JPS61263251A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61263251A
JPS61263251A JP10551485A JP10551485A JPS61263251A JP S61263251 A JPS61263251 A JP S61263251A JP 10551485 A JP10551485 A JP 10551485A JP 10551485 A JP10551485 A JP 10551485A JP S61263251 A JPS61263251 A JP S61263251A
Authority
JP
Japan
Prior art keywords
layer electrode
film
upper layer
insulating film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10551485A
Other languages
Japanese (ja)
Inventor
Masaaki Inada
稲田 正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10551485A priority Critical patent/JPS61263251A/en
Publication of JPS61263251A publication Critical patent/JPS61263251A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain a large capacity value by forming two pectinated electrodes electrically separated by the same wiring layers, and constructing to oppose the sides of the electrodes through a dielectric film, thereby reducing an occupying area of a capacity element. CONSTITUTION:A lower layer electrode 2 is formed on the surface of an insulating film 1 formed on the surface of a semiconductor substrate 9, and an interlayer insulating film 3 is coated thereon. The film 3 becomes a dielectric in case of forming a capacity. Then, a hole 4 for conducting a part of the upper layer electrode with the electrode 2 is formed at the film 3. Thereafter, an upper layer film of aluminum is coated, the upper layer film is pectinated to form an upper layer electrode 6 in which upper and lower layer electrode 5, 2 are electrically connected. Subsequently, a protective insulating film 8 of approx. thickness of the electrodes 5, 6 is coated. The film 8 becomes a dielectric of a chip protective film and a capacity element to complete the capacity element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置に関し、特に容量素子を有する半
導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device having a capacitive element.

〔従来の技術〕[Conventional technology]

従来、半導体装置に形成される容量素子ハ、一般的には
l!3図(a)、 (b)に示す構造を有している。
Conventionally, a capacitive element formed in a semiconductor device is generally l! It has the structure shown in Figures 3(a) and 3(b).

すなわち第3図(a)、 (b)に示すように、下層電
極2上に設けられた層間絶縁膜3上に上層電極15を形
放しその後、半導体素子保護用絶縁11II8全形放し
て容量素子を平行平板型構造としていた。尚1!3図(
a)、 (b) icおいて9に半導体基板、1は絶縁
膜である。
That is, as shown in FIGS. 3(a) and 3(b), the upper layer electrode 15 is removed on the interlayer insulating film 3 provided on the lower layer electrode 2, and then the entire semiconductor element protection insulation 11II8 is removed to form a capacitive element. had a parallel plate structure. Figures 1 and 3 (
a), (b) In the IC, 9 is a semiconductor substrate, and 1 is an insulating film.

〔発明が解決しよりとする問題点〕[Problems that the invention helps solve]

しかしながら、このようにして形成された平行平板型容
量素子の容量の値は、誘電体としての層間絶縁膜3の材
質と厚さ及び、T1電極2と上膚雷極15とのかさなり
部の面積に比例する。従って層間絶縁膜3の厚さを一定
にし大容量の容量素子を形成しようとすれば、下層電極
2と上層電極15のかさなり面積を大きくしなければな
らず、半導体装置に占める容量素子の面積が大きくなり
半導体装置が大型になってしまうという欠点が6、っt
o 本発明の目的は、上記欠点を除去し、半導体装置に占め
る面積が小さく、シかも大きな容量値を待つ容量素子を
宵する半導体装11t?提供することにある。
However, the value of the capacitance of the parallel plate capacitive element formed in this way depends on the material and thickness of the interlayer insulating film 3 as a dielectric, and the area of the bulk part between the T1 electrode 2 and the upper skin lightning pole 15. is proportional to. Therefore, in order to form a capacitive element with a large capacity while keeping the thickness of the interlayer insulating film 3 constant, the area of the lower layer electrode 2 and the upper layer electrode 15 must be increased considerably, and the area of the capacitive element occupying the semiconductor device increases. The drawback is that the larger the semiconductor device becomes, the larger the semiconductor device becomes.
An object of the present invention is to eliminate the above-mentioned drawbacks, to provide a semiconductor device 11t that occupies a small area of the semiconductor device, and includes a capacitive element that has a large capacitance value. It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装r1tに多膚配線檎造1[し配線層の
組み合せにより形成された容量素子を有する半導体装置
であって、同一配線層が電気的に分離された2個のくし
形電極全形成しかつこの(し形電極の側面が訪電体膜を
介して互いに対向するように構成したものである。
A semiconductor device according to the present invention has a capacitive element formed by a combination of wiring layers, in which the same wiring layer has two electrically separated comb-shaped electrodes. The side surfaces of the rectangular electrodes face each other with the current-visitor film interposed therebetween.

〔実施例〕〔Example〕

以下に、本発明の実施例について口面を用いて詳細に説
明する。
Hereinafter, embodiments of the present invention will be described in detail using the oral surface.

第1図(a)、 (blは本発明の一実施例の平面図及
びへ二A′断面図である。
FIGS. 1(a) and 1(bl) are a plan view and a sectional view along A' of an embodiment of the present invention.

半導体基板9の表面に形成された絶縁膜1の表面に、公
知の方法によりA4膜等からなる下層電極2t−形成し
、その上に厚さ1.0〜1.5μ惰の層間絶縁膜3t−
被着する。尚、この層間絶縁膜3は容量形成の際に誘電
体となる膜である。次に、上層の電極の−g5全5ヲの
電極2と導通させるための開孔部4t一層間絶縁膜3に
形成する。その後、公知の方法によりht等からなる厚
さ15μ情 程度の上層膜を被着し、くシ状に上層膜を
加工し、独立した上層電極5と、下層電極2と電気的に
接続された上層電極6とを形成する。
A lower electrode 2t made of A4 film or the like is formed on the surface of the insulating film 1 formed on the surface of the semiconductor substrate 9 by a known method, and an interlayer insulating film 3t having a thickness of 1.0 to 1.5 μm is formed thereon. −
to adhere to. Note that this interlayer insulating film 3 is a film that becomes a dielectric when forming a capacitor. Next, an opening 4t is formed in the interlayer insulating film 3 for electrical connection with the -g5 total 5 electrodes 2 of the upper layer electrode. Thereafter, an upper layer film made of HT or the like with a thickness of approximately 15 μm was deposited by a known method, and the upper layer film was processed into a comb shape, and the independent upper layer electrode 5 was electrically connected to the lower layer electrode 2. An upper layer electrode 6 is formed.

尚、独立した上層電極5と、下層電極と′電気的に透通
した上層電極6の対向する仰面部の間隔7は、層間絶縁
膜3の厚さエリも小さくした万が容量値を大きくすると
いう効果は大きくなる。
Incidentally, the distance 7 between the opposing upper surface parts of the independent upper layer electrode 5, the lower layer electrode, and the electrically transparent upper layer electrode 6 increases the capacitance value even if the thickness area of the interlayer insulating film 3 is also reduced. The effect will be greater.

続いて、上層電極5.6の膜厚程の保護用絶縁膜8金被
着する。この絶縁lBI3は、チップ保護膜と容量素子
の誘電体となり、本発明の構造の′fLt素子が光取す
る。
Subsequently, a protective insulating film of 8 gold is deposited to a thickness similar to that of the upper electrode 5.6. This insulating lBI3 becomes a dielectric between the chip protection film and the capacitive element, and the 'fLt element having the structure of the present invention extracts light.

このように構成された本実施例によれば、第1ける縦方
向容量のほかに、独立した上層電極5と下層電極と電気
的に導通した上層電極6間における横方向容量がある。
According to this embodiment configured in this manner, in addition to the first vertical capacitance, there is a lateral capacitance between the upper layer electrode 5 and the upper layer electrode 6 which are electrically connected to the lower layer electrode.

本実施例における容量素子は、上層電極と下層電極のか
さなる面積に比例して容量値が太きくなる従来構造の容
量素子と比較して、上層電極5の側面積が大きくなるよ
うに形成されている為電気力線の拡がり効果が大きい。
The capacitive element in this embodiment is formed so that the lateral area of the upper layer electrode 5 is larger than that of a capacitive element with a conventional structure in which the capacitance value increases in proportion to the combined area of the upper layer electrode and the lower layer electrode. Because of this, the effect of spreading the electric lines of force is large.

従って本実施例における縦方向容量は、同一容量素子面
積を有する従来構造の容量素子のものより大きくなる。
Therefore, the vertical capacitance in this embodiment is larger than that of a capacitive element of the conventional structure having the same capacitive element area.

横方向容量に関しては、独立した上層電極5と下層電極
2と電気的に接続された上層電極6の対向する側面部の
間隔7がパターン形成時の加工精度によって・決定され
るが、最小間隔に形成することができるため横方容量に
大きなものとなる。
Regarding the lateral capacitance, the distance 7 between the opposing side surfaces of the independent upper layer electrode 5 and the upper layer electrode 6 electrically connected to the lower layer electrode 2 is determined by the processing accuracy during pattern formation, but the minimum distance is Since it can be formed, it has a large lateral capacity.

−万、縦方向容量に関しては、容量素子を形成している
誘電体として用いられる層間絶縁膜3に下層配線2と上
層配線5.6の絶縁も兼ねているため、容量素子の容量
値を大きくする為に眉間絶縁膜3を薄くすると配線系の
寄生容量も増加して電気的特性に悪影響を与えてしまう
、よって1層間絶縁膜3を薄くすることに、配線系の寄
生容量が増加するため電気的特性上好ましくない。
- Regarding the vertical capacitance, since the interlayer insulating film 3 used as a dielectric forming the capacitive element also serves as insulation between the lower layer wiring 2 and the upper layer wiring 5.6, the capacitance value of the capacitive element can be increased. Therefore, if the inter-glabellar insulating film 3 is made thinner, the parasitic capacitance of the wiring system will increase, which will adversely affect the electrical characteristics. Unfavorable electrical characteristics.

このように本実施例の容量素子構造によれば、縦方向の
層間絶縁膜3の厚さを変化させずに、横方向の上層電極
構造における、下層電極2と電気的に導通した上層電極
6の側面と独立した上層電極5の側面の対同部の間隔7
を小さくできる為に、縦方向の容量に比較して横方向の
容量を非常に大きくできる。よって、縦方向容量と横方
向容量の合計は、従来構造の平行平板型のものと同一面
積の容量に比較して大きくなる。
As described above, according to the capacitive element structure of this embodiment, the upper layer electrode 6 electrically connected to the lower layer electrode 2 in the horizontal upper layer electrode structure can be formed without changing the thickness of the vertical interlayer insulating film 3. The distance 7 between the side surface of the upper layer electrode 5 and the side surface of the independent upper layer electrode 5
Since the capacity can be made small, the capacity in the horizontal direction can be much larger than the capacity in the vertical direction. Therefore, the total of the vertical capacitance and the lateral capacitance is larger than the capacitance of the parallel plate type of the conventional structure for the same area.

このよりに本実施例によれば、配線容量の寄生容量を増
加させずに大容量の容量素子を少ない面積にて形成でき
、半導体装置に占める容量素子の割合を非常に小さくで
きる。
As a result, according to this embodiment, a large capacitance element can be formed in a small area without increasing the parasitic capacitance of the wiring capacitance, and the proportion of the capacitor element in the semiconductor device can be extremely reduced.

次に、拡散層を利用した3層構造における本発明の実施
例を図面を用いて説明する。
Next, an embodiment of the present invention in a three-layer structure using a diffusion layer will be described with reference to the drawings.

第2図(a)、Φ)は本発明の他の実施例の平面図、及
びB−B’断面図である。
FIG. 2(a), Φ) is a plan view and a BB' sectional view of another embodiment of the present invention.

纂2因(a)、 (b)に示すように半導体基板9上に
反対導電型の不純物を公知の方法により導入し拡散層電
極20を形成する。次に全面に絶縁[1−形成し友のち
中間層!極の一部を拡散層電極20と導通させるための
開孔部4ai絶縁膜1に形成する。次IC%公知の方法
1cよりAt膜からなる中間層電極膜を被着してくし状
に加ニレ、独立した中間層電極24と、拡散層電極20
と電気的に導通した中間層電極25を形成する。
Summary 2 As shown in (a) and (b), impurities of opposite conductivity type are introduced onto the semiconductor substrate 9 by a known method to form the diffusion layer electrode 20. Next, insulate the entire surface [1- Form the intermediate layer! An opening 4ai is formed in the insulating film 1 to make a part of the pole conductive to the diffusion layer electrode 20. Next, by the known method 1c, an intermediate layer electrode film made of an At film is coated and added in a comb shape to form an independent intermediate layer electrode 24 and a diffusion layer electrode 20.
An intermediate layer electrode 25 is formed which is electrically connected to the intermediate layer electrode 25.

次に、厚さ1.0〜1.5μ溪の層間絶縁膜3を被着し
たのち、上層電極と中間層電極25とを電気的に導通さ
せるための開孔部4bt−形成する。その後、公知の方
法により上層膜を厚さ1.5μ鴨程度被着し所望の形状
に加工して上層電極26を形成する。その後厚さ約0.
5μ鴨の保護用絶縁膜8t−被着して本発明構造の容量
素子が完成する。この場合絶縁膜1及び層間絶縁膜3が
誘電体として作用する。
Next, after an interlayer insulating film 3 having a thickness of 1.0 to 1.5 μm is deposited, an opening 4bt is formed for electrically connecting the upper layer electrode and the intermediate layer electrode 25. Thereafter, an upper layer film is deposited to a thickness of about 1.5 .mu.m by a known method and processed into a desired shape to form the upper layer electrode 26. After that, the thickness is about 0.
A protective insulating film 8t having a thickness of 5 μm is deposited to complete the capacitive element having the structure of the present invention. In this case, the insulating film 1 and the interlayer insulating film 3 act as a dielectric.

本実施例によれば、縦形の容量が拡散層電極20と独立
した中間層電極241’&tl、及び中間層電極24と
上層電極26間の両刃によって形成される為に第1図(
a)、 (b)に示した実施例構造よりもさらに大容量
の容量素子を少ない面積に形成することができる。
According to this embodiment, since the vertical capacitance is formed by the intermediate layer electrode 241'&tl independent of the diffusion layer electrode 20, and the double edge between the intermediate layer electrode 24 and the upper layer electrode 26, as shown in FIG.
It is possible to form a capacitive element with a larger capacity in a smaller area than in the embodiment structures shown in a) and (b).

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明し友ように、本発明によれば、上層電極
を電気的に分離されたくし形に形成し、この−万の電極
を下層電極と接続し電荷蓄積部の面積を大きくすること
により小さな面積で大きな容量を持つ容量素子を備えた
半導体装置が得られるので、半導体装置の高密反化、高
集積化に大きな効果がある。
As explained in detail above, according to the present invention, the upper layer electrode is formed into an electrically separated comb shape, and the -10,000 electrodes are connected to the lower layer electrode to increase the area of the charge storage portion. Since a semiconductor device including a capacitive element with a large capacity in a small area can be obtained, it is highly effective in increasing the density and integration of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

IEI図(al、 (blに本発明の一実施例の上面図
及び断面図、第2図(al、 (b)に本発明の他の実
施例の上面図及び断面図、l!3図(a)、Φ)は従来
の容量素子の上面図及び断面図である。 1・・・・・・絶縁膜、2・・・・・・下層電極、3・
・・・・・層間絶縁膜、4.4am 4b・・・・・・
開孔部、5・・・・・・独立し友上層電極、6・・・・
・・上層電極、7・・・・・・間隔、8・・・・・・保
護用絶JIFX、 9・・・・・・半導体基板、15・
・・・・・上層電極、20・・・・・・拡散層電極、2
4・・・・・・独立した中間層電極、25・・・・・・
中間層電極、26・・・・・・上層電極。 代理人 弁理士  内−MW■゛゛ゝ、峯1珊 峯Z回
IEI diagrams (al, (bl) are a top view and a sectional view of one embodiment of the present invention, FIG. 2 (al), (b) are a top view and a sectional view of another embodiment of the present invention, and (l!3) a) and Φ) are a top view and a cross-sectional view of a conventional capacitive element. 1... Insulating film, 2... Lower layer electrode, 3.
・・・・・・Interlayer insulation film, 4.4am 4b・・・・・・
Opening portion, 5...Independent upper layer electrode, 6...
... Upper layer electrode, 7 ... Spacing, 8 ... Protective JIFX, 9 ... Semiconductor substrate, 15.
... Upper layer electrode, 20 ... Diffusion layer electrode, 2
4...Independent intermediate layer electrode, 25...
Intermediate layer electrode, 26... Upper layer electrode. Agent Patent Attorney Nai-MW ■゛゛ゝ, Mine 1 Sanmine Z times

Claims (1)

【特許請求の範囲】[Claims] 多層配線構造を有し配線層の組み合せにより形成された
容量素子を有する半導体装置において、同一配線層が電
気的に分離された2個のくし形電極を形成しかつ該くし
形電極の側面が誘電体膜を介して互いに対向するように
構成されている事を特徴とする半導体装置。
In a semiconductor device having a multilayer wiring structure and having a capacitive element formed by a combination of wiring layers, the same wiring layer forms two electrically separated comb-shaped electrodes, and the side surfaces of the comb-shaped electrodes are dielectric. A semiconductor device characterized in that the semiconductor devices are configured to face each other with body membranes in between.
JP10551485A 1985-05-17 1985-05-17 Semiconductor device Pending JPS61263251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10551485A JPS61263251A (en) 1985-05-17 1985-05-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10551485A JPS61263251A (en) 1985-05-17 1985-05-17 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61263251A true JPS61263251A (en) 1986-11-21

Family

ID=14409709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10551485A Pending JPS61263251A (en) 1985-05-17 1985-05-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61263251A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0905792A3 (en) * 1997-09-30 2000-02-09 Hewlett-Packard Company Stacked-fringe integrated circuit capacitors
US6285070B1 (en) 1995-12-22 2001-09-04 Micron Technology, Inc. Method of forming semiconductor die with integral decoupling capacitor
US6445056B2 (en) 2000-01-05 2002-09-03 Nec Corporation Semiconductor capacitor device
US6563192B1 (en) 1995-12-22 2003-05-13 Micron Technology, Inc. Semiconductor die with integral decoupling capacitor
US6781238B2 (en) 2000-04-03 2004-08-24 Nec Corporation Semiconductor device and method of fabricating the same
US6784050B1 (en) 2000-09-05 2004-08-31 Marvell International Ltd. Fringing capacitor structure
US6974744B1 (en) 2000-09-05 2005-12-13 Marvell International Ltd. Fringing capacitor structure
US6980414B1 (en) 2004-06-16 2005-12-27 Marvell International, Ltd. Capacitor structure in a semiconductor device
JP2006128164A (en) * 2004-10-26 2006-05-18 Nec Micro Systems Ltd Semiconductor device
JP2006245188A (en) * 2005-03-02 2006-09-14 Mitsubishi Electric Corp Composite capacitor
JP2007005828A (en) * 2000-09-14 2007-01-11 Vishay Intertechnology Inc High-precision high-frequency capacitor formed on semiconductor substrate
JP2007208101A (en) * 2006-02-03 2007-08-16 Toshiba Corp Semiconductor device
JP2007258719A (en) * 2006-03-20 2007-10-04 Standard Microsystems Corp Fringe-capacitor using bootstrapped non-metal layer
US7394416B2 (en) 2005-10-21 2008-07-01 Matsushita Electric Industrial Co., Ltd. Analog-digital converter
JP2008235498A (en) * 2007-03-20 2008-10-02 Renesas Technology Corp Semiconductor device
WO2008142857A1 (en) * 2007-05-16 2008-11-27 Panasonic Corporation Semiconductor integrated circuit
JP2009537972A (en) * 2006-05-18 2009-10-29 インターナショナル・ビジネス・マシーンズ・コーポレーション High yield, high density on-chip capacitor design
JP2009537974A (en) * 2006-05-18 2009-10-29 インターナショナル・ビジネス・マシーンズ・コーポレーション Symmetric MIMCAP capacitor design
US7906424B2 (en) 2007-08-01 2011-03-15 Advanced Micro Devices, Inc. Conductor bump method and apparatus
JP2011055015A (en) * 2010-12-16 2011-03-17 Renesas Electronics Corp Semiconductor device
US8314474B2 (en) 2008-07-25 2012-11-20 Ati Technologies Ulc Under bump metallization for on-die capacitor
JP2014053637A (en) * 2013-11-14 2014-03-20 Renesas Electronics Corp Semiconductor device
US8941974B2 (en) 2011-09-09 2015-01-27 Xilinx, Inc. Interdigitated capacitor having digits of varying width
US9136060B2 (en) 2000-09-14 2015-09-15 Vishay-Siliconix Precision high-frequency capacitor formed on semiconductor substrate
US9270247B2 (en) 2013-11-27 2016-02-23 Xilinx, Inc. High quality factor inductive and capacitive circuit structure
US9524964B2 (en) 2014-08-14 2016-12-20 Xilinx, Inc. Capacitor structure in an integrated circuit

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285070B1 (en) 1995-12-22 2001-09-04 Micron Technology, Inc. Method of forming semiconductor die with integral decoupling capacitor
US6563192B1 (en) 1995-12-22 2003-05-13 Micron Technology, Inc. Semiconductor die with integral decoupling capacitor
EP0905792A3 (en) * 1997-09-30 2000-02-09 Hewlett-Packard Company Stacked-fringe integrated circuit capacitors
US6445056B2 (en) 2000-01-05 2002-09-03 Nec Corporation Semiconductor capacitor device
US6781238B2 (en) 2000-04-03 2004-08-24 Nec Corporation Semiconductor device and method of fabricating the same
US6885543B1 (en) 2000-09-05 2005-04-26 Marvell International, Ltd. Fringing capacitor structure
US6784050B1 (en) 2000-09-05 2004-08-31 Marvell International Ltd. Fringing capacitor structure
US6974744B1 (en) 2000-09-05 2005-12-13 Marvell International Ltd. Fringing capacitor structure
US9136060B2 (en) 2000-09-14 2015-09-15 Vishay-Siliconix Precision high-frequency capacitor formed on semiconductor substrate
EP1895568B1 (en) * 2000-09-14 2014-07-16 Vishay Intertechnology, Inc. High-frequency capacitor formed on semiconductor substrate
EP1895569B1 (en) * 2000-09-14 2013-06-12 Vishay Intertechnology, Inc. Precision high-frequency capacitor formed on semiconductor substrate
JP2007005828A (en) * 2000-09-14 2007-01-11 Vishay Intertechnology Inc High-precision high-frequency capacitor formed on semiconductor substrate
US9017427B1 (en) 2001-01-18 2015-04-28 Marvell International Ltd. Method of creating capacitor structure in a semiconductor device
US7578858B1 (en) 2004-06-16 2009-08-25 Marvell International Ltd. Making capacitor structure in a semiconductor device
US7988744B1 (en) 2004-06-16 2011-08-02 Marvell International Ltd. Method of producing capacitor structure in a semiconductor device
US6980414B1 (en) 2004-06-16 2005-12-27 Marvell International, Ltd. Capacitor structure in a semiconductor device
US8537524B1 (en) 2004-06-16 2013-09-17 Marvell International Ltd. Capacitor structure in a semiconductor device
US7116544B1 (en) 2004-06-16 2006-10-03 Marvell International, Ltd. Capacitor structure in a semiconductor device
JP2006128164A (en) * 2004-10-26 2006-05-18 Nec Micro Systems Ltd Semiconductor device
JP2006245188A (en) * 2005-03-02 2006-09-14 Mitsubishi Electric Corp Composite capacitor
JP4689302B2 (en) * 2005-03-02 2011-05-25 三菱電機株式会社 Composite capacitor
US7394416B2 (en) 2005-10-21 2008-07-01 Matsushita Electric Industrial Co., Ltd. Analog-digital converter
JP2007208101A (en) * 2006-02-03 2007-08-16 Toshiba Corp Semiconductor device
JP2007258719A (en) * 2006-03-20 2007-10-04 Standard Microsystems Corp Fringe-capacitor using bootstrapped non-metal layer
JP2009537972A (en) * 2006-05-18 2009-10-29 インターナショナル・ビジネス・マシーンズ・コーポレーション High yield, high density on-chip capacitor design
JP2009537974A (en) * 2006-05-18 2009-10-29 インターナショナル・ビジネス・マシーンズ・コーポレーション Symmetric MIMCAP capacitor design
JP2008235498A (en) * 2007-03-20 2008-10-02 Renesas Technology Corp Semiconductor device
WO2008142857A1 (en) * 2007-05-16 2008-11-27 Panasonic Corporation Semiconductor integrated circuit
US8294266B2 (en) 2007-08-01 2012-10-23 Advanced Micro Devices, Inc. Conductor bump method and apparatus
US7906424B2 (en) 2007-08-01 2011-03-15 Advanced Micro Devices, Inc. Conductor bump method and apparatus
US8314474B2 (en) 2008-07-25 2012-11-20 Ati Technologies Ulc Under bump metallization for on-die capacitor
JP2011055015A (en) * 2010-12-16 2011-03-17 Renesas Electronics Corp Semiconductor device
US8941974B2 (en) 2011-09-09 2015-01-27 Xilinx, Inc. Interdigitated capacitor having digits of varying width
JP2014053637A (en) * 2013-11-14 2014-03-20 Renesas Electronics Corp Semiconductor device
US9270247B2 (en) 2013-11-27 2016-02-23 Xilinx, Inc. High quality factor inductive and capacitive circuit structure
US9524964B2 (en) 2014-08-14 2016-12-20 Xilinx, Inc. Capacitor structure in an integrated circuit

Similar Documents

Publication Publication Date Title
JPS61263251A (en) Semiconductor device
JPS59104156A (en) Multilayer capacitor
JPH0573273B2 (en)
JPH0247862A (en) Semiconductor integrated circuit device
JPS63108763A (en) Semiconductor integrated circuit
JPH02126665A (en) Semiconductor device
JPS62104067A (en) Semiconductor device
JPS59188963A (en) Semiconductor device
JPS58225662A (en) Semiconductor device
JP2954254B2 (en) Dielectric separation substrate
JPS628947B2 (en)
JPS61170057A (en) Vertical type capacitor
JPS6211257A (en) Microwave integrated circuit
JP2959186B2 (en) Method for manufacturing semiconductor device
JPH0546274Y2 (en)
JPH03257856A (en) Semiconductor device
JPS61198660A (en) Mim capacitor of semiconductor ic
JPS5853159U (en) Amorphous semiconductor device
JPH01157563A (en) Semiconductor device
JPS56138946A (en) Semiconductor device
JPH03138962A (en) Semiconductor integrated circuit
JPS6381842A (en) Manufature of semiconductor device
JPS63312661A (en) Package for semiconductor device
JPS58159344A (en) Semiconductor integrated circuit
JPH06120368A (en) Semiconductor package and semiconductor device using that