JPS61270301A - Hydrogen occluding alloy and its manufacture - Google Patents

Hydrogen occluding alloy and its manufacture

Info

Publication number
JPS61270301A
JPS61270301A JP10931685A JP10931685A JPS61270301A JP S61270301 A JPS61270301 A JP S61270301A JP 10931685 A JP10931685 A JP 10931685A JP 10931685 A JP10931685 A JP 10931685A JP S61270301 A JPS61270301 A JP S61270301A
Authority
JP
Japan
Prior art keywords
alloy
vessel
plasma
hydrogen
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10931685A
Other languages
Japanese (ja)
Inventor
Hideo Takei
日出夫 竹井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP10931685A priority Critical patent/JPS61270301A/en
Publication of JPS61270301A publication Critical patent/JPS61270301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To efficiently obtain fine powder of a Ti alloy occluding a large amount of hydrogen by bringing Ti and Cu vapors or Ti, Cu and Si vapors into a reaction in plasma generated in a vacuum vessel. CONSTITUTION:A vacuum vessel 6 is evacuated. Confronting Cu electrodes 3, 3 energized by an RE power source 1, a meshy auxiliary electrode 8 and a heater 7 are arranged in the vessel 6. Ar for generating arc, TiCl4 and SiF4 are introduced into the vessel 6 from feed sources through mass flowmeters MFC and a nozzle 10, and plasma is generated in the vessel 6 to decompose the TiCl4 and SiF4. Cu vapor produced from the heated Cu electrodes 3 is reacted with the resulting Ti and Si and alloyed. Fine powder of a Ti alloy formed by the alloying is sucked and recovered with a trap 4.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は水素吸蔵金属、特にTi−Cu合金とその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to hydrogen storage metals, particularly Ti-Cu alloys and methods of manufacturing the same.

〔従来技術〕[Prior art]

従来、水素吸蔵合金の材料として、Ti系の合金が多数
開発され、或いは提案されている。しかし、これらの多
くは塊状であるので、氷蔵吸蔵−放出に用いるときに水
素との接触面積が小さく、合金の全吸蔵能力を利用する
には極めて不十分であり、その吸蔵能力は理論吸蔵量の
数百分の1ないし数10分の1程度でしかない。すなわ
ち、結晶性合金中の金属原子が占有する格子点の中間に
は、水素が可逆的に侵入しつる隙間が形成され、若しも
それらの隙間へ水素が容易に侵入できる手段が存在する
ならば理論的吸蔵容量へ少しでも接近させることが可能
であるが、塊状合金ではこれらの隙間に合金内部に存在
するから表面部分しか利用できない。
Conventionally, many Ti-based alloys have been developed or proposed as materials for hydrogen storage alloys. However, since most of these are in the form of blocks, the contact area with hydrogen when used for ice storage and desorption is small, and it is extremely insufficient to utilize the full storage capacity of the alloy, and its storage capacity is less than the theoretical storage capacity. It is only about a few hundredths to a few tenths of that. In other words, gaps are formed between the lattice points occupied by metal atoms in a crystalline alloy through which hydrogen can reversibly penetrate, and if there is a means for hydrogen to easily penetrate into these gaps. If this is the case, it is possible to approach the theoretical storage capacity even slightly, but in the case of bulk alloys, only the surface portion can be used because these gaps exist inside the alloy.

これらの水素吸蔵合金は、微粉化することによってその
表面種を大きくシ、それによって吸蔵容量を増大しうる
ことは明らかであるが、従来の方法では水素吸蔵の要請
に応えられる微粉化は十分に達成できなかった。従来法
のうちで、最も有効な1つはDCプラズマを用いた高純
度微粒子の製造法である。しかしながら、DCアークは
プラズマ体積が小さいので量産性に乏しいものであった
It is clear that by pulverizing these hydrogen storage alloys, the surface species can be increased, thereby increasing the storage capacity, but conventional methods have not been able to achieve sufficient pulverization to meet the hydrogen storage requirements. could not be achieved. Among the conventional methods, one of the most effective is a method for producing high-purity fine particles using DC plasma. However, since the plasma volume of DC arc is small, mass productivity is poor.

Ti系の水素吸蔵合金は他の金属よりもすぐれているこ
とが知られている。特にTiF@xMア(M j Co
、 Cr、 Cm、 Mn、 Nlなど)、TiM。
It is known that Ti-based hydrogen storage alloys are superior to other metals. Especially TiF@xM a (M j Co
, Cr, Cm, Mn, Nl, etc.), TiM.

(M + Cos Cr、 Mn、 AI、 Zrs 
V、などの1種以上)などが知られているが、適当な微
粉化方法がなかったり、吸蔵能力が不十分であった〇〔
発明の目的〕 従って、本発明は能率の良い水素吸蔵用微粉末合金を提
供することを目的とする。
(M + Cos Cr, Mn, AI, Zrs
V, etc.), but there was no suitable pulverization method or the storage capacity was insufficient〇〇
OBJECT OF THE INVENTION Accordingly, an object of the present invention is to provide a highly efficient fine powder alloy for hydrogen storage.

〔発明の概要〕[Summary of the invention]

本発明は、Tt−C−またはTi−Ctx−Si合金の
微粉末より成ることを特徴とする水素@蔵合金により上
記の目的を達成する。また本発明は、かかる合金をrf
プラズマ気相反応法によって製造することを特徴とする
方法により上記目的を達成する。
The present invention achieves the above object with a hydrogen storage alloy characterized by being made of fine powder of Tt-C- or Ti-Ctx-Si alloy. The present invention also provides such alloys with rf
The above object is achieved by a method characterized by manufacturing by a plasma gas phase reaction method.

Tl−Cm合金及びTi−CtI−Si合金は水素親和
性にすぐれたものであり、またB1の添加は吸蔵量を増
大する効果を有する。Tl−01!合金及びTl−Cm
−Si合金はrfプラズマ法による微粉化の能力にすぐ
れているため、工業的な規模で使用できることが予想さ
れる0かくして、本発明によると、微粉化TL−Cm合
金又はTl−Cu−Si合金が提供できるものであり、
このため合金の表面種は大きくなり、従来の約10〜5
0倍の水素1311量が実現できる。また、rfアーク
プラズマを用いるため、合金の純度が高く、特性が良い
The Tl-Cm alloy and the Ti-CtI-Si alloy have excellent hydrogen affinity, and the addition of B1 has the effect of increasing the storage amount. Tl-01! Alloy and Tl-Cm
-Si alloy has excellent ability to be pulverized by RF plasma method, so it is expected that it can be used on an industrial scale.Thus, according to the present invention, pulverized TL-Cm alloy or Tl-Cu-Si alloy can be provided,
For this reason, the surface species of the alloy become large, and the conventional
0 times the amount of hydrogen 1311 can be achieved. Furthermore, since RF arc plasma is used, the alloy has high purity and good characteristics.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明の水素吸蔵合金はTi−CtI又はTl−Cu−
Si合金微粉末より成る。従来からT1系合金は試みら
れているが本発明のものは知られていない。
The hydrogen storage alloy of the present invention is Ti-CtI or Tl-Cu-
Consists of Si alloy fine powder. T1 alloys have been tried in the past, but the one of the present invention is not known.

また、一般的にDCアークプラズマによる高純度合金粉
末の製造は試みられているが、水素吸蔵合金についてD
Cアークプラズマ法が試みられたことはなく、まして本
発明のrfアークプラズム法については従来技術から示
唆されるものは何もない。
Generally, attempts have been made to produce high-purity alloy powder using DC arc plasma, but with regard to hydrogen storage alloys,
A C arc plasma method has never been attempted, much less the prior art suggests anything about the RF arc plasma method of the present invention.

このように超微粉化されたT1−Cm及びT i −C
T1-Cm and T i -C ultra-finely powdered in this way
.

−Si合金は水素吸蔵量が極めて大きくなる。その理由
はTl−Cm合金及びTi−CtL−Si合金が高い水
素親和性を有することと、水素に対する広い接触面積を
有することに求めうる。
-Si alloy has an extremely large amount of hydrogen storage. The reason for this can be found in that the Tl-Cm alloy and the Ti-CtL-Si alloy have a high affinity for hydrogen and a large contact area for hydrogen.

これらの合金を製造するには、これらの各金属を含むガ
スを出発原料として用いても良いし、一部は金属の気化
を利用して供給しても良い。以下に示す例では、Tiを
T I C14ガスから、SlをSi F、ガスから、
そしてCuを固体鋼の蒸気から得る。
In order to manufacture these alloys, gases containing each of these metals may be used as starting materials, or some of them may be supplied using vaporization of the metals. In the example shown below, Ti is obtained from T I C14 gas, Sl is obtained from SiF, gas,
And Cu is obtained from solid steel vapor.

第1図は、本発明の方法を実施するための装置の概略図
を示す。図中1はアークプラズマ形成用rf電源であり
、2はプラズマの消滅を阻止してプラズマの維持をはか
るパルス印加用補助電源(パルス電源)であり、真空容
器6内にはrf電源1により付勢される対向C11¥I
L極3.3及びアークプラズマ空間に挿入されたメツシ
エ状補助電極8、及びに−夕7が配置されている。9は
粉体回収トラップ4を介してポンプに接続された排気ダ
クトである。さらに、ガス導入系として、質量流量計M
FCを介してアーク形成用Ar、TlC14及びSi 
F4の各供給源が真空容器内のガス導入ノズル10に接
続されている。
FIG. 1 shows a schematic diagram of an apparatus for carrying out the method of the invention. In the figure, 1 is an RF power source for arc plasma formation, 2 is an auxiliary power source (pulse power source) for applying pulses that prevents plasma extinction and maintains the plasma. Opposing force C11\I
An L pole 3.3, a messier-like auxiliary electrode 8 inserted into the arc plasma space, and a second electrode 7 are arranged. 9 is an exhaust duct connected to the pump via the powder collection trap 4. Furthermore, as a gas introduction system, a mass flowmeter M
Ar, TlC14 and Si for arc formation via FC
Each source of F4 is connected to a gas introduction nozzle 10 within the vacuum vessel.

動作において、真空容器6内にはアークプラズマが形成
され、T I C14及びSiF、はプラズマにより分
解され、同時に加熱されたCu電極面から放出された(
、a蒸気は’PI、Si蒸気と反応して合金化し、ポン
プによりダクトの方へ引かれてトラップ4により回収さ
れる。
In operation, an arc plasma is formed in the vacuum vessel 6, and TIC14 and SiF are decomposed by the plasma and simultaneously released from the heated Cu electrode surface (
, a vapor reacts with 'PI, Si vapor to form an alloy, is drawn towards the duct by the pump and collected by trap 4.

実施例 第1図に示した装置を用いて、次の条件下に71−Cm
合金及びTi−(、ll−Si合金を製造した。
Example Using the apparatus shown in Figure 1, 71-Cm was heated under the following conditions.
alloy and Ti-(,ll-Si alloy) were produced.

ムr:30ccM TiC14:300CCM SIF、: 500CM(用いる場合)rf電カニso
ow(α35W/、り 圧カニ 25 Torr 上記の条件を保ちながら約40分間製造を続けたところ
、粉体量27 t (Ti−Cm )及び28F(Ti
−CtI−Si)を得九〇 次に、水素吸蔵を行ったところ、それぞれ94t ll
 (Ti−Cm )及び7.6f/l(丁1−Cu−S
i)を得た。これらの量は従来のものの約10〜50倍
である。
Mr: 30ccM TiC14: 300CCM SIF,: 500CM (if used) rf electric crab so
ow (α35W/, pressure crab 25 Torr) When production continued for about 40 minutes while maintaining the above conditions, the amount of powder was 27t (Ti-Cm) and 28F (Ti
-CtI-Si) was obtained, and then hydrogen storage was performed, resulting in 94 t ll of each
(Ti-Cm) and 7.6f/l (Ti-Cu-S
i) was obtained. These amounts are about 10 to 50 times the conventional ones.

以上のように、本発明によれば、従来よりもはるかに水
素吸蔵量の多いT1糸合金を提供することができた。さ
らに、本発明はかかるすぐれた特性の合金微粉末を能率
良く製造できる方法を提供できた。
As described above, according to the present invention, it was possible to provide a T1 thread alloy with a much larger hydrogen storage capacity than the conventional one. Furthermore, the present invention was able to provide a method for efficiently producing fine alloy powder with such excellent properties.

第1図は本発明の方法を実施するための装置を示す概念
図である。
FIG. 1 is a conceptual diagram showing an apparatus for carrying out the method of the present invention.

1irf電源 2:補助電源 3:C璽電極 4;粉回収トラップ 5:ガス導入系 6;真空容器 7:ヒータ 第1図1irf power supply 2: Auxiliary power supply 3: C-seal electrode 4; Powder collection trap 5: Gas introduction system 6; Vacuum container 7: Heater Figure 1

Claims (1)

【特許請求の範囲】 1、微粉化したTi−Cu合金またはTi−Cu−Si
合金より成る水素吸蔵合金。 2、減圧した真空容器内にrfアークプラズマを形成し
、該プラズマ中でTi及びCu、またはTi、Cu、S
iの蒸気を反応させてTi−Cu合金またはTi−Cu
−Si合金の微粉末を形成し、回収することより成る水
素吸蔵合金の製造方法。
[Claims] 1. Finely powdered Ti-Cu alloy or Ti-Cu-Si
Hydrogen storage alloy made of alloy. 2. Form an RF arc plasma in a reduced pressure vacuum chamber, and in the plasma, Ti and Cu, or Ti, Cu, S
Ti-Cu alloy or Ti-Cu
- A method for producing a hydrogen storage alloy comprising forming and recovering fine powder of a Si alloy.
JP10931685A 1985-05-23 1985-05-23 Hydrogen occluding alloy and its manufacture Pending JPS61270301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10931685A JPS61270301A (en) 1985-05-23 1985-05-23 Hydrogen occluding alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10931685A JPS61270301A (en) 1985-05-23 1985-05-23 Hydrogen occluding alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPS61270301A true JPS61270301A (en) 1986-11-29

Family

ID=14507121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10931685A Pending JPS61270301A (en) 1985-05-23 1985-05-23 Hydrogen occluding alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS61270301A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588670A (en) * 2014-12-30 2015-05-06 宁波广博纳米新材料股份有限公司 Preparation method of nano-grade Mg-Y-Ni hydrogen storage alloy powder
JP6482013B1 (en) * 2017-11-06 2019-03-13 キヤノンアネルバ株式会社 Structure and manufacturing method thereof
CN109930024A (en) * 2019-04-02 2019-06-25 东北大学 High-strength tough copper-titanium alloy of one kind and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588670A (en) * 2014-12-30 2015-05-06 宁波广博纳米新材料股份有限公司 Preparation method of nano-grade Mg-Y-Ni hydrogen storage alloy powder
JP6482013B1 (en) * 2017-11-06 2019-03-13 キヤノンアネルバ株式会社 Structure and manufacturing method thereof
WO2019087390A1 (en) * 2017-11-06 2019-05-09 キヤノンアネルバ株式会社 Structure and production method therefor
US11103852B2 (en) 2017-11-06 2021-08-31 Canon Anelva Corporation Structure and method of manufacturing the same
CN109930024A (en) * 2019-04-02 2019-06-25 东北大学 High-strength tough copper-titanium alloy of one kind and preparation method thereof
CN109930024B (en) * 2019-04-02 2021-01-12 东北大学 High-strength and high-toughness copper-titanium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
US4642207A (en) Process for producing ultrafine particles of ceramics
US4610857A (en) Method for making ultra-fine ceramic particles
US4769064A (en) Method for synthesizing ultrafine powder materials
JPH0327601B2 (en)
JPS61270301A (en) Hydrogen occluding alloy and its manufacture
Dolukhanyan et al. Synthesis of transition metal hydrides and a new process for production of refractory metal alloys: An autoreview
JPH0797607A (en) Amorphous metallic hyper fine particle and production thereof
US4889665A (en) Process for producing ultrafine particles of ceramics
Yamada et al. Cubic crystals in ti films evaporated on nacl substrates
JPS63170212A (en) Production of hyper-fine powder of metal boride
JPH06144993A (en) Boron-doped diamond
JP2004359979A (en) Reduction refining method of high purity metal from vaporizable metallic compound by magnetron capacitive coupling type plasma, and device therefor
Andreyev et al. Isotopic effects in hydrogen-intermetallic compound systems
JPS63266008A (en) Production of fine powder of high melting point metal or alloy
US2848315A (en) Process for producing titanium, zirconium, and alloys of titanium and zirconium by reduction of oxides of titanium or zirconium
JP3476232B2 (en) Method for synthesizing C3N4 by plasma arc method
Yang et al. Residual hydrogen reduction and refining effect during two-step hydrogen-argon plasma arc melting of cerium
JPS63277767A (en) Method for synthesizing high-pressure phase boron nitride in gaseous phase
JP2020152597A (en) Apparatus and method for producing tetrahydroborate
JP2005154834A (en) Ruthenium ultrafine powder and its production method
Mimura et al. Hydrogen plasma arc melting
JPS6131302A (en) Preparation of metal hydride
JP2000038622A (en) Purification and refinement of transition metal
JPH0243683B2 (en)
JPS61153208A (en) Manufacture of hyperfine metallic powder with metal having high melting point as medium