JPS61270355A - High strength steel excelling in resistance to delayed fracture - Google Patents

High strength steel excelling in resistance to delayed fracture

Info

Publication number
JPS61270355A
JPS61270355A JP11175285A JP11175285A JPS61270355A JP S61270355 A JPS61270355 A JP S61270355A JP 11175285 A JP11175285 A JP 11175285A JP 11175285 A JP11175285 A JP 11175285A JP S61270355 A JPS61270355 A JP S61270355A
Authority
JP
Japan
Prior art keywords
point
delayed fracture
temperature
steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11175285A
Other languages
Japanese (ja)
Inventor
Terutaka Tsumura
津村 輝隆
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11175285A priority Critical patent/JPS61270355A/en
Publication of JPS61270355A publication Critical patent/JPS61270355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To develop a high strength steel having superior yield strength and resistance to delayed fracture by subjecting an Ni-Cr-Mo low alloy steel containing trace constituents of various kinds to heat treatment under specific conditions. CONSTITUTION:The low alloy steel contains, by weight, 0.15-0.45% C, <1.50% Si, 0.01-1.50% Mn, 0.10-4.00% (not including 0.10%) Ni, 0.50-2.00% Cr, either or both of Mo and W in the amount satisfying Mo+1/2W=0.30-1.50%, 0.01-0.20% V, 0.005-0.20% Nb, 0.01-0.15% Zr and 0.01-0.10% Al, to which specific small amounts of Cu, Ca, Ti and B are further added independently or in combination. This steel is subjected to hardening from the temp. of AC3 point or above and then to tempering from the temp. between 580 deg. and AC1 point under the condition that PLM represented by expression (1) is 16.8X10<3> or more. In this way, the steel stock having austenite grains of ASTM No.8.5 or above, excelling in resistance to delayed fracture and suitable for ultra-high strength oil well pipes can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、150ksi (105,5kgf/mm2
)を越える降伏強さく0.2%耐力)を有しかつ耐遅れ
破壊性に優れ、油井管等の用途に好適な高強度鋼に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a
The present invention relates to a high-strength steel that has a yield strength exceeding 0.2% yield strength) and excellent delayed fracture resistance, and is suitable for uses such as oil country tubular goods.

従来の技術 近年、長期的展望に立ったエネルギー確保の必要性が各
方面から叫ばれるようになってきたことに呼応して、世
界の各地に於いて新たな油田やガス田の開発が盛んに行
なわれるようになって来ており、従来は放置されていた
地表深層部のような苛酷な環境の石油や天然ガスにまで
開発の目が向けられるようになるなど、エネルギー採取
にもこれまで以上に高度な技術が必要となってきている
Conventional technology In recent years, in response to the growing need to secure energy from a long-term perspective, the development of new oil and gas fields has become active in various parts of the world. Energy extraction is becoming more common than ever, and development is now being focused on oil and natural gas in harsh environments such as those deep beneath the surface of the earth, which had previously been abandoned. Advanced technology is becoming necessary.

例えば最近では、深さが15000フイ一ト以上という
極めて深い場所や、深さ1フイート当たり0.5psi
 (0,3515gf/mm2)以上の圧力増加が見込
まれるところの、所謂“標準状態”よりも高い地圧を持
つ地層にも、石油や天然ガス採取用の井戸を掘ることが
多くなってきている。このような環境下で安定した作業
を行なうには、V−150クラス以上CS M Y S
 (Specified Minimum Yield
Strength、規格最小降伏強さ)が150ksi
 (105,5kgf/mm2)以上〕の極めて高い強
度を有する油井管が必要であるとされ、その安定供給に
対する要望がとみに高まって来ているのが現状である。
For example, in recent years, extremely deep areas (over 15,000 feet deep) and 0.5 psi per foot of depth have been
Increasingly, wells for oil and natural gas extraction are being drilled into geological formations with higher ground pressure than the so-called "standard state", where pressure increases of more than (0,3515 gf/mm2) are expected. . To perform stable work in such an environment, a V-150 class or higher CS MYS
(Specified Minimum Yield
Strength, standard minimum yield strength) is 150ksi
Oil country tubular goods having extremely high strength (105.5 kgf/mm2 or more) are required, and the current situation is that the demand for a stable supply thereof is increasing.

しかし、従来から油井管として使用されている低合金鋼
では、V−150クラス以上の高強度を有するようなも
のになると、オーステナイト粒界が脆化することにも起
因して降伏点以下の静荷重でも破壊に至るという“遅れ
破壊”の危険を内在するようになるものであった。また
一般に油田では井戸が古くなって自噴しなくなって来る
と、2次回収と称して、水圧やガス圧をかけたり酸を添
加(Acidizing) して汲み上げ効率を向上し
ているが、このように酸の添加を行なう場合や、酸性環
境下の油田においては、低合金鋼では従来は水素の影響
によって遅れ破壊の危険性が大きくなるという問題があ
った。
However, when low-alloy steel, which has traditionally been used as oil country tubular goods, has a high strength of V-150 class or higher, the static temperature drops below the yield point due to embrittlement of the austenite grain boundaries. There was an inherent risk of ``delayed failure'' in which failure occurred even under heavy loads. Generally speaking, in oil fields, when a well becomes old and no longer produces self-gushing water, the pumping efficiency is improved by applying water or gas pressure or adding acid (acidizing), which is called secondary recovery. When acid is added or in oil fields under acidic environments, low alloy steels have conventionally had the problem of increased risk of delayed fracture due to the influence of hydrogen.

一方、18Ni −5Mo−7,5Co系等のマルエー
ジング鋼やオーステナイト系の高合金や高合金鋼は、通
常の低合金鋼よりも耐遅れ破壊性に優れていることが知
られている。しかしながら、マルエージング鋼は、Co
を含有しているのでコストが高く、低温靭性が良くない
等の問題がある。他方、オーステナイト系の高合金や高
合金鋼には、強度を得るために大きな加工量で冷間加工
を施さねばならず非能率的であり、N1やCr等の含有
量が高いので、コスト高となるといった問題があって、
いずれも単なる高強度油井管用として用いられることは
なく、特に経済性の点から一部の極く限られた環境下で
実用に供されているにずぎないものであった。
On the other hand, maraging steels such as 18Ni-5Mo-7,5Co series, austenitic high alloys, and high alloy steels are known to have better delayed fracture resistance than ordinary low alloy steels. However, maraging steel
Since it contains, there are problems such as high cost and poor low temperature toughness. On the other hand, austenitic high alloys and high alloy steels require a large amount of cold working to obtain strength, which is inefficient, and high N1, Cr, etc. contents, resulting in high costs. There is a problem that
None of these have been used simply for high-strength oil country tubular goods, and have only been put to practical use in some extremely limited environments, especially from the point of view of economic efficiency.

一方、特開昭58−61219号及び特開昭58−84
960号に耐遅れ破壊性の優れた高強度鋼が開示されて
いる。しかしながら、特開昭58−61219号に記載
の鋼では、専らP及びNを低減して結晶粒界の清浄化の
効果を追求するのみであり、更にオーステナイト粒度が
大きいために、上記した苛酷な環境で十分な耐遅れ破壊
性を発揮することができない。
On the other hand, JP-A-58-61219 and JP-A-58-84
No. 960 discloses a high-strength steel with excellent delayed fracture resistance. However, the steel described in JP-A No. 58-61219 only pursues the effect of cleaning grain boundaries by reducing P and N, and furthermore, since the austenite grain size is large, the above-mentioned severe It cannot exhibit sufficient delayed fracture resistance in the environment.

他方、特開昭58−84960号に記載の鋼も、専らL
aによるPの偏析抑制とCaによる硫化物形態の制御の
効果を追求するのみで、この公開公報に記載の鋼も上記
した苛酷な環境で十分な耐遅れ破壊性を発揮することが
できない。
On the other hand, the steel described in JP-A-58-84960 is also exclusively L.
The steel described in this publication is also unable to exhibit sufficient delayed fracture resistance in the above-mentioned harsh environment, simply by pursuing the effects of suppressing the segregation of P by a and controlling the sulfide morphology by Ca.

本発明の解決しようとする問題点 本発明は、上述の如き従来技術の問題点に鑑み、150
ksi (105,5kgf/mm2)を越える降伏強
さを有スルとともに、耐遅れ破壊性が従来の低合金鋼を
用いたものよりも一段と優れ、且つ18N1マルエージ
ング鋼やオーステナイト系の高合金や高合金鋼よりもは
るかに廉価な、油井管としての用途に好適な高強度鋼を
提供することを目的とする。
Problems to be Solved by the Present Invention The present invention has been made in view of the problems of the prior art as described above.
It has a yield strength exceeding ksi (105.5 kgf/mm2), has a delayed fracture resistance that is far superior to conventional low alloy steels, and is suitable for use with 18N1 maraging steel, austenitic high alloy steels, and high alloy steels. The purpose of the present invention is to provide a high-strength steel that is much cheaper than alloy steel and is suitable for use as oil country tubular goods.

問題点を解決するための手段 本発明者等は、上述の目的を達成するため、鋼材の化学
成分、熱処理をはじめとする製造条件、それによって得
られる組織と特性との関係について詳細な研究を重ねた
結果、以下(a)〜(e)に示すような知見を得るに至
った。即ち、 (a)  遅れ破壊は、静荷重下におかれた鋼が成る時
間を経過後、突然に脆性的な破断を呈する現象であり、
外部環境から鋼中に侵入した水素や、メッキ等によって
侵入した鋼中水素等により発生する一種の水素脆性とさ
れているものであるが、鋼のオーステナイト粒度をAS
TMNo、で8.5以上の細粒に調整して焼入れし、マ
ルテンサイトあるいは低温ベイナイトの組織を得て焼戻
し処理すれば、遅れ破壊の発生が抑制されることが判っ
た。
Means for Solving the Problems In order to achieve the above objectives, the inventors conducted detailed research on the chemical composition of steel materials, manufacturing conditions including heat treatment, and the relationship between the resulting structure and properties. As a result of repeated efforts, the findings shown in (a) to (e) below were obtained. That is, (a) Delayed fracture is a phenomenon in which steel suddenly exhibits brittle fracture after a period of time has elapsed when it is placed under a static load.
It is said to be a type of hydrogen embrittlement that occurs due to hydrogen that has entered the steel from the external environment or hydrogen that has entered the steel due to plating, etc., but the austenite grain size of the steel is
It has been found that the occurrence of delayed fracture can be suppressed by adjusting the grains to fine grains with a TM No. of 8.5 or more and quenching to obtain a martensite or low-temperature bainite structure, followed by tempering.

ら)鋼中の炭化物は水素の集積場所となり、従ってこの
炭化物が針状、棒状等切欠欠陥形状を呈したり、粗大に
凝集したりする場合には、そこが起点となって遅れ破壊
が発生しやすいが、鋼中にZrを含有せしめると炭化物
が球状微細に分散されて耐遅れ破壊性が著しく改善され
ることが判った。
(3) Carbides in steel serve as a place for hydrogen to accumulate. Therefore, if these carbides exhibit a notch defect shape such as needles or rods, or coarsely aggregate, this will become the starting point for delayed fracture. Although it is easy to do so, it has been found that when Zr is contained in steel, the carbides are finely dispersed into spherical shapes, and the delayed fracture resistance is significantly improved.

(C)  焼入れした鋼を580℃以上でAct点以下
の高温でPい≧16.8X103[:但しP L X 
= T (20+ l og t)で、T:焼戻し温度
じK)、t;保持時間(hr)]の条件で焼戻しすれば
、炭化物の球状化がなされて、遅れ破壊の発生が抑制さ
れることが判った。
(C) Quenched steel is heated at a high temperature of 580°C or higher and lower than the Act point.
= T (20+ l og t), T: tempering temperature (K), t: holding time (hr)], the carbides become spheroidized and the occurrence of delayed fracture is suppressed. It turns out.

(d)  C: 0.15〜0.45%、Si:1.5
0%以下、Mn:0.01〜1.50%を含む鋼に、合
金成分として、Ni:0.10%〜4.00%(ただし
、0.10%を含まず) 、Cr :0,50〜2.0
0%、Mo + ’A W : 0.30〜1.50%
、V:0.01〜0.20%、Nb: 0.005〜0
.20%を含有させれば、Ac。
(d) C: 0.15-0.45%, Si: 1.5
0% or less, Mn: 0.01 to 1.50%, as alloy components Ni: 0.10% to 4.00% (but not including 0.10%), Cr: 0, 50-2.0
0%, Mo+'AW: 0.30-1.50%
, V: 0.01-0.20%, Nb: 0.005-0
.. If it contains 20%, Ac.

点用上に加熱して焼入れの後、580℃以上でAc1点
以下の温度で且つ上記P+、w値がP LM≧16.8
 X103の条件で焼戻し処理しても、オーステナイト
粒度のA S T M No、が8.5以上であれば、
降伏強さで150ksi (105,5kgf/mm2
)を越す高強度が安定シテ得うれ、耐遅れ破壊性にも優
れていることが判った。
After heating and quenching, the temperature is 580℃ or higher and Ac1 point or lower, and the above P+, w value is PLM≧16.8
Even if tempered under the conditions of X103, if the austenite grain size A STM No. is 8.5 or more,
Yield strength: 150ksi (105.5kgf/mm2
), it was found that it was possible to obtain stable strength and to have excellent delayed fracture resistance.

(e)  オーステナイト粒の微細化は降伏比(降伏強
さ/引張強さ)を上昇させ、従って、同じ降伏強さに対
して引張強さを抑えることができるという点からも耐遅
れ破壊性改善に有効であることが判った。
(e) Refinement of austenite grains increases the yield ratio (yield strength/tensile strength), and therefore improves delayed fracture resistance because tensile strength can be suppressed for the same yield strength. It was found to be effective.

本発明は上記知見に基づいてなされたものであって、 C:0.15〜0.45%、 Si:1.50%以下、 Mn : 0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr : 0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+ZWで
0.30〜1.50%、 V:0.01〜0.20%、 Nb : 0.005〜0.20%、 Zr : 0.01 0.15%、 八]:0.01〜0.10%、 を含有し、必要に応じてさらに、 第1区分:Cu:1.5%以下 第2区分ゴミ:0.01〜0.10% 第3区分: B : 0.0003〜0.0050%第
4区分: Ca : 0.001〜0.030%の1種
以上を含み、残部がFe及び不可避不純物からなり、A
c3点以上に加熱後焼入れされ、その後580℃以上で
Ac+点以下の温度で且つP LX≧16.8 x10
3〔但しP pg −T (20+ log t)で、
T:焼戻し温度(°K)、t:保持時間(hr)]を満
たす条件で焼戻された、オーステナイト粒度がASTM
No.で8.5以上の耐遅れ破壊性の優れた高強度鋼を
提供する点に特徴を有するものである。
The present invention was made based on the above findings, and includes: C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10 % to 4.00% (excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: 0.30 to 1.50% for Mo+ZW, Contains V: 0.01-0.20%, Nb: 0.005-0.20%, Zr: 0.01-0.15%, 8]: 0.01-0.10%, and as necessary. Accordingly, further: 1st category: Cu: 1.5% or less 2nd category: garbage: 0.01-0.10% 3rd category: B: 0.0003-0.0050% 4th category: Ca: 0. 001 to 0.030% of one or more types, the remainder consisting of Fe and unavoidable impurities,
Quenched after heating to C3 point or higher, then at a temperature of 580℃ or higher and Ac+ point or lower, and P LX≧16.8 x10
3 [However, P pg −T (20+ log t),
T: tempering temperature (°K), t: holding time (hr)], the austenite grain size is ASTM
No. It is characterized in that it provides a high-strength steel with excellent delayed fracture resistance of 8.5 or more.

作用 次に本発明において、鋼の成分組成及び熱処理と粒度を
上記の通りに限定した理由を説明する。
Function Next, in the present invention, the reason why the chemical composition, heat treatment, and grain size of the steel are limited as described above will be explained.

(1)成分組成の限定理由 C: Cは鋼の焼入性増加、強度増加に加えて細粒化の
ためにも有効な成分であるが、0.15%未満では強度
低下及び焼入性劣化をきたし、従って所望強度に対して
、炭化物球状化のための高温での焼戻し処理が行なえず
、又所望の細粒鋼を得難くなり、遅れ破壊感受性が大き
くなる。
(1) Reason for limiting the component composition C: C is an effective component for increasing the hardenability and strength of steel, as well as refining the grains, but if it is less than 0.15%, it decreases the strength and hardenability. As a result, the desired strength cannot be tempered at high temperatures for carbide spheroidization, and it becomes difficult to obtain the desired fine-grained steel, resulting in increased delayed fracture susceptibility.

一方、0.45%を越えてCを含有すると、焼入れ時の
焼割れ感受性が増加し、また靭性劣化をも招くことがら
C含有量を0.15〜0.45%と定めた。
On the other hand, if C content exceeds 0.45%, susceptibility to quench cracking during quenching increases and also causes deterioration of toughness, so the C content is set at 0.15 to 0.45%.

Si:Siは鋼の脱酸及び強度を高めるのに必要な元素
であるほか、変態点を上げて高温焼戻しが安定して行な
えるようにするためにも有効である。
Si: Si is an element necessary for deoxidizing steel and increasing its strength, and is also effective for raising the transformation point so that high temperature tempering can be performed stably.

しかしながら、Slの含有量が1.50%を越えると靭
性の劣化が著しくなり、又低pH環境では耐遅れ破壊性
を劣化させることともなるので、その上限を1.50%
とした。
However, if the Sl content exceeds 1.50%, the toughness will deteriorate significantly, and in a low pH environment, the delayed fracture resistance will also deteriorate, so the upper limit is set at 1.50%.
And so.

なお、オーステナイト粒を可及的に小さくして、耐遅れ
破壊性を一層向上させるためにはSi含有量を0.80
%以下とすることが好ましく、更に低pi(環境下での
耐遅れ破壊性をより一層向上させるためには、(Si十
Mn)の値を0.80%以下とすることが好ましい。
In addition, in order to further improve delayed fracture resistance by making the austenite grains as small as possible, the Si content should be set to 0.80.
% or less, and furthermore, in order to further improve delayed fracture resistance in a low pi environment, it is preferable that the value of (Si + Mn) be 0.80% or less.

Mn:Mnは脱酸、脱硫のほか焼入性の向上に有効な元
素であるが、多量に含有させると鋼の加工性や耐遅れ破
壊性を劣化するようになることから、その上限を1.5
0%とした。低合金鋼の場合、低p+環境下での遅れ破
壊感受性低減のためには(Si十Mn)の値を0.80
%以下に低減することが有効であるが、Mn含有量を0
.01%未満とすることは鋼の製造上極めて困難であり
、コストアップを招くことから、Mnの含有量を0゜O
1〜1.50%とした。安定した細粒鋼を得るには0.
10%以上の添加が好ましい。
Mn: Mn is an effective element for deoxidizing, desulfurizing, and improving hardenability, but if it is contained in large amounts, it will deteriorate the workability and delayed fracture resistance of steel, so the upper limit has been set to 1. .5
It was set to 0%. In the case of low alloy steel, the value of (Si + Mn) should be set to 0.80 in order to reduce delayed fracture susceptibility in a low p+ environment.
It is effective to reduce the Mn content to 0.
.. It is extremely difficult to make the Mn content less than 0.01% and increases costs.
The content was set at 1 to 1.50%. 0.0 to obtain stable fine-grained steel.
Addition of 10% or more is preferred.

Ni:Niは鋼の強度を増大させる効果のほか、更に靭
性を向上させる効果を有する元素であるが、0.10%
以下ではそれらの効果が得られない。
Ni: Ni is an element that has the effect of increasing the strength of steel and further improving its toughness, but at 0.10%
The following effects cannot be obtained.

一方、Niは高価であることに加えて、その多量添加は
変態点を大幅に低下させるため高温焼戻しによる耐遅れ
破壊性向上を指向した本発明の効果を阻害することとな
る。従って、N1の含有範囲の上限を4.00%として
、含有量を0.10%〜4.00%(ただし、0.10
%を含まず)とした。
On the other hand, Ni is expensive, and addition of a large amount of Ni significantly lowers the transformation point, which impedes the effect of the present invention, which aims to improve delayed fracture resistance by high-temperature tempering. Therefore, assuming that the upper limit of the N1 content range is 4.00%, the content should be 0.10% to 4.00% (however, 0.10%
(excluding %).

Cr:Crは鋼の焼入性、強度及び焼戻し軟化抵抗性を
増大させる作用があり、高温焼戻し処理して高強度鋼を
得るのに有効な元素であるが、その含有量が0.5%未
満では前記作用に所望の効果を得ることができず、一方
、2.00%を超えて含有させると靭性の劣化及び焼割
れ感受性の増大を来すことから0.50〜2.00%と
した。
Cr: Cr has the effect of increasing the hardenability, strength, and temper softening resistance of steel, and is an effective element for obtaining high-strength steel by high-temperature tempering treatment, but its content is 0.5%. If the content is less than 0.50 to 2.00%, the desired effect cannot be obtained, while if the content exceeds 2.00%, the toughness will deteriorate and the susceptibility to quench cracking will increase. did.

Mo、 W :  MoとWはいずれも鋼の焼入性、強
度、靭性、耐食性および焼戻し軟化抵抗性を増大させ、
高温焼戻し処理を可能にして耐遅れ破壊性を向上させる
効果を有するので、MoまたはWのいずれか一方または
双方を含有することとした。
Mo, W: Both Mo and W increase the hardenability, strength, toughness, corrosion resistance and temper softening resistance of steel,
Since it has the effect of enabling high-temperature tempering treatment and improving delayed fracture resistance, it was decided to contain one or both of Mo and W.

IJoとWの含有量に関して(Mo + ’A W )
で規定するのは、WがMoに対して原子量が約2倍で、
上記した効果の点ではMoの約半分となるからである。
Regarding the content of IJo and W (Mo + 'A W)
The atomic weight of W is approximately twice that of Mo, and
This is because the effect described above is about half that of Mo.

(Mo+ZW)の値が0.30%未満では上記作用に所
望の効果が得られず、他方この値が1.50%を越える
とそれらの添加効果が飽和してしまい、より一層の強度
上昇効果を得ることができず、実質的に不必要な量のM
o及びWの含有となってコスト上昇を招くので、Moお
よび/またはWの含有量を、(Mo十%W)の値で02
30〜1,50%とした。
If the value of (Mo+ZW) is less than 0.30%, the desired effect cannot be obtained in the above action, while if this value exceeds 1.50%, the effect of these additions will be saturated, and the effect of increasing strength will be further increased. can not be obtained, and a substantially unnecessary amount of M
The content of Mo and/or W is set to 0.02 at a value of (Mo 10% W) because the content of Mo and W causes an increase in cost.
It was set at 30 to 1,50%.

■: ■は鋼の強度上昇、焼戻し軟化抵抗の付与と細粒
化に有効な元素であり、高温焼戻し処理を可能にして耐
遅れ破壊性を向上させるのに有効であるが、0.01%
未満では前記効果が碍られす、一方、0.20%を越え
る多量の■の添加をすると靭性の劣化を招くこととなる
ので0.01〜0.20%とした。
■: ■ is an element that is effective in increasing the strength of steel, imparting resistance to temper softening, and refining the grain, and is effective in enabling high-temperature tempering treatment and improving delayed fracture resistance, but 0.01%
If it is less than 0.2%, the above-mentioned effect will be impaired. On the other hand, if it is added in a large amount exceeding 0.20%, the toughness will be deteriorated, so it is set at 0.01 to 0.20%.

Nb:Nbは鋼の強度、靭性の向上と焼戻し軟化抵抗の
付与、細粒化に対して効果を有し、耐遅れ破壊性の向上
に対しても効果があるが、0.005%未満ではその効
果が十分でなく、一方、0.20%を越えて含有させて
も前記効果が飽和してしまい、また靭性の劣化をも招く
こととなるので、0.005〜0.20%とした。
Nb: Nb is effective in improving the strength and toughness of steel, imparting temper softening resistance, and grain refinement, and is also effective in improving delayed fracture resistance, but if it is less than 0.005%, The effect was not sufficient, and on the other hand, if the content exceeded 0.20%, the effect would be saturated, and it would also cause deterioration of toughness, so it was set at 0.005 to 0.20%. .

Zr:Zrは本発明において重要な元素であって鋼中に
炭化物を球状微細に分散させて耐遅れ破壊性を著しく改
善させる効果を有するが、0.01%未満ではその効果
が小さく、一方0.15%を超えると靭性劣化をきたす
ので0.01〜0,15%とした。
Zr: Zr is an important element in the present invention and has the effect of dispersing carbides into fine spherical particles in the steel and significantly improving delayed fracture resistance, but if it is less than 0.01%, the effect is small; If it exceeds .15%, the toughness deteriorates, so it is set at 0.01 to 0.15%.

Al:Alは鋼の脱酸の安定化、均質化および細粒化を
図るのに有効であるが、0.01%未満では所望の効果
を得ることができず、他力、0.10%を越えて含有さ
せてもその効果は飽和してしまい、また介在物の増大に
より疵が発生し、靭性も劣化するので0.01〜0.1
0%とした。
Al: Al is effective in stabilizing the deoxidation of steel, making it homogenized, and making the grains finer, but if it is less than 0.01%, the desired effect cannot be obtained, and if it is less than 0.10% Even if the content exceeds 0.01 to 0.1, the effect will be saturated, and the increase in inclusions will cause cracks and deteriorate the toughness.
It was set to 0%.

Cu:Cuは強度を増強させる効果のほか、更に耐食性
を向上させる効果を有する元素である。Cuを1.5%
を越えて含有すると熱間加工性が劣化するので含有範囲
の上限を1.5%とした。更に、Cuを0.5%以上添
加するときには同量以上のNiを添加して熱間脆性を防
止することが好ましい。
Cu: Cu is an element that has the effect of increasing strength and further improving corrosion resistance. 1.5% Cu
Since hot workability deteriorates if the content exceeds 1.5%, the upper limit of the content range was set at 1.5%. Further, when adding 0.5% or more of Cu, it is preferable to add the same amount or more of Ni to prevent hot embrittlement.

Ti:Tiは鋼の強度上昇と微細化に有効な元素である
が、0.01%未満では前記効果が得られず、一方0.
10%を越えで添加すると靭性の劣化を招くこととなる
ので、0.01〜0.10%の範囲とした。
Ti: Ti is an effective element for increasing the strength and refining steel, but if it is less than 0.01%, the above effects cannot be obtained;
Addition of more than 10% leads to deterioration of toughness, so the content is set in the range of 0.01 to 0.10%.

B: Bは焼入性を向上させ、これを通じて強度、靭性
、耐遅れ破壊特性を向上させるのに有効である。しかし
乍らB量が0.0003%未満ではその添加効果が得難
く、又、0.0050%を越えて含有させても添加効果
が飽和してそれ以上の特性向上効果が期待できず、逆に
靭性の劣化や耐遅れ破壊性の劣化を招く場合も生ずるの
で、Bの含有量を0、0003〜0.0050%とした
B: B is effective in improving hardenability, and thereby improving strength, toughness, and delayed fracture resistance. However, if the amount of B is less than 0.0003%, it is difficult to obtain the effect of addition, and even if it is added in excess of 0.0050%, the effect of addition is saturated and no further property improvement effect can be expected; Since this may lead to deterioration of toughness and delayed fracture resistance, the B content is set to 0.0003 to 0.0050%.

Ca:Caは鋼中介在物を球状化して、特に高強度鋼に
おいて、圧延方向と直角方向の靭性を向上させるのに有
効であるが、0.001%未満ではその効果が得られず
、他方、0.030%を越えると、その効果が飽和する
のみならず、却ってその酸化物等の非金属介在物が増加
して、鋼の清浄性が低下し、遅れ破壊感受性を高めるこ
ととなる。従って、Caの含有量範囲を0.001〜0
.030%とした。
Ca: Ca is effective in spheroidizing inclusions in steel and improving the toughness in the direction perpendicular to the rolling direction, especially in high-strength steel, but if it is less than 0.001%, this effect cannot be obtained; If it exceeds 0.030%, the effect not only becomes saturated, but also non-metallic inclusions such as oxides of the steel increase, reducing the cleanliness of the steel and increasing the susceptibility to delayed fracture. Therefore, the Ca content range is 0.001 to 0.
.. 030%.

(2)熱処理と粒度の限定理由 従来、降伏強さが150ksi (105,5kgf/
mm2)を越える低合金鋼製の高強度油井管は、熱延鋼
管をAc。
(2) Reason for limiting heat treatment and particle size Conventionally, the yield strength was 150 ksi (105,5 kgf/
Ac-ac.

意思上に再加熱した後焼入れするか、或いは熱間で製管
した後Ar3点以上の温度から直接に焼入れし、その後
Ac1点以下の温度で焼戻すことにより製造している。
It is manufactured by intentionally reheating and then quenching, or by hot-forming, directly quenching at a temperature of Ar 3 or higher, and then tempering at a temperature of Ac 1 or lower.

しかしながら、直接焼入れした鋼管ではオーステナイト
粒が粗大であり(ASTMNo、 7程度以下)遅れ破
壊に対する感受性が極めて大きい。一方、再加熱焼入れ
したものの場合は、遅れ破壊特性はオーステナイト粒度
と焼戻し温度によって大きく変化することが本発明者等
の研究により明らかとなった。
However, directly quenched steel pipes have coarse austenite grains (ASTM No. 7 or less) and are extremely susceptible to delayed fracture. On the other hand, research by the present inventors has revealed that in the case of reheated and quenched steel, the delayed fracture characteristics vary greatly depending on the austenite grain size and tempering temperature.

即ち、本発明者等は、C,Si、Mn、 N1%口r、
Mo。
That is, the present inventors discovered that C, Si, Mn, N1%,
Mo.

W、■、Nb、 Zr、 Alの含有量が本発明の範囲
内にある種々の鋼を用い、熱処理、加工熱処理、冷間加
工と熱処理の組合せ等種々の手段を用いてオーステナイ
ト粒度を変化させ、これを450〜650℃で30分焼
戻し処理した。夫々の鋼板から平行部8.5−φの丸棒
引張試験片を採取して引張試験を行ない、170ksi
 (119,5kgf/mm2)近傍の降伏強さく0.
2%耐力)を有すると確認されたもののみについて遅れ
破壊特性を調査した。
Using various steels whose contents of W, ■, Nb, Zr, and Al are within the range of the present invention, the austenite grain size is changed using various means such as heat treatment, processing heat treatment, and a combination of cold working and heat treatment. This was tempered at 450 to 650°C for 30 minutes. A round bar tensile test piece with a parallel part of 8.5-φ was taken from each steel plate and subjected to a tensile test.
(119.5kgf/mm2) yield strength is 0.
Delayed fracture characteristics were investigated only for those that were confirmed to have a 2% yield strength).

遅れ破壊特性は、第1図(a)に全体の斜視図を、第1
図ら)にUノツチ部の詳細を示した試験片を1つの焼戻
し処理鋼板から5本ずつ切り出し、このUノツチ部にく
さびを挿入した後80℃の温水中に5000時間浸漬し
て、割れ発生の有無を調べて調査し、その結果を第2図
に示した。第2図において、0は5本の試験片のすべて
に割れの発生が認められないことを示し、×は5本の試
験片のいずれか又は全部に割れ発生が認められたことを
示す。
The delayed fracture characteristics are shown in Fig. 1(a), a perspective view of the whole, and Fig. 1(a).
Five specimens with details of the U-notch shown in Fig. 2) were cut out from one tempered steel plate, a wedge was inserted into the U-notch, and then immersed in hot water at 80°C for 5,000 hours to prevent cracking. A survey was conducted to determine the presence or absence of the virus, and the results are shown in Figure 2. In FIG. 2, 0 indicates that no cracking was observed in any of the five test pieces, and × indicates that cracking was observed in any or all of the five test pieces.

第2図に示すように、オーステナイト粒度がASTMN
o、8.5未満の場合には焼戻し温度を高くしても割れ
が発生し、一方、焼戻し温度が580℃未満の場合はオ
ーステナイト粒度をASTMNo、で8,5以上の微細
粒としても割れが発生することが判った。従って、本発
明ではオーステナイト粒度を△STMNαで8.5以上
に調整して焼入れし、且つ焼戻しを580℃以上で行な
った鯛に制限する。
As shown in Figure 2, the austenite grain size is ASTMN
If the tempering temperature is lower than 580°C, cracks will occur even if the austenite grain size is ASTM No. 8.5 or higher, even if the austenite grain size is fine. It was found that it occurs. Therefore, in the present invention, the sea bream is limited to sea bream that has been quenched with the austenite grain size adjusted to ΔSTMNα of 8.5 or higher and tempered at 580° C. or higher.

次に、焼入れの加熱温度をAc3点以上としたのは均一
なオーステナイト組織から焼入れするためである。なお
、焼入れのための加熱温度の上限はオーステナイト粒粗
大化開始温度以下とするのが好ましく、上述したように
最終焼入れ処理でASTMNoで8.5以上の細粒オー
ステナイト粒が得られるようにする必要がある。
Next, the reason why the heating temperature for quenching is set to Ac3 or higher is to quench from a uniform austenite structure. The upper limit of the heating temperature for quenching is preferably below the austenite grain coarsening starting temperature, and as mentioned above, it is necessary to obtain fine austenite grains with an ASTM No. of 8.5 or higher in the final quenching process. There is.

本発明はオーステナイト粒度をASTMNo、で8.5
以上に調整することを特徴の1つとするものであるが、
オーステナイト粒度をASTMNo.で8.5以上に調
整するには、例えばつぎのような方法がある。
The present invention has an austenite grain size of ASTM No. 8.5.
One of the features is that it can be adjusted to the above level,
The austenite grain size is determined by ASTM No. To adjust the value to 8.5 or higher, there are, for example, the following methods.

■ 直接焼入れせずに、Ac3点+150℃程度以下に
炉加熱で再加熱して焼入れし、或いは急速加熱焼入れを
する。
■ Instead of direct quenching, quenching is performed by reheating in a furnace to a temperature below Ac3 point + 150°C, or by rapid heating quenching.

02回以上の焼入れ処理を行ったり冷間加工後に焼入れ
処理を施す。直接焼入れしたものはこの2回以上の焼入
れ(炉加熱でも急速加熱でもよい)で細粒になるし、又
冷間加工を施す場合は焼入れままのものについてでも、
焼戻ししたものについてでもよく、これを再度焼入れす
れば細粒になる。
0 Quenching is performed two or more times or after cold working. If the product is directly quenched, it will become finer if it is quenched two or more times (furnace heating or rapid heating may be used), and if it is cold worked, even if it is as quenched,
It may be tempered, and if it is tempered again, it becomes fine grains.

次に、本発明者等は、0゜28%C−0,45%5i−
0,25%Mn−1,37%Ni −0,94%Cr−
0,56%Mo −0,04%V −0,044%Nb
 −0,045%Zr −0,043%Al (Ac、
点ニア40℃、Ac3点二840℃)の組成を有する鋼
を用いて、オーステナイト粒度をASTMNoで10.
5に調整して焼入れし、これを600℃に加熱し保持時
間をそれぞれ5分、10分、15分、30分として焼戻
しを行ない、焼戻し後の鋼片について上記と同様な遅れ
破壊試験を行なった。この実験結果より、5分及び10
分の焼戻し処理をしたものには夫々215.115の割
合で、割れが認められた。しかるに15分、30分の焼
戻しを行なったものには割れは認められなかった。
Next, the present inventors discovered that 0°28%C-0,45%5i-
0,25%Mn-1,37%Ni-0,94%Cr-
0,56%Mo -0,04%V -0,044%Nb
-0,045%Zr -0,043%Al (Ac,
Using a steel having a composition of 40°C at the point nearer and 840°C at the 3rd point Ac, the austenite grain size was determined to be ASTM No. 10.
5, and then heated to 600°C and tempered with holding times of 5, 10, 15, and 30 minutes, respectively, and the same delayed fracture test as above was conducted on the steel pieces after tempering. Ta. From this experimental result, 5 minutes and 10 minutes
Cracks were observed at a rate of 215.115 in each of those subjected to tempering treatment. However, no cracks were observed in the samples tempered for 15 and 30 minutes.

600℃で10分の焼戻しについては、P LM二16
.78 x 10’、 又600℃で15分の焼戻しについては、pttt二1
6.93X103 、 である。
For tempering at 600°C for 10 minutes, PLM216
.. 78 x 10', and for tempering at 600°C for 15 minutes,
6.93×103.

従って、本発明ではPLM≧16.8 ×103なる条
件を設けた。なお、この条件は焼戻し温度が580℃で
は30分以上の焼戻しが必要なことを示すものである。
Therefore, in the present invention, the condition that PLM≧16.8×103 is set. Note that this condition indicates that at a tempering temperature of 580°C, tempering for 30 minutes or more is required.

すなわち、上述したように580℃以上で、且つPLM
≧16.8 x103のときに炭化物がよく球状化され
て遅れ破壊感受性が低減されることを上記実験で確認し
た。
That is, as mentioned above, the temperature is 580°C or higher, and the PLM
It was confirmed in the above experiment that when ≧16.8 x 103, the carbide is well spheroidized and the delayed fracture susceptibility is reduced.

一方、上記鋼を545℃で4時間焼戻し処理したもの(
PLM= 16.9X103)について前記の遅れ破壊
試験をしたところ、215の割合で割れが発生していた
。このことからも、焼戻しに関しては、580℃以上且
つP LM≧16.8 ×103のいずれか一方の条件
が欠けても耐遅れ破壊性向上に好ましくないことが明ら
かである。
On the other hand, the above steel was tempered at 545°C for 4 hours (
When the delayed fracture test was performed on PLM=16.9×103), cracking occurred at a rate of 215. From this, it is clear that with regard to tempering, even if either one of the conditions of 580° C. or higher and P LM ≧16.8×103 is missing, it is not preferable for improving delayed fracture resistance.

従って、本発明の方法では、580℃以上であり且つP
い≧16.8 X 103を焼戻しの条件として規定し
たものである。
Therefore, in the method of the present invention, the temperature is 580°C or higher and P
The condition for tempering is defined as ≧16.8×103.

又、この場合焼戻し温度がAct点を超えると鋼材強度
が大幅に変動するのみならず、遅れ破壊感受性が大きく
なるので焼戻し温度はAc1点以下と定めた。
Furthermore, in this case, if the tempering temperature exceeds the Act point, not only will the strength of the steel material vary significantly, but also the delayed fracture susceptibility will increase, so the tempering temperature was determined to be below the Ac point.

次に、本発明を実施例により比較例と対比しながら説明
する。なお、これらの実施例は本発明の効果を示す単な
る例示であって、本発明の技術的範囲を同等制限するも
のでないことは勿論である。
Next, the present invention will be explained using examples and comparing with comparative examples. It should be noted that these Examples are merely illustrative of the effects of the present invention, and of course do not similarly limit the technical scope of the present invention.

実施例1 まず、第1表に示す化学成分組成の鋼1〜25を溶製し
た。次いで、これらの鋼を加熱・圧延し、第2表に示す
条件にて焼入れ、焼戻しを行なった。
Example 1 First, steels 1 to 25 having the chemical compositions shown in Table 1 were melted. These steels were then heated and rolled, quenched and tempered under the conditions shown in Table 2.

焼戻し前のものについてオーステナイト&一度(AS 
T M No、 )を測定し、焼戻し後のものについて
引張試験と遅れ破壊試験を行なった。
Austenite & once (AS) for those before tempering
T M No.) was measured, and the tensile test and delayed fracture test were conducted on the tempered material.

引張試験は、平行部8.5mmφの丸棒試験片を用いて
行ない、遅れ破壊試験は次の条件にて実施した。即ち、
各鋼種の鋼材から、第1図に示す試験片を5本ずつ切り
出した。第1図(a)はUノツチ付き試験片の全体形状
を示し、第1図ら)は試験片のUノツチの詳細を示す。
The tensile test was conducted using a round bar test piece with a parallel portion of 8.5 mmφ, and the delayed fracture test was conducted under the following conditions. That is,
Five test pieces shown in FIG. 1 were cut out from each type of steel material. FIG. 1(a) shows the overall shape of the U-notched test piece, and FIG. 1 et al.) show details of the U-notched test piece.

このUノツチにくさびを静的に挿入した後、80℃の温
水中に5000時間浸漬して割れ発生の有無を調べた。
After statically inserting a wedge into this U-notch, it was immersed in warm water at 80° C. for 5,000 hours to check for cracks.

得られた試験結果も併せて第2表に示す。The test results obtained are also shown in Table 2.

第2表に示す結果から、本発明の化学成分範囲の鋼は5
80℃以上、PLM≧16.8X103の条件で焼戻し
しても、150ksi (105,5kgf/mm2)
を越える降伏強さく0.2%耐力)が得られ、しかも遅
れ破壊の発生が零であって、比較鋼に比べて強度と耐遅
れ破壊特性のいずれか一方又は双方が優れ、強度と耐遅
れ破壊性のバランスが極めて良好であることが明らかで
ある。
From the results shown in Table 2, the steel with the chemical composition range of the present invention is 5
Even if tempered under the conditions of 80℃ or higher and PLM≧16.8
A yield strength exceeding 0.2% proof stress) is obtained, and there is no occurrence of delayed fracture, and either or both of strength and delayed fracture resistance are superior to comparative steels. It is clear that the balance of destructive properties is extremely good.

実施例2 第3表に示す化学成分組成の鋼26〜28を溶製した。Example 2 Steels 26 to 28 having the chemical composition shown in Table 3 were melted.

次いで、これらの鋼を加熱・圧延し、第4表に示す条件
にて焼入れし、次に焼戻しを行なった。
Next, these steels were heated and rolled, quenched under the conditions shown in Table 4, and then tempered.

焼戻し前のものについてオーステナイト粒度(AS T
 M No、 )を測定し、焼戻し後のものについて実
施例1と同じ条件で引張試験と遅れ破壊試験を行なった
Austenite grain size (AST
M No. ) was measured, and the tensile test and delayed fracture test were conducted under the same conditions as in Example 1 for the tempered product.

このようにして得られた試験結果も併せて第4表に示す
The test results thus obtained are also shown in Table 4.

第4表に示した結果からも、本発明の化学成分の範囲内
の鋼は580℃以上、PLOT≧16.8 X 10’
の条件で焼戻ししても150ks i (105,5k
gf/mm2)を越す大きな降伏強さく0.2%耐力)
が辱られ、しかも遅れ破壊の発生が零であって、比較鋼
に比べて強度と耐遅れ破壊性のいずれかが優れ、強度と
耐遅れ破壊性のバランスが極めて良好であることが明ら
かである。
From the results shown in Table 4, steel within the chemical composition range of the present invention is 580°C or higher, PLOT≧16.8 x 10'
Even if tempered under the conditions of 150ks i (105,5k
Large yield strength exceeding 0.2% yield strength (gf/mm2)
Moreover, the occurrence of delayed fracture was zero, and it is clear that both strength and delayed fracture resistance are superior to comparative steels, and the balance between strength and delayed fracture resistance is extremely good. .

実施例3 前記第3表のうちの本発明の規定する化学成分範囲の対
象鋼である鋼27を加熱・圧延し、第5表に示す条件に
て焼入れし、次に焼戻しを行なった。
Example 3 Steel 27, which is a target steel having the chemical composition range prescribed by the present invention in Table 3 above, was heated and rolled, quenched under the conditions shown in Table 5, and then tempered.

焼戻し前のものについてオーステナイト粒度(ASTM
No.)を測定し、焼戻し後のものについて実施例1と
同じ条件で引張試験と遅れ破壊試験を行なった。その試
験結果も併せて第5表に示す。
Austenite grain size (ASTM
No. ), and a tensile test and a delayed fracture test were conducted on the tempered product under the same conditions as in Example 1. The test results are also shown in Table 5.

第5表の結果から、本発明の規定する化学成分範囲の対
象鋼についても、本発明の範囲内の処理条件を満足して
はじめて、耐遅れ破壊性が良好になることが判る。
From the results in Table 5, it can be seen that the delayed fracture resistance of target steels within the chemical composition range defined by the present invention becomes good only when the processing conditions within the range of the present invention are satisfied.

実施例4 前記第3表のうちの本発明の規定する化学成分範囲の対
象鋼である鋼26を加熱・圧延後、第6表に示す条件に
て焼入れし、次に焼戻しを行なった。
Example 4 Steel 26, which is a target steel having the chemical composition range prescribed by the present invention in Table 3 above, was heated and rolled, then quenched under the conditions shown in Table 6, and then tempered.

焼戻し前のものについてオーステナイト粒度(ASTM
NO,)を測定し、焼戻し後のものについて実施例1と
同じ条件で引張試験と遅れ破壊試験を行なった。その試
験結果も併せて第6表に示す。
Austenite grain size (ASTM
After tempering, a tensile test and a delayed fracture test were conducted under the same conditions as in Example 1. The test results are also shown in Table 6.

第6表から、本発明ではオーステナイト粒の微細化方法
の如何に拘わらず、オーステナイト粒度をA S T 
M No、で8.5以上に調整して焼入れだ後、それを
580℃以上、PLM≧16.8 X 103の条件で
焼戻ししさえすれば、耐遅れ破壊性の優れた高強度鋼が
得られることが判る。
From Table 6, it can be seen that in the present invention, regardless of the method of refining austenite grains, the austenite grain size is
After adjusting the M No. to 8.5 or higher and quenching it, you can obtain high-strength steel with excellent delayed fracture resistance by tempering it at 580℃ or higher and under the conditions of PLM≧16.8×103. It turns out that it can be done.

実施例5 前記第1表に示す鋼のうち本発明の規定する化学成分範
囲の対象鋼である鋼1.2.14.15及び本発明の範
囲外である比較鋼24を加熱・圧延し、第7表に示す条
件で焼入れし、次に焼戻しを行なった。焼戻し前のもの
についてオーステナイト粒度(△STMNα)を測定し
、焼戻し後のものについて、実施例1と同じ条件で引張
試験を行ない、又実施例1に準じて、HCIでp)Iを
3゜5に調整した5%食塩水(常温)中に1000時間
浸漬する遅れ破壊試験を行なった。なお、試験液は48
時間毎に交換した。
Example 5 Of the steels shown in Table 1 above, Steel 1.2.14.15, which is the target steel within the chemical composition range specified by the present invention, and Comparative Steel 24, which is outside the scope of the present invention, were heated and rolled, Hardening was performed under the conditions shown in Table 7, and then tempering was performed. The austenite grain size (△STMNα) was measured for the one before tempering, and the tensile test was conducted on the one after tempering under the same conditions as in Example 1. A delayed fracture test was conducted by immersing the sample in a 5% saline solution (at room temperature) adjusted to 5% for 1000 hours. In addition, the test liquid is 48
Replaced every hour.

このようにして、得られた試験結果も併せて第7表に示
す。
The test results thus obtained are also shown in Table 7.

第7表に示す結果から、本発明の規定する化学成分範囲
の対象鋼のうちでも特に(Si十Mn)が0.80%以
下の鋼1.2は低pHの環境下でも耐遅れ破壊性と強度
のバランスが極めて良好であることが判る。
From the results shown in Table 7, among the target steels within the chemical composition range specified by the present invention, steel 1.2 with (Si + Mn) of 0.80% or less has delayed fracture resistance even in a low pH environment. It can be seen that the balance between strength and strength is extremely good.

発明の効果 上述した如く、本発明の鋼により、150ksi(10
5,5kgf/mm’)を越える高強度と優れた耐遅れ
破壊性を具備して、しかも安価な超高強度油井管の製造
が可能となり、従ってその工業上もたらされる効果は極
めて大きいものである。
Effects of the Invention As mentioned above, the steel of the present invention has a strength of 150 ksi (10
It has become possible to manufacture inexpensive ultra-high strength oil country tubular goods that have high strength exceeding 5.5 kgf/mm') and excellent delayed fracture resistance, and the industrial effects thereof are extremely large. .

本発明の鋼は、超高強度油井管以外にも、上述と同一強
度レベルの高力ボルト等にも広く応用できるものである
The steel of the present invention can be widely applied not only to ultra-high-strength oil country tubular goods but also to high-strength bolts having the same strength level as described above.

なお、本明細書中で鋼の化学成分を表示するのに使用し
た%は重量%である。
Note that in this specification, the percentages used to indicate the chemical components of steel are percentages by weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、遅れ破壊試験片の形状を示すものであり、第
1図(a)は試験片全体の斜視図、第1図ら)はそのU
ノツチ部の詳細を示すものである。 第2図は、170ksi (119,5kgf/mm2
)近傍の降伏強さを有する本発明対象鋼の耐遅れ破壊特
性に及ぼす、焼戻し温度(保持30分の場合)とオース
テナイト粒度の影響を示す図である。
Figure 1 shows the shape of the delayed fracture test piece. Figure 1 (a) is a perspective view of the entire test piece, and Figure 1 (a) shows its U.
This figure shows the details of the notch part. Figure 2 shows 170 ksi (119,5 kgf/mm2
FIG. 2 is a diagram showing the influence of tempering temperature (when held for 30 minutes) and austenite grain size on the delayed fracture resistance of a steel subject to the present invention having a yield strength near ).

Claims (16)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(1) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ 0.10%, the balance consists of Fe and unavoidable impurities, and A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(2)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10%、 Cu:1.5%以下 を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(2) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ 0.10%, Cu: 1.5% or less, the balance consists of Fe and inevitable impurities, A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(3)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10%、 Ti:0.01〜0.10% を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(3) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ 0.10%, Ti: 0.01~0.10%, the balance consists of Fe and inevitable impurities, and A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(4)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10%、 B:0.0003〜0.0050% を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(4) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ 0.10%, B: 0.0003 to 0.0050%, the balance consists of Fe and inevitable impurities, and A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(5)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10%、 Ca:0.001〜0.030% を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(5) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ 0.10%, Ca: 0.001-0.030%, the balance consists of Fe and inevitable impurities, A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(6)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% Cu:1.5%以下、 Ti:0.01〜0.10%、 を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(6) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ Contains 0.10% Cu: 1.5% or less, Ti: 0.01 to 0.10%, the balance consists of Fe and inevitable impurities, and A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(7)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% Cu:1.5%以下、 B:0.0003〜0.0050%、 を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(7) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ Contains 0.10% Cu: 1.5% or less, B: 0.0003 to 0.0050%, the balance consists of Fe and inevitable impurities, and A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(8)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% Cu:1.5%以下、 Ca:0.001〜0.030%、 を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(8) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ Contains 0.10% Cu: 1.5% or less, Ca: 0.001 to 0.030%, the balance consists of Fe and inevitable impurities, and A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(9)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% Cu:1.5%以下、 Ti:0.01〜0.10%、 B:0.0003〜0.0050%、 を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(9) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ Contains 0.10% Cu: 1.5% or less, Ti: 0.01 to 0.10%, B: 0.0003 to 0.0050%, and the balance consists of Fe and inevitable impurities, A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(10)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% Cu:1.5%以下、 Ti:0.01〜0.10%、 Ca:0.001〜0.030%、 を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(10) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ Contains 0.10% Cu: 1.5% or less, Ti: 0.01 to 0.10%, Ca: 0.001 to 0.030%, and the balance consists of Fe and inevitable impurities, A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(11)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% Cu:1.5%以下、 B:0.0003〜0.0050%、 Ca:0.001〜0.030%、 を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で旦つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(11) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ Contains 0.10% Cu: 1.5% or less, B: 0.0003 to 0.0050%, Ca: 0.001 to 0.030%, with the balance consisting of Fe and inevitable impurities, and A
Quenched after heating to C_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower each time.
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(12)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% Ti:0.01〜0.10%、 B:0.0003〜0.0050%、 を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(12) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ Contains 0.10% Ti: 0.01~0.10%, B: 0.0003~0.0050%, the balance consists of Fe and inevitable impurities, A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(13)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% Ti:0.01〜0.10%、 Ca:0.001〜0.030%、 を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(13) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ Contains 0.10% Ti: 0.01 to 0.10%, Ca: 0.001 to 0.030%, the balance consists of Fe and inevitable impurities, and A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(14)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% Ti:0.01〜0.10%、 B:0.0003〜0.0050%、 Ca:0.001〜0.030%、 を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(14) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ Contains 0.10% Ti: 0.01 to 0.10%, B: 0.0003 to 0.0050%, Ca: 0.001 to 0.030%, and the balance consists of Fe and inevitable impurities, A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(15)重量%で、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% B:0.0003〜0.0050%、 Ca:0.001〜0.030%、 を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(15) In weight%, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ Contains 0.10% B: 0.0003 to 0.0050%, Ca: 0.001 to 0.030%, the balance consists of Fe and inevitable impurities, and A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
(16)成分元素として、 C:0.15〜0.45%、 Si:1.50%以下、 Mn:0.01〜1.50%、 Ni:0.10%〜4.00%(ただし、0.10%を
含まず)、 Cr:0.50〜2.00%、 MoまたはWのいずれか一方または双方:Mo+1/2
Wで0.30〜1.50%、 V:0.01〜0.20%、 Nb:0.005〜0.20%、 Zr:0.01〜0.15%、 Al:0.01〜0.10% Cu:1.5%以下、 Ti:0.01〜0.10%、 B:0.0003〜0.0050%、 Ca:0.001〜0.030%、 を含有し、残部Feおよび不可避的不純物からなり、A
c_3点以上に加熱後焼入れされ、その後580℃以上
で且つAc_1点以下の温度でP_L_M≧16.8×
10^3を満たす条件で焼戻された、オーステナイト粒
度がASTMNo.で8.5以上の耐遅れ破壊性の優れ
た高強度鋼。 但し、 P_L_M=T(20+logt) T:焼戻し温度(°K)、 t:保持時間(hr)、
(16) As component elements, C: 0.15 to 0.45%, Si: 1.50% or less, Mn: 0.01 to 1.50%, Ni: 0.10% to 4.00% (but , excluding 0.10%), Cr: 0.50 to 2.00%, Mo or W or both: Mo+1/2
W: 0.30~1.50%, V: 0.01~0.20%, Nb: 0.005~0.20%, Zr: 0.01~0.15%, Al: 0.01~ Contains 0.10% Cu: 1.5% or less, Ti: 0.01 to 0.10%, B: 0.0003 to 0.0050%, Ca: 0.001 to 0.030%, and the remainder Consisting of Fe and unavoidable impurities, A
Quenched after heating to c_3 point or higher, then P_L_M≧16.8× at a temperature of 580℃ or higher and Ac_1 point or lower
10^3, the austenite grain size is ASTM No. High strength steel with excellent delayed fracture resistance of 8.5 or higher. However, P_L_M=T(20+logt) T: Tempering temperature (°K), t: Holding time (hr),
JP11175285A 1985-05-24 1985-05-24 High strength steel excelling in resistance to delayed fracture Pending JPS61270355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11175285A JPS61270355A (en) 1985-05-24 1985-05-24 High strength steel excelling in resistance to delayed fracture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11175285A JPS61270355A (en) 1985-05-24 1985-05-24 High strength steel excelling in resistance to delayed fracture

Publications (1)

Publication Number Publication Date
JPS61270355A true JPS61270355A (en) 1986-11-29

Family

ID=14569288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11175285A Pending JPS61270355A (en) 1985-05-24 1985-05-24 High strength steel excelling in resistance to delayed fracture

Country Status (1)

Country Link
JP (1) JPS61270355A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012692A1 (en) * 1993-10-30 1995-05-11 J.D. Theile Gmbh & Co. Kg Use of special steel alloy for chains and chain components
CN1107729C (en) * 2000-04-20 2003-05-07 钢铁研究总院 Isothermal quenching process for preparing delayed fracture resisting high-strength steel
CN100366778C (en) * 2005-05-30 2008-02-06 宝山钢铁股份有限公司 Steel in use for fire resistant, heat insulated oil line, and preparation method
US7862667B2 (en) * 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8007603B2 (en) 2005-08-04 2011-08-30 Tenaris Connections Limited High-strength steel for seamless, weldable steel pipes
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US8328960B2 (en) 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
JP2019112679A (en) * 2017-12-25 2019-07-11 日本製鉄株式会社 Steel, steel pipe for oil well, and method for producing steel
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN115612929A (en) * 2022-09-28 2023-01-17 延安嘉盛石油机械有限责任公司 Petroleum casing pipe for heavy oil thermal production well and preparation method thereof
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562881A (en) * 1993-10-30 1996-10-08 J.D. Theile Gmbh & Co., Kg Special-steel alloy chains and chain parts
WO1995012692A1 (en) * 1993-10-30 1995-05-11 J.D. Theile Gmbh & Co. Kg Use of special steel alloy for chains and chain components
CN1107729C (en) * 2000-04-20 2003-05-07 钢铁研究总院 Isothermal quenching process for preparing delayed fracture resisting high-strength steel
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
CN100366778C (en) * 2005-05-30 2008-02-06 宝山钢铁股份有限公司 Steel in use for fire resistant, heat insulated oil line, and preparation method
US8007603B2 (en) 2005-08-04 2011-08-30 Tenaris Connections Limited High-strength steel for seamless, weldable steel pipes
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US7862667B2 (en) * 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8328958B2 (en) 2007-07-06 2012-12-11 Tenaris Connections Limited Steels for sour service environments
US8328960B2 (en) 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US9188252B2 (en) 2011-02-18 2015-11-17 Siderca S.A.I.C. Ultra high strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
JP2019112679A (en) * 2017-12-25 2019-07-11 日本製鉄株式会社 Steel, steel pipe for oil well, and method for producing steel
CN115612929A (en) * 2022-09-28 2023-01-17 延安嘉盛石油机械有限责任公司 Petroleum casing pipe for heavy oil thermal production well and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS61270355A (en) High strength steel excelling in resistance to delayed fracture
CN101634001B (en) CT90-class steel for continuous oil pipe and method for manufacturing same
JPH0967624A (en) Production of high strength oil well steel pipe excellent in sscc resistance
JPS62253720A (en) Production of low-alloy high-tension oil-well steel having excellent resistance to sulfide stress corrosion cracking
JP2013104070A (en) High-strength steel excellent in delayed breakage resistance, and high-strength bolt
US20230167522A1 (en) High Strength, High-Temperature Corrosion Resistant Martensitic Stainless Steel and Manufacturing Method Therefor
JP6468302B2 (en) Material for steel pipe for high strength oil well and method for producing steel pipe for high strength oil well using the material
JPS634046A (en) High-tensile steel for oil well excellent in resistance to sulfide cracking
JPS634047A (en) High-tensile steel for oil well excellent in sulfide cracking resistance
JPS6164815A (en) Manufacture of high strength steel excellent in delay breakdown resistance
JPS6039150A (en) Steel for pipe for oil well with superior resistance to stress corrosion cracking
JPH0218381B2 (en)
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JPS6160822A (en) Manufacture of high strength steel having superior resistance to delayed fracture
JPS61223168A (en) High strength steel having superior delayed fracture resistance
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JPH0553855B2 (en)
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPS58136715A (en) Production of steel for oil well
JPS61227129A (en) Manufacture of high strength steel having superior resistance to sulfide stress corrosion cracking
JPS5996216A (en) Manufacture of high strength steel with superior sulfide cracking resistance
JPS6210241A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength
JPS61223164A (en) High strength steel for oil well having superior resistance to sulfide stress corrosion cracking
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength