (3) to proceed in an all-selective manner, such as a catalyst containing copper. Specific examples thereof include the following catalysts.

■ 酸化鋼、酸化クロム金主成分とする触媒で、さらに
はマンガン、バリウムなどの酸化物を含有する触媒(特
公昭54−1)274号公報] ■ 酸化鋼、醸化亜鉛を主成分とする触媒で、さらに酸
化クロムを含有する触媒(特開昭57−1)4158号
公報)、またさらに酸化アルミニウム及び酸化マンガン
、酸化ホウ素などを含有する触媒(特開昭59−15f
501号公報] ■ アルミナ、シリカなどの担体に酸化鋼を担持した触
媒(特開昭58−1)a3b号公報、竹澤鴨恒、表面、
VoL20.  No、 10. P。
■ Catalyst containing oxidized steel, chromium oxide gold as main component, and further containing oxides such as manganese and barium (Japanese Patent Publication No. 274) ■ Oxidized steel, catalyst containing zinc oxide as main component Catalysts further containing chromium oxide (Japanese Patent Application Laid-Open No. 57-1) No. 4158), catalysts further containing aluminum oxide, manganese oxide, boron oxide, etc. (Japanese Patent Application Laid-open No. 59-15F)
No. 501] ■ Catalyst with oxidized steel supported on a carrier such as alumina or silica (JP-A-58-1) No. A3b, Takezawa Kamotsune, surface,
VoL20. No, 10. P.

555.1982) 以上はあくまで例示であって本発明を特に限定するもの
ではない。
555.1982) The above is just an example and does not particularly limit the present invention.

本発明の反応条件は、メタノ−ル分解触媒を使用する場
合ロー″−50K9/crrr’ckの圧力、200〜
800℃の温度、α9以下のH2O/CH3OH(モル
比ンで、メタノール水蒸気改質触媒を使用する場合、0
〜50に9/−の圧力、100へ400Cの温度、1以
上cr) H1010H30H(% # 比) T 6
ることが好ましい。
The reaction conditions of the present invention include a pressure of low -50 K9/crrr'ck and a pressure of 200 to
At a temperature of 800°C, H2O/CH3OH (molar ratio of α9 or less), when using a methanol steam reforming catalyst, 0
~50 to 9/- pressure, 100 to 400C temperature, 1 or more cr) H1010H30H (% # ratio) T 6
It is preferable that

上記のように圧力t−50k&/−以下にするのは、反
応(1)〜(3)は熱力学的平衡上加圧になるほど起こ
シにくくなるからである。また、反応温度全メタノール
分解の場合200℃以上、メタノール水蒸気改質の場合
100℃以上にするのは、圧力20 kg7cw’Gで
H2O/CH3OH(モル比)0の場合、200℃以下
で、■鵞010H301)(モル比)2の場合100℃
以下になると熱力学的平衡上メタノール転化率が50%
を下まわるからである。
The reason why the pressure is set to t-50k&/- or less as described above is that reactions (1) to (3) become less likely to occur as the pressure increases in terms of thermodynamic equilibrium. In addition, the reaction temperature should be 200°C or higher for total methanol decomposition and 100°C or higher for methanol steam reforming when the pressure is 20 kg7 cw'G and H2O/CH3OH (molar ratio) is 0, the reaction temperature is 200°C or lower, 010H301) (mole ratio) 2: 100℃
When the temperature is below, the methanol conversion rate is 50% in thermodynamic equilibrium.
This is because it is lower than .

また、特に好ましい反応条件はメタノール分解触媒を使
用する場合200〜500℃の温度、1)01〜α8の
H,O/C!H,OH(モル比]で、メタノール水蒸気
改質触媒を使用する場合150〜300℃の温度、1〜
5のH2O/CH3OH(モル比)である。
Particularly preferable reaction conditions are a temperature of 200 to 500°C when using a methanol decomposition catalyst, 1) H, O/C of 01 to α8! H, OH (molar ratio), at a temperature of 150 to 300°C when using a methanol steam reforming catalyst, from 1 to
H2O/CH3OH (molar ratio) of 5.

本発明は、100℃以上の温度の熱源を利用してメタノ
ール又はメタノールと水の混合物全原料として水素及び
一酸化炭素を含有するガスを製造する方法において、前
記熱源の温度勾配に応じて高温側のメタノール分解触媒
から低温側のメタノール水蒸気改質触媒の順に配列する
ことを特徴としておル、高温側のメタノール分解触媒に
供給する原料のH,010H,O)I比(モル比]を1
9以下にして反応(1),(2)t−行わせた後、この
出口ガスを低温側のメタノール水蒸気改質触媒に供給す
る時に1以上のH2O/CH3OH比(モル比)になる
ように不足分のスチームを前記出口ガスに供給し、H2
O/CH3OH比(モル比)を制御する方法、又は、低
温側のメタノール水蒸気改質触媒に供給する原料のH,
010HsO)I比(モル比)を1以上にして反応を行
わせた後、この出口ガスを高温側のメタノール分解触媒
に供給する時に1)9 以下OHsO/CjHsOH(
% /’比)Kn、6エ5に不足分のメタノール又はス
チームとの混合ガスを供給し、H,010)i30H(
モル比)t−制御する方法を用いることにより、熱源か
ら高効率で熱を回収し、効率良く反応を進行させるもの
である。
The present invention provides a method for producing gas containing hydrogen and carbon monoxide as all raw materials of methanol or a mixture of methanol and water using a heat source with a temperature of 100° C. or higher, in which the high temperature side is adjusted according to the temperature gradient of the heat source. The methanol decomposition catalyst is arranged in the order of the methanol steam reforming catalyst on the low temperature side, and the H,010H,O)I ratio (molar ratio) of the raw material supplied to the methanol decomposition catalyst on the high temperature side is 1.
After carrying out reactions (1) and (2) at a temperature of 9 or less, the H2O/CH3OH ratio (molar ratio) is set to 1 or more when this outlet gas is supplied to the methanol steam reforming catalyst on the low temperature side. The insufficient amount of steam is supplied to the outlet gas, and H2
A method of controlling the O/CH3OH ratio (molar ratio), or H of the raw material supplied to the methanol steam reforming catalyst on the low temperature side,
After the reaction is carried out with the I ratio (molar ratio) of
% / 'ratio) Kn, 6E 5 is supplied with the insufficient amount of methanol or mixed gas with steam, H,010)i30H(
By using a method of controlling (molar ratio) t-, heat is recovered from the heat source with high efficiency and the reaction proceeds efficiently.

〔実施例〕〔Example〕

以下、図面を参照して本発明方法の実施例につき説明す
る。
Embodiments of the method of the present invention will be described below with reference to the drawings.

第1図〜N!、3図は本発明の実施方法の概略構成業示
すものであり、高温側にメタノール分解触媒A、O,D
’i低温側にメタノール水蒸気改質触媒B、Et−配列
することを特徴としている。
Figure 1~N! , 3 shows the schematic structure of the method of carrying out the present invention, in which methanol decomposition catalysts A, O, and D are placed on the high temperature side.
The methanol steam reforming catalyst B is arranged on the low temperature side in an Et- arrangement.

第1図に示すように排ガスは入口1aから導入し、高温
側で触媒MAに、低温側で触媒層Bに熱を供給し出口1
bから排出される。原料(メタノール又はメタノールと
水の混合物”ン′−は入口2aから導入し、まず触媒/
i1Aでメタノール分解反応を進行させ、この出口ガス
に中間供給口4からスチーム全供給し、この混合ガスを
触媒層Bに供給しメタノール水蒸気改質反応を進行させ
、出口2bから排出する。
As shown in Fig. 1, exhaust gas is introduced from the inlet 1a, supplies heat to the catalyst MA on the high temperature side and to the catalyst layer B on the low temperature side, and then supplies heat to the catalyst layer B on the low temperature side.
It is discharged from b. The raw material (methanol or a mixture of methanol and water) is introduced from the inlet 2a, and first the catalyst/water mixture is introduced.
A methanol decomposition reaction is allowed to proceed at i1A, steam is fully supplied to this outlet gas from the intermediate supply port 4, this mixed gas is supplied to the catalyst layer B, a methanol steam reforming reaction proceeds, and the mixture is discharged from the outlet 2b.

l!2図に示すように排ガスはwE1図と同様入口1a
から導入し、出口1bから排出される。
l! As shown in Figure 2, the exhaust gas enters the inlet 1a as in Figure wE1.
It is introduced from the outlet 1b and discharged from the outlet 1b.

原料は入口2aから導入し、まず触媒IWIBでメタノ
ール水蒸気改質反応を進行させ、この出口ガスに中間供
給口5からメタノールを供給し、この混合ガスを触媒層
Aに供給しメタノール分解反応全進行させ出口2bがら
排出する。
The raw material is introduced from the inlet 2a, and the methanol steam reforming reaction is first progressed at the catalyst IWIB. Methanol is supplied to this outlet gas from the intermediate supply port 5, and this mixed gas is supplied to the catalyst layer A, where the methanol decomposition reaction is fully progressed. and discharge from outlet 2b.

第5図に示すように排ガスは入口1aから導入し、高温
側で触媒層01中温側で触媒層り。
As shown in FIG. 5, exhaust gas is introduced from the inlet 1a, and a catalyst layer 01 is formed on the high temperature side and a catalyst layer 01 is formed on the medium temperature side.

低温側で触媒層Eに熱を供給し、出口1bから排出され
る。原料は入口2aから導入し、まず触媒層Eでメタノ
ール水蒸気改質反応上進行させ、この出口ガスにwc1
中間供給口6からメタノールを一部供給し、この混合ガ
スを触媒層DK供給しメタノール分解反応を進行させる
。この出口ガスにさらに第2中間供給ロアからメタノー
ルを一部供給し、この混合ガス全触媒層0に供給しメタ
ノール分解反応を進行させる。−例としては、触媒Cと
して白金担持触媒、触媒D゛として銅、クロムの酸化物
を含有する担体にニッケルの酸化vtJを担持した触媒
を、触媒Eととして酸化銅、酸化亜鉛、アルミナを含有
する触媒を使用することができる。
Heat is supplied to the catalyst layer E on the low temperature side and is discharged from the outlet 1b. The raw material is introduced from the inlet 2a, and is first allowed to undergo a methanol steam reforming reaction in the catalyst layer E, and then the outlet gas contains wc1.
A portion of methanol is supplied from the intermediate supply port 6, and this mixed gas is supplied to the catalyst layer DK to advance the methanol decomposition reaction. A portion of methanol is further supplied to this outlet gas from the second intermediate supply lower, and this mixed gas is supplied to all the catalyst layers 0 to proceed with the methanol decomposition reaction. - For example, Catalyst C is a platinum-supported catalyst, Catalyst D is a catalyst in which nickel oxide vtJ is supported on a carrier containing oxides of copper and chromium, and Catalyst E is a catalyst containing copper oxide, zinc oxide, and alumina. Catalysts can be used.

具体例を以下示す。A specific example is shown below.

第1図の装置において1インチの管を使用し、触媒層A
に白金触媒(Pt(L5wt%、MgO5,5wt%、
A40194 wt%の組成)t−41,触媒層Bに銅
、亜鉛、クロム系触媒(C!uo 55 wt%、Zn
O50wt%、cr、C315wt%)f2.51充填
し、500℃の燃焼排ガス(70に&/h)を入口1a
から導入し試験を行った。
In the apparatus of FIG. 1, a 1-inch tube is used, and the catalyst layer A
Platinum catalyst (Pt (L5wt%, MgO5,5wt%,
A40194 wt% composition) t-41, copper, zinc, chromium-based catalyst in catalyst layer B (C!uo 55 wt%, Zn
O50wt%, CR, C315wt%) f2.51 is charged and 500℃ combustion exhaust gas (70 &/h) is injected into the inlet 1a.
It was introduced and tested.

メタノール(460ゆ/h)とスチーム(α2kP/h
)の混合蒸気を入口2aから500℃で供給し、触媒層
Aでメタノール分解反応を行わせ、a 6 Nm”/h
のガス(H,49,5%、 0019.6優、00. 
A 0%、0H8OH25,2%、 H,O2,7%の
ガス組成)t−得た。このガスに中間供給口4からスチ
ーム(1,4時/h)を500℃で供給し、この混合ガ
スを触媒NjIBでメタノール水蒸気反応上行わせ、C
18Nm”/h (Dガス(H*64.bう、0012
.1%、co、 14.2%、O)1.OH2,6%、
H,O&2%、OH4CL 5%のガス組成)が出口2
bから得られた。排ガス出口1bの温度は270℃であ
った。
Methanol (460 Yu/h) and steam (α2kP/h
) is supplied from the inlet 2a at 500°C, and a methanol decomposition reaction is carried out in the catalyst layer A, resulting in a 6 Nm"/h
Gas (H, 49.5%, 0019.6 excellent, 00.
A gas composition of 0%, 0H8OH25, 2%, H, O2, 7%) was obtained. Steam (1.4 hours/h) is supplied to this gas from the intermediate supply port 4 at 500°C, and this mixed gas is subjected to a methanol-steam reaction using a catalyst NjIB.
18Nm”/h (D gas (H*64.b, 0012
.. 1%, co, 14.2%, O)1. OH2.6%,
Gas composition of H, O & 2%, OH4CL 5%) is at outlet 2
Obtained from b. The temperature at the exhaust gas outlet 1b was 270°C.

この結果、メタノール転化率はトータルで91.0%と
いう高性能金得ることができた。
As a result, high-performance gold with a total methanol conversion rate of 91.0% could be obtained.

第2図の装置において1インチの管を使用し、触媒層A
に白金触媒(Pt15wt%、CaO5,5wt%、A
Laos  94 wt%の組成)t−4t、触媒層B
に銅−亜鉛系触媒(Ouo 55 wt%、ZnO40
wt%、At、o、  5 wt%)t−21充填し、
500℃の燃焼排ガス(701V/h)t−人口1aか
ら導入し試験を行つ次。
In the apparatus shown in Fig. 2, a 1-inch tube is used, and the catalyst layer A
Platinum catalyst (Pt15wt%, CaO5,5wt%, A
Composition of Laos 94 wt%) t-4t, catalyst layer B
Copper-zinc catalyst (Ouo 55 wt%, ZnO40
wt%, At, o, 5 wt%) filled with t-21,
Next, a test was conducted by introducing combustion exhaust gas (701 V/h) at 500°C from t-population 1a.

メタノール(α96kliF/h)とスチーム([L8
1kf//h)の混合蒸気を入口2aから250℃で供
給し触媒層Bでメタノール水蒸気改質反Fa t” 行
:Jl) セ2.84 Nm”/h (D カス(Hs
 6 (16%、C!O(L 8 %、 Go! 19
.7 %、 0HBOH五2チ、H3O15,7%のガ
ス組成、以下全てmo1%表示)を得九。このガスに中
間供給口5からメタノール(五2ゆ/h)とスチーム(
1)8ゆ/h)の混合蒸気を500℃で供給し、この混
合ガスを触媒#Aでメタノール分解反応を行わせ9.4
Nm”/hのガス(Hs 6 !A、O%、 002α
0%、00雪7、9 %、0H30H2,4%、H!0
6%、0H4CL 7 %のガス組成]が出口2bから
得られた。排ガス出口1bの温度は270℃であった。
Methanol (α96kliF/h) and steam ([L8
1kf//h) of mixed steam is supplied from the inlet 2a at 250°C, and methanol steam reforming is carried out in the catalyst layer B.
6 (16%, C!O(L 8%, Go! 19
.. A gas composition of 7%, 52% of 0HBOH, 15% of H3O, 7% (hereinafter all expressed as mo1%) was obtained. This gas is supplied with methanol (52 YU/h) and steam (
1) 8 Y/h) of mixed steam was supplied at 500°C, and this mixed gas was subjected to a methanol decomposition reaction using catalyst #A.9.4
Nm”/h of gas (Hs 6 !A, O%, 002α
0%, 00 Snow 7.9%, 0H30H2.4%, H! 0
6%, 0H4CL 7%] was obtained from outlet 2b. The temperature at the exhaust gas outlet 1b was 270°C.

この結果、メタノール転化率はトータルで92.5%と
いう高性能を得ることができた。
As a result, a high performance with a total methanol conversion rate of 92.5% could be obtained.

第3図の装置において1インチの管を使用し、触媒層0
に白金触媒(Pt15wt%、BaO2,5wt%、A
220197wt%)f!:2ts触媒層りにニッケル
ー銅系触媒(N402 wt%、OuO40wt%、0
r20355 wt%、Mn1O15wt%)f2t、
触媒層Eに銅、亜鉛系触媒(Ouo 50 wt%、Z
n040wt%、Al*O35wt%、zro、5wt
%)’ff2を充填し、500℃の燃焼排ガス(6sk
g/h)を入口1aから導入し試験を行った。
In the apparatus shown in Fig. 3, a 1-inch tube is used, and the catalyst layer is 0.
Platinum catalyst (Pt15wt%, BaO2,5wt%, A
220197wt%) f! :2ts catalyst layer with nickel-copper catalyst (N402 wt%, OuO40wt%, 0
r20355 wt%, Mn1O15wt%) f2t,
Copper and zinc catalyst (Ouo 50 wt%, Z
n040wt%, Al*O35wt%, zro, 5wt
%) 'FF2 is charged and combustion exhaust gas at 500℃ (6sk
g/h) was introduced from the inlet 1a and the test was conducted.

メタノール((L 96kg/h )とスチーム((L
81)V/h)の混合蒸気を入口2aから250℃で供
給し、触媒層Eでメタノール水蒸気改質反応を行わせ2
.84 Nm”/hのガス(H,6(L6%、0018
%、 co、  1 9. 7 %、 OEI、OH&
1 %、H,0158%のガス組成)を得た。このガス
に第1中間供給口6からメタノール(t61w/h)と
スチーム([1L09障/h)の混合蒸気′t−500
℃で供給し、この混合ガスを触媒層りでメタノール分解
反応を行わせ6.2Nm”/hのガス(H!6&0%、
0015.9%、C031α5%、OH,O)!2.2
チ、H,OQ %、01)4CL 4%のガス組成)を
得た。このガスに第2中間供給ロアからメタノール(t
skl?/hンとスチーム(α09kl?/h)の混合
蒸気t−400℃で供給し、この混合ガス全触媒層Oで
メタノール分解反応全行わせ9.6Nms/hのガス(
H鵞6五7%、002α8%、co。
Methanol ((L 96kg/h) and steam ((L
81) V/h) of mixed steam is supplied from the inlet 2a at 250°C, and the methanol steam reforming reaction is carried out in the catalyst layer E.
.. 84 Nm”/h of gas (H, 6 (L6%, 0018
%, co, 19. 7%, OEI, OH&
1%, H, gas composition of 158%) was obtained. This gas is supplied with a mixed vapor of methanol (t61w/h) and steam ([1L09w/h) from the first intermediate supply port 6't-500%.
℃, and the mixed gas was subjected to a methanol decomposition reaction using a catalyst layer to produce 6.2 Nm"/h of gas (H! 6 & 0%,
0015.9%, C031α5%, OH, O)! 2.2
H, H, OQ %, 01) 4CL 4% gas composition) was obtained. This gas is supplied with methanol (t
skl? /h and steam (α09kl?/h) were supplied at t-400°C, and the methanol decomposition reaction was carried out in the entire catalyst layer O at 9.6Nms/h.
H Goose 657%, 002α8%, co.

75%、0HIOH1,6% 、 HsO5,9%、0
H4Q、5チ)が出口2bから得られ九。排ガス出口1
bの温度は265℃であった。
75%, 0HIOH1,6%, HsO5,9%, 0
H4Q, 5ch) is obtained from exit 2b and 9. Exhaust gas outlet 1
The temperature of b was 265°C.

この結果、メタノール転化率はトータルで94.6%と
いう高性能を得ることができた。
As a result, a high performance with a total methanol conversion rate of 94.6% could be obtained.

〔発明の効果〕〔Effect of the invention〕

以上実施例から明らかなように本発明の熱源(排ガスの
顕熱ンの温度勾配に応じて高温側のメタノール分解触媒
から低温側のメタノール水蒸気改質触媒の順に配列する
方法は、熱源から高効率で熱を回収し、効率良く水素及
び一酸化炭素を含有するガスを展進する方法である。
As is clear from the above examples, the method of arranging the heat source of the present invention (in order from the methanol decomposition catalyst on the high temperature side to the methanol steam reforming catalyst on the low temperature side according to the temperature gradient of the sensible heat of the exhaust gas) has a high efficiency from the heat source. This is a method of recovering heat and efficiently distributing gas containing hydrogen and carbon monoxide.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の実施態a!ヲ示す図、第4図
は従来のメタノール分解、メタノール水蒸気改質の実施
態様を示す図である。 復代理人  内 1)  切 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫 第1図   篇2図
FIGS. 1 to 3 show embodiment a of the present invention! FIG. 4 is a diagram showing an embodiment of conventional methanol decomposition and methanol steam reforming. Sub-agent 1) Sub-agent Ryo Hagiwara - Sub-agent Atsuo Anzai Figure 1 Figure 2

Claims (8)

【特許請求の範囲】[Claims] (1)100℃以上の温度の熱源を利用して、メタノー
ル又はメタノールと水の混合物を原料として水素及び一
酸化炭素を含有するガスを製造する方法において、前記
熱源の温度勾配に応じて高温側のメタノール分解触媒か
ら低温側のメタノール水素気改質触媒の順に配列するこ
とを特徴とするメタノール改質方法。
(1) In a method for producing a gas containing hydrogen and carbon monoxide from methanol or a mixture of methanol and water as a raw material using a heat source with a temperature of 100°C or higher, the high temperature side is determined according to the temperature gradient of the heat source. A methanol reforming method characterized in that the methanol reforming catalyst is arranged in the order of a methanol decomposition catalyst at a lower temperature side and a methanol hydrogen gas reforming catalyst at a lower temperature side.
(2)メタノール分解触媒がVIII族元素を含有する触媒
からなる特許請求の範囲第(1)項のメタノール改質方
法。
(2) The methanol reforming method according to claim (1), wherein the methanol decomposition catalyst comprises a catalyst containing a group VIII element.
(3)メタノール分解触媒がクロムを含有する触媒から
なる特許請求の範囲第(1)項のメタノール改質方法。
(3) The methanol reforming method according to claim (1), wherein the methanol decomposition catalyst is a catalyst containing chromium.
(4)メタノール水蒸気改質触媒が鋼を含有する触媒か
らなる特許請求の範囲第(1)項のメタノール改質方法
(4) The methanol reforming method according to claim (1), wherein the methanol steam reforming catalyst comprises a catalyst containing steel.
(5)メタノール分解触媒を使用する反応条件が0〜5
0kg/cm^2Gの圧力、200〜800℃の温度、
0.9以下のH_2O/CH_3OH比(モル比)であ
る特許請求の範囲第(1)項のメタノール改質方法。
(5) Reaction conditions using methanol decomposition catalyst are 0 to 5
Pressure of 0kg/cm^2G, temperature of 200~800℃,
The methanol reforming method according to claim (1), wherein the H_2O/CH_3OH ratio (molar ratio) is 0.9 or less.
(6)メタノール水蒸気改質触媒を使用する反応条件が
0〜50kg/cm^2Gの圧力、100〜400℃の
温度、1以上のH_2O/CH_3OH比(モル比)で
ある特許請求の範囲第(1)項のメタノール改質方法。
(6) The reaction conditions using the methanol steam reforming catalyst are a pressure of 0 to 50 kg/cm^2G, a temperature of 100 to 400°C, and a H_2O/CH_3OH ratio (molar ratio) of 1 or more ( 1) Methanol reforming method.
(7)高温側のメタノール分解触媒に供給する原料のH
_2O/CH_3OH比(モル比)を0.9以下にして
反応を行わせた後、この出口ガスを低温側のメタノール
水蒸気改質触媒に供給する時に1以上のH_2O/CH
_3OH比(モル比)になるように不足分のスチームを
前記出口ガスに供給しH_2O/CH_3OH比(モル
比)を制御する特許請求の範囲第(1)項のメタノール
改質方法。
(7) H of the raw material supplied to the methanol decomposition catalyst on the high temperature side
After the reaction is carried out with the _2O/CH_3OH ratio (molar ratio) below 0.9, when this outlet gas is supplied to the methanol steam reforming catalyst on the low temperature side, 1 or more H_2O/CH
The methanol reforming method according to claim (1), wherein the insufficient amount of steam is supplied to the outlet gas to control the H_2O/CH_3OH ratio (molar ratio) so that the H_2O/CH_3OH ratio (molar ratio) is achieved.
(8)低温側のメタノール水蒸気改質触媒に供給する原
料のH_2O/CH_3OH比(モル比)を1以上にし
て反応を行わせた後、この出口ガスを高温側のメタノー
ル分解触媒に供給する時に0.9以下のH_2O/CH
_3OH(モル比)になるように不足分のメタノール又
はスチームとの混合ガスを供給し、H_2O/CH_3
OH(モル比)を制御する特許請求の範囲第(1)項の
メタノール改質方法。
(8) After the H_2O/CH_3OH ratio (mole ratio) of the raw material supplied to the methanol steam reforming catalyst on the low temperature side is set to 1 or more and the reaction is carried out, when this outlet gas is supplied to the methanol decomposition catalyst on the high temperature side. H_2O/CH less than 0.9
Supply the insufficient amount of mixed gas with methanol or steam so that the molar ratio is _3OH, H_2O/CH_3
The methanol reforming method according to claim (1), which controls OH (molar ratio).
JP12821385A 1985-06-14 1985-06-14 Reforming method for methanol Pending JPS61286203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12821385A JPS61286203A (en) 1985-06-14 1985-06-14 Reforming method for methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12821385A JPS61286203A (en) 1985-06-14 1985-06-14 Reforming method for methanol

Publications (1)

Publication Number Publication Date
JPS61286203A true JPS61286203A (en) 1986-12-16

Family

ID=14979285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12821385A Pending JPS61286203A (en) 1985-06-14 1985-06-14 Reforming method for methanol

Country Status (1)

Country Link
JP (1) JPS61286203A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170401A (en) * 1991-12-20 1993-07-09 Agency Of Ind Science & Technol Waste heat recovering method and heat transporting method for recovered waste heat
US5560891A (en) * 1993-10-15 1996-10-01 Agency Of Industrial Science And Technology Catalytic reaction apparatus
JP2008007362A (en) * 2006-06-28 2008-01-17 Kansai Electric Power Co Inc:The Dimethyl ether reformation power generation process and system
JP2008273795A (en) * 2007-05-01 2008-11-13 Toshiba Corp Hydrogen production apparatus and hydrogen production method
JP4653108B2 (en) * 2003-11-17 2011-03-16 ハルドール・トプサー・アクチエゼルスカベット Urea production method
JP2016023107A (en) * 2014-07-22 2016-02-08 株式会社デンソー Reformer
CN110316703A (en) * 2019-06-20 2019-10-11 浙江工业大学 A kind of self-heating preparing hydrogen by reforming methanol reaction system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231995A (en) * 1975-09-08 1977-03-10 Nissan Motor Co Ltd Gas generator
JPS57144031A (en) * 1981-03-04 1982-09-06 Agency Of Ind Science & Technol Catalyst for decomposition of methanol for production of hydrogen and carbon monoxide
JPS57174139A (en) * 1981-04-21 1982-10-26 Mitsubishi Heavy Ind Ltd Catalyst for modification of methanol
JPS59131501A (en) * 1982-12-08 1984-07-28 Mitsubishi Gas Chem Co Inc Modification of methanol with steam
JPS59203702A (en) * 1983-05-04 1984-11-17 Mitsubishi Heavy Ind Ltd Manufacture of hydrogen
JPS6096504A (en) * 1983-10-31 1985-05-30 Mitsubishi Kakoki Kaisha Ltd Steam reforming of methanol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5231995A (en) * 1975-09-08 1977-03-10 Nissan Motor Co Ltd Gas generator
JPS57144031A (en) * 1981-03-04 1982-09-06 Agency Of Ind Science & Technol Catalyst for decomposition of methanol for production of hydrogen and carbon monoxide
JPS57174139A (en) * 1981-04-21 1982-10-26 Mitsubishi Heavy Ind Ltd Catalyst for modification of methanol
JPS59131501A (en) * 1982-12-08 1984-07-28 Mitsubishi Gas Chem Co Inc Modification of methanol with steam
JPS59203702A (en) * 1983-05-04 1984-11-17 Mitsubishi Heavy Ind Ltd Manufacture of hydrogen
JPS6096504A (en) * 1983-10-31 1985-05-30 Mitsubishi Kakoki Kaisha Ltd Steam reforming of methanol

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05170401A (en) * 1991-12-20 1993-07-09 Agency Of Ind Science & Technol Waste heat recovering method and heat transporting method for recovered waste heat
US5560891A (en) * 1993-10-15 1996-10-01 Agency Of Industrial Science And Technology Catalytic reaction apparatus
US5741475A (en) * 1993-10-15 1998-04-21 Agency Of Industrial Science & Technology Catalytic reaction method
JP4653108B2 (en) * 2003-11-17 2011-03-16 ハルドール・トプサー・アクチエゼルスカベット Urea production method
JP2008007362A (en) * 2006-06-28 2008-01-17 Kansai Electric Power Co Inc:The Dimethyl ether reformation power generation process and system
JP2008273795A (en) * 2007-05-01 2008-11-13 Toshiba Corp Hydrogen production apparatus and hydrogen production method
JP2016023107A (en) * 2014-07-22 2016-02-08 株式会社デンソー Reformer
CN110316703A (en) * 2019-06-20 2019-10-11 浙江工业大学 A kind of self-heating preparing hydrogen by reforming methanol reaction system
CN110316703B (en) * 2019-06-20 2023-11-24 浙江工业大学 Self-heating methanol reforming hydrogen production reaction system

Similar Documents

Publication Publication Date Title
US4618451A (en) Synthesis gas
US6713040B2 (en) Method for generating hydrogen for fuel cells
Lee Methanol synthesis technology
Tijm et al. Methanol technology developments for the new millennium
US6887455B2 (en) Catalytic generation of hydrogen
US3388074A (en) Two-stage steam reforming with rapid warm-up in first stage by means of a promoted catalyst
AU5424198A (en) Process for abatement of nitrogen oxides in exhaust from gas turbine power generation
US6949683B2 (en) Process for catalytic autothermal steam reforming of alcohols
WO1996001228A1 (en) Method for producing synthesis gas
US20220348472A1 (en) Catalytic reactor system and catalyst for conversion of captured c02 and renewable h2 into low-carbon syngas
US4239499A (en) Production of a fuel gas and synthetic natural gas from methanol
GB2139644A (en) Synthesis gas
CA2004218A1 (en) Production of methanol from hydrocarbonaceous feedstock
JPS61286203A (en) Reforming method for methanol
AU650766B2 (en) Process and device for manufacturing synthesis gas and application
Sarvestani et al. From catalyst development to reactor Design: A comprehensive review of methanol synthesis techniques
CN100404409C (en) Process for preparing synthetic gas by reforming carbon dioxide-methane
EP4166528A1 (en) Co2 methanation reaction apparatus provided with selective oxidation catalyst for co, and metod for removing co from gas
KR100246079B1 (en) Reactor and process for preparing synthetic gas
US4894394A (en) Process for the manufacture of methanol in combination with steam reforming of light hydrocarbons
JP4594011B2 (en) Ethanol reforming method
RU2747327C1 (en) Systems and methods of production of liquid fuel from landfill gases
KR100570375B1 (en) Synthesis gas production system and method
JPH09208974A (en) Production of liquid fuel oil by using carbon dioxidecontaining natural gas as feedstock
EP0805780A1 (en) Direct conversion of methane to hythane