JPS61280844A - Blood gas monitor - Google Patents

Blood gas monitor

Info

Publication number
JPS61280844A
JPS61280844A JP60123793A JP12379385A JPS61280844A JP S61280844 A JPS61280844 A JP S61280844A JP 60123793 A JP60123793 A JP 60123793A JP 12379385 A JP12379385 A JP 12379385A JP S61280844 A JPS61280844 A JP S61280844A
Authority
JP
Japan
Prior art keywords
blood
flow path
sensor
gas monitor
blood gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60123793A
Other languages
Japanese (ja)
Inventor
和弘 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60123793A priority Critical patent/JPS61280844A/en
Publication of JPS61280844A publication Critical patent/JPS61280844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [1]技術分野 本発明は手術中の患者の心肺機能の代替手段として人工
心肺を用いて血液の体外循環を行う際に血液中の気体(
酸素、炭酸ガス等)の分圧又は濃度を連続計測(モニタ
リング)するのに有用な体外循環血液中のガメ分圧モニ
タリング装置シー関する。本発明によれば、モニタ用セ
ンサへの血液流路が循環系から分岐した構造であるため
センサの滅菌操作は省略でき、又菌の逆流の懸念もない
DETAILED DESCRIPTION OF THE INVENTION [1] Technical field The present invention relates to the treatment of gases (
This invention relates to a monitoring device for partial pressure in extracorporeal circulating blood, which is useful for continuously measuring (monitoring) the partial pressure or concentration of oxygen, carbon dioxide, etc.). According to the present invention, since the blood flow path to the monitoring sensor is branched from the circulatory system, sterilization of the sensor can be omitted, and there is no fear of backflow of bacteria.

〔2]従来技術とその問題点 第2図に人工心肺を用いた血″液の体外循環系統図を示
す。人体〔21〕からポンプ〔22〕によって体外へ導
かれた血液は熱交換器〔28〕で循環による発熱を吸収
してから人工心肺〔24〕で酸素の吸入、炭酸ガスの放
出の操作を行なった後、再び人体へ戻る。血中ガス分圧
、pHモニタなどのセンサを含む計測部〔25〕は、人
工心肺と人体との流路に位置し、計測データはレコーダ
〔26〕に記録されている。
[2] Prior art and its problems Figure 2 shows a diagram of the extracorporeal circulation system of blood using an artificial heart-lung machine. After absorbing the heat generated by circulation in [28], the heart-lung machine [24] inhales oxygen and releases carbon dioxide gas, and then returns to the human body.Includes sensors such as blood gas partial pressure and pH monitors. The measurement unit [25] is located in the flow path between the heart-lung machine and the human body, and measurement data is recorded on the recorder [26].

上記の血液の体外循環系ではセンサはその流路に位置し
ているから、使用する度tζ滅菌する必要がある。この
操作を省略するには、センサ(251)を血液と非接触
にして連続計測する手段として、数lθ〜数10OAの
微細孔を有する中空系(:252)を血液との間に介し
、中空系の膜面で血中ガスを交換するように別の流体を
ポンプ(253,1を用いて循環し、この第2の循環系
の流路にセンサ(251)を位置せしめたのがこの図で
ある。
In the above-mentioned extracorporeal blood circulation system, since the sensor is located in the flow path, it is necessary to sterilize it each time it is used. In order to omit this operation, as a means for continuous measurement without contacting the sensor (251) with the blood, a hollow system (252) having micropores of several lθ to several tens of OA is inserted between the sensor (251) and the blood. In this figure, another fluid is circulated using a pump (253, 1) to exchange blood gas at the membrane surface of the system, and a sensor (251) is positioned in the flow path of this second circulation system. It is.

中空系の膜壁を介した血中ガスの第2流体への移相を行
うときには、必ず平衡状態に達するまでに時間がか〜す
、測定が遅くなるという欠点があった。
When the phase of blood gas is transferred to the second fluid through the membrane wall of a hollow system, there is a disadvantage that it always takes time to reach an equilibrium state and the measurement becomes slow.

又熱交換器(23)へは恒温水槽(27)から定温の流
体(水)が供給され、体外循環中の血液の温度を一定に
保って測定を安定にするよう工夫されているが電極構成
体からなるセンサ(:251)の温度依存性が大きいに
もか覧わらず、熱容量の大きい循環血液の温度とセンサ
、殊に電極部の温度とのギャップが大きくなって測定に
影響をおよぼすことが多い。例えば酸素分圧の測定では
中空系(252))ζおける膜壁の両側におけるガスの
平衡状態が一定に保たれていても、電極に到る酸素の濃
度勾配が変化するので還元電流値、つまり酸素分圧値が
同一電極を用いても変動するという問題があった。
A constant temperature fluid (water) is supplied to the heat exchanger (23) from a constant temperature water tank (27), which is designed to keep the temperature of blood during extracorporeal circulation constant and stabilize the measurement. Although the temperature dependence of sensors made of the body (:251) is large, the gap between the temperature of circulating blood, which has a large heat capacity, and the temperature of the sensor, especially the electrode part, becomes large and affects the measurement. There are many. For example, in the measurement of oxygen partial pressure, even if the gas equilibrium state on both sides of the membrane wall in the hollow system (252) ζ is kept constant, the concentration gradient of oxygen reaching the electrode changes, so the reduction current value, i.e. There was a problem in that the oxygen partial pressure value varied even when the same electrode was used.

本発明はこのような問題点を解決する改良された血液中
のガス濃度連続測定装置を提供するものである。
The present invention provides an improved continuous blood gas concentration measuring device that solves these problems.

〔31問題点を解決するための手段 本発明の構成を第1図に示す。[Means for solving 31 problems The configuration of the present invention is shown in FIG.

体外循環流路から分岐し、センサー(51)を通った血
液は、体外循環流路にもどさずに廃棄してしまう。流量
調節及び逆流防止のために、送液ポンプ(2)を血液ガ
スモニター流路中に入れる。これは体外循環流路とセン
サー間の距離を短くするため、できればセンサーの後に
入れに方がよい。血液ガスモニターへの分岐流路(52
)を流す血液は廃棄してしまうので、流量を低くおさえ
る。モニター流路のチューブの材質は大気とのガス交換
を防ぐためガス不透過性のものを用いる。またセンサー
へ血液がくるまでの時間を短くするため細いものを用い
る。
Blood that branches off from the extracorporeal circulation channel and passes through the sensor (51) is discarded without being returned to the extracorporeal circulation channel. In order to adjust the flow rate and prevent backflow, a liquid pump (2) is inserted into the blood gas monitor channel. This shortens the distance between the extracorporeal circulation flow path and the sensor, so it is better to insert it after the sensor if possible. Branch flow path to blood gas monitor (52
) is discarded, so keep the flow rate low. The material of the tube in the monitor channel is gas-impermeable to prevent gas exchange with the atmosphere. Also, a thin one is used to shorten the time it takes for blood to reach the sensor.

またセンサーは雰囲気温度及び血液温度の影響を受けや
すいので、恒温槽により保温する。さらにセンサー直前
の回路で、血液の温度コントロールも行なう。保温及び
温度コントロールは、一定温度の恒温水を循環させて行
なう。
Also, since the sensor is easily affected by ambient temperature and blood temperature, it is kept warm in a constant temperature bath. Furthermore, the circuit just before the sensor also controls the temperature of the blood. Heat retention and temperature control are performed by circulating constant temperature water at a constant temperature.

[4〕作 用 測定のために血液の流れを乱す要因は全くないので患者
への測定の影響もない。つまり、センサは分岐された血
液ガスモニタ流路(52)に位置し、このバスを通る血
液は体外循環系へ戻るのではなく廃棄されるため、菌が
逆流する心配はない。さらにセンサ自身の温度も雰囲気
及び血液温度による影響を受けることがないため安定し
た測定を常に行なうことができる。
[4] Effect Since there is no factor that disturbs blood flow for measurement, there is no effect of measurement on the patient. That is, the sensor is located in the branched blood gas monitor flow path (52), and the blood passing through this bus is discarded rather than returned to the extracorporeal circulation system, so there is no risk of bacteria backflowing. Furthermore, since the temperature of the sensor itself is not affected by the atmosphere or blood temperature, stable measurements can always be performed.

[5]実施例 体外循環流路から分岐した回路には、そこで大気とのガ
ス交換が生じないようガス不透過性のチ廃棄血液量を少
なくするため血液流速を低く押さえるので、チューブの
内容積は小さくなくてはならない。流量の調節はセンサ
ーの後に設けた送液ポンプで行なった。
[5] Example: The circuit branching from the extracorporeal circulation channel is made of gas-impermeable tubes to prevent gas exchange with the atmosphere.In order to reduce the amount of waste blood, the blood flow rate is kept low, so the internal volume of the tube is must be small. The flow rate was adjusted using a liquid pump installed after the sensor.

次に本発明の装置を用いて開心術中の体外循環血液ルー
プからセンサーへの引きこみループを分岐し、センサー
によるFog、 PCOzを測定した。それと同時に引
きこみループから採血しガス分析装置により分析した。
Next, using the device of the present invention, a drawing loop from an extracorporeal circulation blood loop to a sensor during open heart surgery was branched, and Fog and PCOz were measured by the sensor. At the same time, blood was collected from the withdrawal loop and analyzed using a gas analyzer.

結果を下表に示す。The results are shown in the table below.

ガス分析装置による分析結果と、センサーによる測定結
果はP(h、 PC(hともにほぼ一致している。
The analysis results by the gas analyzer and the measurement results by the sensor are almost the same for both P(h and PC(h).

ポンプにより血液流量を50 ml/hr に設定し、
全廃棄血液量はおよそ180ffl/であった。
The blood flow rate was set to 50 ml/hr using the pump.
The total waste blood volume was approximately 180 ffl/.

実験中のセンサー及び血液温度は±0.2℃以下に押さ
えることができた。引きこみループのチューブと内径1
 allXJr 、全長1mにすることで測定の遅れ時
間を1分程度に押さえることができた。
The sensor and blood temperatures during the experiment could be kept below ±0.2°C. Retraction loop tube and inner diameter 1
By making the total length of allXJr 1 m, the measurement delay time could be kept to about 1 minute.

[63効 果 本発明によれば体外循環血液に影響のない分岐流路で血
中ガス/pHなどを正確に再現性良く計測することがで
きる。従ってセンサを滅菌する必要もなく、又、分岐パ
スで計測上の問題が発生してもその場で解決すれば再び
測定を続けることができる。
[63 Effects] According to the present invention, blood gases/pH etc. can be measured accurately and with good reproducibility using a branch flow path that does not affect extracorporeally circulating blood. Therefore, there is no need to sterilize the sensor, and even if a measurement problem occurs in a branch path, it is possible to continue measurement by resolving it on the spot.

さらに送液と流量調節用のポンプ(53)をセンサ(5
1)の後に位置せしめることによって廃棄する血液の量
を許容量以内に押さえることができる。
Furthermore, a pump (53) for liquid feeding and flow rate adjustment is connected to a sensor (53).
By placing it after step 1), the amount of blood to be discarded can be kept within the allowable amount.

そして回路分岐点とセンサ(51)との間を細径チュー
ブで接続することができるので分流された血液は速かに
センサ(51)に達し計測の遅れをミニマムにすること
ができる。
Since the circuit branch point and the sensor (51) can be connected with a small diameter tube, the shunted blood can quickly reach the sensor (51) and delay in measurement can be minimized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図人は本発明の体外血液循環系の構成を示す図であ
る。 第1図人は本発明における計測部を示す図である。 第2図は従来技術を説明する図である。 1.21:人体 2.22:循環ポンプ 23:熱交換器 3    :メインループ 4.24:人工肺 5.25:計測部 26;記録計 27:恒温槽 51.251 :センサ 52  :分岐流路 521:テフロンチューブ 522ニステンレススリーブ 53253:ポンプ 54  ;恒温槽 55  :恒温水循環器 56  :サブループ 57  :廃血液受容器 A   :流路分岐点 察1図[A] 第  1  図  [Bコ
FIG. 1 is a diagram showing the configuration of the extracorporeal blood circulation system of the present invention. FIG. 1 is a diagram showing a measuring section in the present invention. FIG. 2 is a diagram illustrating the prior art. 1.21: Human body 2.22: Circulation pump 23: Heat exchanger 3: Main loop 4.24: Artificial lung 5.25: Measuring section 26; Recorder 27: Thermostatic chamber 51.251: Sensor 52: Branch flow path 521: Teflon tube 522 Stainless steel sleeve 53253: Pump 54; Thermostatic chamber 55: Thermostatic water circulator 56: Sub-loop 57: Waste blood receptor A: Flow path branch point observation 1 [A] Fig. 1 [B

Claims (5)

【特許請求の範囲】[Claims] (1)人工心肺を経由して体外循環中の血液に含まれる
酸素、炭酸ガス等の気体成分の濃度を連続的に計測する
血液ガスモニターにおいて、循環経路(3)に血液サン
プルをとり出すための分岐した流路(52)を設け、こ
の流路にモニタリング用センサ(51)を血液と直接接
触するよう位置せしめ、計測後の血液は該分岐流路(5
2)の分岐点(A)と反対方向の末端から廃棄すること
を特徴とする血液ガスモニター。
(1) To extract a blood sample into the circulation path (3) in a blood gas monitor that continuously measures the concentration of gaseous components such as oxygen and carbon dioxide contained in blood circulating extracorporeally via an artificial heart-lung machine. A branched flow path (52) is provided, a monitoring sensor (51) is positioned in this flow path so as to be in direct contact with blood, and the blood after measurement is passed through the branched flow path (52).
A blood gas monitor characterized in that the blood gas monitor is discarded from the end opposite to the branch point (A) of 2).
(2)モニタリング用センサ(51)が電極からなり、
センサの直前の流路を含むセンサ周囲温度を一定に保つ
ための温度制御手段を有することを特徴とする特許請求
の範囲第1項記載の血液ガスモニター。
(2) The monitoring sensor (51) consists of electrodes,
2. The blood gas monitor according to claim 1, further comprising temperature control means for keeping the ambient temperature of the sensor including the flow path immediately in front of the sensor constant.
(3)血液サンプリング用の分岐した流路(52)の少
なくとも一部が酸素、炭酸ガス等の血液中に含まれてい
るガス成分を透過しない合成樹脂からなることを特徴と
する特許請求の範囲第1項記載の血液ガスモニター。
(3) Claims characterized in that at least a portion of the branched flow path (52) for blood sampling is made of a synthetic resin that does not permeate gas components contained in blood such as oxygen and carbon dioxide. Blood gas monitor according to paragraph 1.
(4)血液サンプリング用の分岐した流路(52)に沿
つて設けられた計測部(5)におけるセンサ(51)の
後に送液ポンプ(53)を設け、分岐流路(52)を流
れるサンプリング血液の流量を調節することを特徴とす
る特許請求の範囲第1項ならびに第3項記載の血液ガス
モニター。
(4) A liquid feeding pump (53) is provided after the sensor (51) in the measurement unit (5) provided along the branched flow path (52) for blood sampling, and sampling flowing through the branched flow path (52) The blood gas monitor according to claims 1 and 3, wherein the blood gas monitor adjusts the flow rate of blood.
(5)サンプル血液用送液用ポンプ(53)による血流
量が200ml/H以下、好ましくは50ml/Hを越
えない範囲内にあることを特徴とする特許請求の範囲第
4項記載の血液ガスモニター。
(5) Blood gas according to claim 4, characterized in that the blood flow rate by the sample blood pump (53) is within a range of 200 ml/H or less, preferably not exceeding 50 ml/H. monitor.
JP60123793A 1985-06-06 1985-06-06 Blood gas monitor Pending JPS61280844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60123793A JPS61280844A (en) 1985-06-06 1985-06-06 Blood gas monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60123793A JPS61280844A (en) 1985-06-06 1985-06-06 Blood gas monitor

Publications (1)

Publication Number Publication Date
JPS61280844A true JPS61280844A (en) 1986-12-11

Family

ID=14869445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60123793A Pending JPS61280844A (en) 1985-06-06 1985-06-06 Blood gas monitor

Country Status (1)

Country Link
JP (1) JPS61280844A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411531A (en) * 1987-07-03 1989-01-17 Terumo Corp Continuous monitoring apparatus
EP1110562A2 (en) 1999-12-24 2001-06-27 Terumo Kabushiki Kaisha Artificial kidney

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411531A (en) * 1987-07-03 1989-01-17 Terumo Corp Continuous monitoring apparatus
JPH0367408B2 (en) * 1987-07-03 1991-10-22 Terumo Corp
EP1110562A2 (en) 1999-12-24 2001-06-27 Terumo Kabushiki Kaisha Artificial kidney

Similar Documents

Publication Publication Date Title
US5233996A (en) Patient interfacing system and method to prevent water contamination
US4726381A (en) Dialysis system and method
US4016863A (en) Tissue tonometer device for use in measuring gas in body tissue
US3908657A (en) System for continuous withdrawal of blood
US4763658A (en) Dialysis system 2nd method
US4774955A (en) Programmable dialyzer system analyzer and method of use
US5193545A (en) Device for determining at least one medical variable
US5479923A (en) Method and apparatus for analyzing a sample
JP2000510748A (en) Method and apparatus for reducing purge volume in a blood chemistry monitoring system
Adams et al. Determination of the blood-gas factor of the oxygen electrode using a new tonometer
GB2100859A (en) Method of and apparatus for determining and controlling the gas content of the blood
Rooth Transcutaneous oxygen tension measurements in newborn infants
MacIntyre et al. Use of capillary blood in measurement of arterial PO2
US4765339A (en) Closed loop dialysis system
Siesjö A method for continuous measurement of the carbon dioxide tension on the cerebral cortex
JPS61280844A (en) Blood gas monitor
Laughlin et al. A microtechnique for measurement of PO2 in “arterialized” earlobe blood
US4439679A (en) Transcutaneous gas tension measurement using a dual sampling chamber and gas analysis system
Páez et al. Blood microdialysis in humans: a new method for monitoring plasma compounds
US4512349A (en) Method of direct tissue gas tension measurement and apparatus therefor
Chalmers et al. Evaluation of a new thin film tonometer
Hahn Techniques for measuring the partial pressures of gases in the blood. II. In vivo measurements
Jank et al. Continuous in vivo measurement of arterial PO2 in humans
Potger et al. Membrane oxygenator exhaust capnography for continuously estimating arterial carbon dioxide tension during cardiopulmonary bypass
AU3571789A (en) Patient interfacing system and method to prevent water contamination