JPS6126267A - Bidirectional zener diode - Google Patents

Bidirectional zener diode

Info

Publication number
JPS6126267A
JPS6126267A JP14823284A JP14823284A JPS6126267A JP S6126267 A JPS6126267 A JP S6126267A JP 14823284 A JP14823284 A JP 14823284A JP 14823284 A JP14823284 A JP 14823284A JP S6126267 A JPS6126267 A JP S6126267A
Authority
JP
Japan
Prior art keywords
layer
diffusion layer
junction
semiconductor substrate
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14823284A
Other languages
Japanese (ja)
Inventor
Masayoshi Akiyama
秋山 政由
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP14823284A priority Critical patent/JPS6126267A/en
Publication of JPS6126267A publication Critical patent/JPS6126267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/866Zener diodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To make the titled element low in withstand voltage and strong against surge by a method wherein P-N junction layers to generate breakdown are made of diffused layers, and further breakdown is generated in the epitaxial layer on the substrate. CONSTITUTION:An N type epitaxial layer 22 is grown on the P type semiconductor substrate 21, further a P type diffused layer 23 is formed by diffusion in the periphery of the layer 22 down to a depth of reaching the substrate 21. An N type diffused layer 24 is formed in the layer 22 in the neighborhood of its center, and an N type diffused layer 25 is formed in the periphery of the layer 22. Moreover, in the layer 24, a P type P-N junction diffused layer 26 is formed by diffusion more shallowly than the layer 24; then, a P-N junction diffused layer 27 is formed over three layers 25, 22, and 23 more shallowly than the layer 25. The specific resistance can be reduced by such a diffuse-formation of the P-N junction layers for generation of breakdown, and a low withstand voltage can be obtained. Since breakdown occurs in the layer 22, this element can be made strong against surge.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、双方向性ツェナーダイオードに関する。[Detailed description of the invention] <Industrial application field> The present invention relates to bidirectional Zener diodes.

〈従来の技術〉 従来、双方向性ツェナーダイオードは、第3図に示され
るように、通常の単方向性ツェナーダイオードの半導体
ペレット1,1を2つ背中合わせにしてガラス管2内に
デュメット線3,3にて封入して製作するか、あるいは
、第4図に示されるように、ウェーハ両面に同一の拡散
深さ、濃度、即ち、同一のパターンの拡散層を形成して
双方向性ツェナーダイオードの半導体ペレット5を製遺
し、この半導体ベレッF5をガラス管内にデュメット線
で封入して製作している。
<Prior Art> Conventionally, a bidirectional Zener diode has been manufactured by placing two semiconductor pellets 1, 1 of a normal unidirectional Zener diode back to back and inserting a dumet wire 3 into a glass tube 2, as shown in FIG. , 3, or by forming diffusion layers with the same diffusion depth and concentration, that is, the same pattern, on both sides of the wafer, as shown in FIG. The semiconductor pellet F5 is manufactured by sealing the semiconductor pellet F5 in a glass tube with a dumet wire.

ところが、前者は1つの双方向性ツェナーダイオードを
製作するのに2つの半導体ペレットを必要とするために
、製造コストが高くなる等の難点があり、一方、後者は
ウェーハの両面に同一のパターンを精度よく形成しなけ
ればならず、特殊な製造装置および工程を要する等の難
点があった。
However, the former method requires two semiconductor pellets to manufacture one bidirectional Zener diode, resulting in high manufacturing costs, while the latter method requires the same pattern on both sides of the wafer. There are drawbacks such as the need to form with high precision and the need for special manufacturing equipment and processes.

なお、第4図において4は半導体基板、6は酸化膜、7
はPN接合用拡散層、8は電極用メタル、9はバンプで
ある。
In addition, in FIG. 4, 4 is a semiconductor substrate, 6 is an oxide film, and 7 is a semiconductor substrate.
8 is a diffusion layer for a PN junction, 8 is a metal for an electrode, and 9 is a bump.

このような従来の技術的課題を解決するため、本件発明
者は、昭和59年6月15日提出の特許願(1)におい
て、第5図に示されるように半導体基板11上に、該半
導体基板11と異なる導電型のエピタキシャル層12を
形成し、このエピタキシャル層12の周縁部に半導体基
板11と同導電型の拡散層13を半導体基板11に至る
深さまで形成し、エピタキシャル層12上に半導体基板
11と同導電型の第1PN接合用拡散層14を形成する
とともに、エピタキシャル層12と拡散層13の両層に
またがって半導体基板11と同導電型の第2PN接合用
拡散層15を形成してなる双方向性ツェナーダイオード
を提案し、さらに、昭和59年6月15日提出の特許願
(2)において、第6図に示されるように半導体基板1
1上に該半導体基板11と同導電型のエピタキシャル層
12を形成し、このエピタキシャル層12上に半導体基
板11と異なる導電型の第1拡散層16を形成し、この
第1拡散層16上に、該第1拡散層16との間でPN接
合を形成するための第2拡散層17を形成するとともに
、エピタキシャル層12と第1拡散層16との両層にま
たがって第1拡散層16との間でPN接合を形成するた
めの第3拡散層18を形成してなる双方向性ツェナーダ
イオードを提案している。
In order to solve such conventional technical problems, the inventor of the present invention, in the patent application (1) filed on June 15, 1980, proposed that the semiconductor An epitaxial layer 12 of a conductivity type different from that of the substrate 11 is formed, a diffusion layer 13 of the same conductivity type as the semiconductor substrate 11 is formed at the peripheral edge of the epitaxial layer 12 to a depth reaching the semiconductor substrate 11, and a semiconductor layer 12 is formed on the epitaxial layer 12. A first PN junction diffusion layer 14 of the same conductivity type as the substrate 11 is formed, and a second PN junction diffusion layer 15 of the same conductivity type as the semiconductor substrate 11 is formed spanning both the epitaxial layer 12 and the diffusion layer 13. In addition, in patent application (2) filed on June 15, 1980, a semiconductor substrate 1 is proposed as shown in FIG.
1, an epitaxial layer 12 of the same conductivity type as the semiconductor substrate 11 is formed, a first diffusion layer 16 of a conductivity type different from that of the semiconductor substrate 11 is formed on the epitaxial layer 12, and a first diffusion layer 16 of a conductivity type different from that of the semiconductor substrate 11 is formed on the first diffusion layer 16. , a second diffusion layer 17 is formed to form a PN junction with the first diffusion layer 16, and a second diffusion layer 17 is formed across both the epitaxial layer 12 and the first diffusion layer 16. A bidirectional Zener diode is proposed in which a third diffusion layer 18 is formed to form a PN junction between the two.

ところが、昭和59年6月15日提出の特許願(1)で
提案した双方向性ツェナーダイオードでは、エピタキシ
ャル成長によって形成されるエピタキシャル層12の濃
度、したがって比抵抗に限界があり、このため、低い耐
圧の双方向性ツェナーダイオードを得ることが困難であ
り、一方、昭和59年6月15日提出の特許願(2)で
提案した双方向性ツェナーダイオードでは、ブレークダ
ウンが表面近辺で起こり易しサージに弱いという欠点が
ある。
However, in the bidirectional Zener diode proposed in patent application (1) filed on June 15, 1980, there is a limit to the concentration of the epitaxial layer 12 formed by epitaxial growth, and therefore to the specific resistance. On the other hand, in the bidirectional Zener diode proposed in patent application (2) filed on June 15, 1980, breakdown tends to occur near the surface and surges occur. It has the disadvantage of being weak against

〈発明が解決しようとする問題点〉 本発明は、上述の点に鑑みて成されたものであって、特
殊な製造装置および製造工程を要せず、低い耐圧で、し
かも、サージに強い安定した双方向性ツェナーダイオー
ドを得ることを目的とする。
<Problems to be Solved by the Invention> The present invention has been made in view of the above-mentioned points. The purpose of this study is to obtain a bidirectional Zener diode.

〈問題点を解決するための手段〉 本発明は、上述の目的を達成するために、半導体基板上
に、該半導体基板と異なる導電型のエピタキシャル層が
形成され、該エピタキシャル層の周縁部に前記半導体基
板と同導電型の拡散層が、半導体基板に至る深さまで形
成され、前記エピタキシャル層には、半導体基板と異な
る導電型の第1拡散層が形成されるとともに、前記拡散
層の近傍に半導体基板と異なる導電型の第2拡散層が形
成され、前記第1拡散層に、半導体基板と同導電型の第
1PN接合用拡散層が、該第1拡散層よりも浅く形成さ
れ、前記第2拡散層、エピタキシャル層および前記拡散
層の3層にまたがって半導体基板と同導電型の第2PN
接合用拡散層が、該第2拡散層よりも浅く形成されてい
る。
<Means for Solving the Problems> In order to achieve the above-mentioned object, the present invention provides that an epitaxial layer having a conductivity type different from that of the semiconductor substrate is formed on a semiconductor substrate, and the epitaxial layer is formed on the peripheral edge of the epitaxial layer. A diffusion layer of the same conductivity type as the semiconductor substrate is formed to a depth reaching the semiconductor substrate, and a first diffusion layer of a conductivity type different from that of the semiconductor substrate is formed in the epitaxial layer, and a semiconductor layer is formed in the vicinity of the diffusion layer. A second diffusion layer of a conductivity type different from that of the substrate is formed, a first PN junction diffusion layer of the same conductivity type as the semiconductor substrate is formed shallower than the first diffusion layer, and the second diffusion layer has a conductivity type different from that of the substrate. A second PN of the same conductivity type as the semiconductor substrate is spread over the three layers of the diffusion layer, the epitaxial layer, and the diffusion layer.
A bonding diffusion layer is formed shallower than the second diffusion layer.

〈実施例〉 以下、図面によって本発明の実施例について詳細に説明
する。第1図は本発明の一実施例の構造断面図である。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a structural sectional view of one embodiment of the present invention.

この実施例の双方向性ツェナーダイオ−Vの半導体ベレ
ット20は、P型のシリコン基板のような半導体基板2
1上に、この半導体基板21と異なる導電型、即ちN型
のエピタキシャル層22を成長させ、さらに、エピタキ
シャル層22の周縁部に半導体基板21と同導電型であ
るP型の拡散層23が半導体基板21に達する深さまで
拡散形成される。
The semiconductor pellet 20 of the bidirectional Zener diode-V in this embodiment is a semiconductor substrate 2 such as a P-type silicon substrate.
1, an epitaxial layer 22 of a conductivity type different from that of the semiconductor substrate 21, that is, an N type, is grown, and a diffusion layer 23 of a P type, which is of the same conductivity type as the semiconductor substrate 21, is grown on the periphery of the epitaxial layer 22. It is formed by diffusion to a depth that reaches the substrate 21.

エピタキシャル層22には、また、その中央付近に半導
体基板21と異なる導電型であるN型の第1拡散層24
が形成されるとともに、エピタキシャル層22の周縁部
の前記拡散層23の近傍に半導体基板21と異なる導電
型であるN型の第2拡散層25が形成される。第1拡散
層24には、半導体基板21と同導電型であるP型の第
1PN接合用拡散層26が、該第1拡散層24よりも浅
く拡散形成され、第2拡散層25、エピタキシャル層2
2および拡散層23の3層にまたがって半導体基板21
と同導電型であるP型の第2PN接合用拡散層27が、
第2拡散層25よりも浅く形成される。
The epitaxial layer 22 also has an N-type first diffusion layer 24 having a conductivity type different from that of the semiconductor substrate 21 near the center thereof.
At the same time, an N-type second diffusion layer 25 having a conductivity type different from that of the semiconductor substrate 21 is formed near the diffusion layer 23 at the peripheral edge of the epitaxial layer 22 . In the first diffusion layer 24, a P-type first PN junction diffusion layer 26 having the same conductivity type as the semiconductor substrate 21 is diffused and formed to be shallower than the first diffusion layer 24, and a second diffusion layer 25, an epitaxial layer 2
The semiconductor substrate 21 is spread over three layers: 2 and the diffusion layer 23.
The second PN junction diffusion layer 27 of P type having the same conductivity type as
It is formed shallower than the second diffusion layer 25.

第1PN接合用拡散層26とエピタキシャル層22との
間のPN接合および第2PN接合用拡散層27とエピタ
キシャル層22との間のPN接合の濃度勾配は、第1P
N接合用拡散層26と第1拡散層24との間のPN接合
および第2PN接会用拡散層27と第2拡散層25との
間のPN接合の濃度勾配よりも大トくシている。さらに
、半導体基板21とエピタキシャル層22との間のPN
接合および拡散層23とエピタキシャル層22との間の
PN接合の濃度勾配は、第1PN接合用拡散層26と第
1拡散層24との間のPN接合および第2PN接合用拡
散層27と第2拡散層25との間のPN接合の濃度勾配
よりも大キ<シている。
The concentration gradient of the PN junction between the first PN junction diffusion layer 26 and the epitaxial layer 22 and the PN junction between the second PN junction diffusion layer 27 and the epitaxial layer 22 is
It is higher than the concentration gradient of the PN junction between the N-junction diffusion layer 26 and the first diffusion layer 24 and the PN junction between the second PN-junction diffusion layer 27 and the second diffusion layer 25. . Furthermore, the PN between the semiconductor substrate 21 and the epitaxial layer 22 is
The concentration gradient of the PN junction between the junction and diffusion layer 23 and the epitaxial layer 22 is the same as that of the PN junction between the first PN junction diffusion layer 26 and the first diffusion layer 24 and between the second PN junction diffusion layer 27 and the second PN junction. It is larger than the concentration gradient of the PN junction with the diffusion layer 25.

これは、後述のように第1PN接合用拡散層2°6と第
1拡散層24との間および第2PN接合用拡散層27と
第2拡散層25との間でそれぞれブレークダウンを生じ
させるためである。なお、28は酸化膜、29.30は
電極用メタル、31はバンブである。
This is because breakdown occurs between the first PN junction diffusion layer 2°6 and the first diffusion layer 24 and between the second PN junction diffusion layer 27 and the second diffusion layer 25, as described later. It is. Note that 28 is an oxide film, 29.30 is an electrode metal, and 31 is a bump.

上記構成を有することにより、バンブ31から電極用メ
タル30へ電流が流れるときには、第1PN接合用拡散
層26と第1拡散層24とは順方向バイア、又となり、
第2拡散層25と第2PN接合用拡散層27とは逆方向
バイアスとなり、ブレークダウンを生じる。また、電極
用メタル30からバンプ31へ電流が流れるときには、
第2PN接合用拡散層27と第2拡散層25は順方向バ
イアスとなり、第1拡散層24と第1PN接合用拡散層
26とは逆方向バイアスとな1)、ブレークダウンを生
じる。
With the above configuration, when a current flows from the bump 31 to the electrode metal 30, the first PN junction diffusion layer 26 and the first diffusion layer 24 function as a forward via,
The second diffusion layer 25 and the second PN junction diffusion layer 27 are biased in the opposite direction, causing breakdown. Furthermore, when current flows from the electrode metal 30 to the bump 31,
The second PN junction diffusion layer 27 and the second diffusion layer 25 are forward biased, and the first diffusion layer 24 and the first PN junction diffusion layer 26 are reverse biased (1), causing breakdown.

このように本発明の双方向性ツェナーダイオードは、P
N接合を形成する第1.第2拡散層24゜25が拡散形
Ii、されているので、第5図で図示の双方向性ツェナ
ーダイオードのエピタキシャル層12と異なり、第1I
第2拡散層24.25の比抵抗を低くでき、これによっ
て低い耐圧の双方向性ツェナーダイオードを得ることが
可能となる。また、本発明の双方向性ツェナーダイオ−
目よ、第6図で図示の双方向性ツェナーダイオードと異
なリブレークダウンは、エピタキシャル層22の内部で
生じるので、サージに強い安定した双方向性ツェナーダ
イオ−Vを得ることが可能となる。
Thus, the bidirectional Zener diode of the present invention has P
The first step is to form an N junction. Since the second diffusion layers 24 and 25 are of the diffusion type Ii, unlike the epitaxial layer 12 of the bidirectional Zener diode shown in FIG.
The resistivity of the second diffusion layers 24 and 25 can be lowered, thereby making it possible to obtain a bidirectional Zener diode with a low breakdown voltage. Moreover, the bidirectional Zener diode of the present invention
Note that unlike the bidirectional Zener diode shown in FIG. 6, the rebreakdown occurs inside the epitaxial layer 22, making it possible to obtain a stable bidirectional Zener diode V that is strong against surges.

第2図は半導体ペレッ)20の製造手順を説明するため
の断面図である。まず、P型の半導体基板21上にN型
のエピタキシャル層22を成長させ、その表面に酸化膜
28を形成する。次に7オFエツチングによって第2図
(A)に示されるように、エピタキシャル層22の周縁
部に拡散窓を形成する。この拡散窓からP型の拡散層2
3を半導体基板21に至る深さまで拡散形成し、第2図
(B)に示されるように再び酸化膜28を形成する。
FIG. 2 is a sectional view for explaining the manufacturing procedure of the semiconductor pellet 20. First, an N-type epitaxial layer 22 is grown on a P-type semiconductor substrate 21, and an oxide film 28 is formed on its surface. Next, a diffusion window is formed at the periphery of the epitaxial layer 22 by 7-off etching, as shown in FIG. 2(A). From this diffusion window, the P-type diffusion layer 2
3 is diffused to a depth reaching the semiconductor substrate 21, and an oxide film 28 is again formed as shown in FIG. 2(B).

さらに、第2図(C)に示されるように7オFエツチン
グによって第1.第2拡散層24.25の形成領域に対
応する箇所に拡散窓を形成する。これ、らの拡散窓から
N型の第1.第2拡散層24.25を拡散形成し、第2
図(I))に示されるように再び酸化膜28を形成する
。このように第1.第2拡散層24.25を同時に拡散
形成するので、拡散濃度および深さ等を同一にすること
が可能である。
Furthermore, as shown in FIG. 2(C), the first . Diffusion windows are formed at locations corresponding to the formation regions of the second diffusion layers 24 and 25. From these diffusion windows, the N-type first . A second diffusion layer 24, 25 is formed by diffusion, and a second diffusion layer 24, 25 is formed by diffusion.
As shown in Figure (I), an oxide film 28 is formed again. In this way, the first. Since the second diffusion layers 24 and 25 are simultaneously formed by diffusion, it is possible to make the diffusion concentration, depth, etc. the same.

その後、第2図(E)に示されるようにフォトエツチン
グによって、第1.第2PN接合用拡散層26.27の
形成領域に対応する箇所に拡散窓を形成する。これらの
拡散窓からP型の第1.第2PN接合用拡散層26.2
7を第2図(F)に示されるように第1.第2拡散層2
4.25よりも浅くそれぞれ拡散形成する。この実施例
では、第1.第2PN接合用拡散層26.2’7も同時
に拡散形成するので、拡散濃度、深さを同一にすること
が可能である。その後、必要に応じてパシベーション膜
を形成し、さらに、電極部分の窓開けを行ない、電極用
メタル29.30およびバンプ31を形成して第2図(
G)に示されるように半導体ペレット20が製造される
Thereafter, as shown in FIG. 2(E), the first. A diffusion window is formed at a location corresponding to the formation region of the second PN junction diffusion layer 26,27. From these diffusion windows, a P-type first . Second PN junction diffusion layer 26.2
7 as shown in FIG. 2(F). Second diffusion layer 2
4.25, each is formed by diffusion. In this example, the first. Since the second PN junction diffusion layer 26.2'7 is also formed by diffusion at the same time, it is possible to make the diffusion concentration and depth the same. Thereafter, a passivation film is formed as necessary, and a window is opened in the electrode portion, and electrode metals 29 and 30 and bumps 31 are formed, as shown in FIG.
A semiconductor pellet 20 is manufactured as shown in G).

このような構成の半導体ペレッ)20を通常の半導体ベ
レットと同様にデエメット線とともに、ガラス管内に封
入することにより双方向性ツェナーダイオーYが得られ
る。
A bidirectional Zener diode Y can be obtained by enclosing the semiconductor pellet (20) having such a structure in a glass tube together with a Demet wire in the same way as a normal semiconductor pellet.

このように本発明の双方向性ツェナーダイオ−IF 1
士、坑3MでM示の番央例の上)1こ半道儂ペレット1
,1を2つ用いる必要がなく、さらに、第4図で図示の
従来れのように特別の製造工程や装置を要せず、通常の
半導体ペレットと同様な工程で製造でき、製造コストを
低減することが可能となる。また、第5図で図示の双方
向性ツェナーダイオードと異なり、ブレークダウンを生
じさせるためのPN接合層は、拡散形成されているので
、比抵抗を低くすることができ、これによって低い耐圧
の双方向性ツェナーダ・jオードを得ることが可能とな
る。さらに、第6図で図示の双方向性ツェナーダイオー
ドと異なり、ブレークダウンは、エピタキシャル層22
の内部で生じるので、サージに強い安定した双方向性ツ
ェナーダイオードを得ることが可能となる。
In this way, the bidirectional Zener diode-IF 1 of the present invention
(above example) 1 kohan dome pellet 1
, 1 does not need to be used, and furthermore, unlike the conventional method shown in FIG. 4, there is no need for special manufacturing processes or equipment, and it can be manufactured in the same process as ordinary semiconductor pellets, reducing manufacturing costs. It becomes possible to do so. Furthermore, unlike the bidirectional Zener diode shown in FIG. It becomes possible to obtain a tropic Zenerda j-ode. Furthermore, unlike the bidirectional Zener diode illustrated in FIG.
Since this occurs internally, it is possible to obtain a stable bidirectional Zener diode that is resistant to surges.

〈発明の効果〉 以上のように本発明によれば、半導体基板上に、該半導
体基板と異なる導電型のエピタキシャル層が形成され、
該エピタキシャル層の周縁部に前記半導体基板と同導電
型の拡散層が、半導体基板に至る深さまで形成され、前
記エピタキシャル層には、半導体基板と異なる導電型の
第1拡散層が形成されるとともに、前記拡散層の近傍に
半導体基板と異なる導電型の第2拡散層が形成され、前
記第1拡散層に、半導体基板と同導電型の第1PN接合
用拡散層が、該第1拡散層よりも浅く形成され、前記第
2拡散層、エピタキシャル層および前記拡散層の3層に
またがって半導体基板と同導電型の第2PN接合用拡散
層が、該第2拡散層よりも浅く形成されたので、特殊な
製造装置および製造工程を要せず、低い耐圧で、しかも
、サージに強い安定した双方向性ツェナーダイオードを
得ることが可能となる。
<Effects of the Invention> As described above, according to the present invention, an epitaxial layer of a conductivity type different from that of the semiconductor substrate is formed on the semiconductor substrate,
A diffusion layer of the same conductivity type as the semiconductor substrate is formed at a peripheral portion of the epitaxial layer to a depth reaching the semiconductor substrate, and a first diffusion layer of a conductivity type different from that of the semiconductor substrate is formed in the epitaxial layer. , a second diffusion layer of a conductivity type different from that of the semiconductor substrate is formed in the vicinity of the diffusion layer, and a first PN junction diffusion layer of the same conductivity type as the semiconductor substrate is formed in the first diffusion layer. A second PN junction diffusion layer of the same conductivity type as the semiconductor substrate is formed to be shallower than the second diffusion layer, spanning the three layers of the second diffusion layer, the epitaxial layer, and the diffusion layer. Therefore, it is possible to obtain a stable bidirectional Zener diode that has a low breakdown voltage and is resistant to surges without requiring any special manufacturing equipment or manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構造断面図、第2図は第1
図の半導体ペレットの製造手順を説明するための断面図
、第3図は従来例の簡略化した断面図、第4図は他の従
来例の半導体ペレットの構造断面図、第5図は本件発明
者が先に提案した半導体ペレットの構造断面図、第6図
は本件発明者が先に提案した他の半導体ペレットの構造
断面図である。 20・・・半導体ペレット、21・・・半導体基板、2
2・・・エピタキシャル層、23・・・拡散層、24,
25・・・第1.第2拡散層、26.27・・・第1.
第2PN接合用拡散層。
FIG. 1 is a structural sectional view of one embodiment of the present invention, and FIG.
3 is a simplified sectional view of a conventional example, FIG. 4 is a structural sectional view of another conventional semiconductor pellet, and FIG. 5 is a sectional view of the present invention. FIG. 6 is a cross-sectional view of the structure of another semiconductor pellet previously proposed by the inventor of the present invention. 20... Semiconductor pellet, 21... Semiconductor substrate, 2
2... epitaxial layer, 23... diffusion layer, 24,
25... 1st. 2nd diffusion layer, 26.27... 1st.
Diffusion layer for second PN junction.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に、該半導体基板と異なる導電型の
エピタキシャル層が形成され、該エピタキシャル層の周
縁部に前記半導体基板と同導電型の拡散層が、半導体基
板に至る深さまで形成され、前記エピタキシャル層には
、半導体基板と異なる導電型の第1拡散層が形成される
とともに、前記拡散層の近傍に半導体基板と異なる導電
型の第2拡散層が形成され、前記第1拡散層に、半導体
基板と同導電型の第1PN接合用拡散層が、該第1拡散
層よりも浅く形成され、前記第2拡散層、エピタキシャ
ル層および前記拡散層の3層にまたがって半導体基板と
同導電型の第2PN接合用拡散層が、該第2拡散層より
も浅く形成されてなる双方向性ツェナーダイオード。
(1) An epitaxial layer having a conductivity type different from that of the semiconductor substrate is formed on a semiconductor substrate, and a diffusion layer having the same conductivity type as the semiconductor substrate is formed at the peripheral edge of the epitaxial layer to a depth reaching the semiconductor substrate, A first diffusion layer having a conductivity type different from that of the semiconductor substrate is formed in the epitaxial layer, and a second diffusion layer having a conductivity type different from that of the semiconductor substrate is formed near the diffusion layer. , a first PN junction diffusion layer having the same conductivity type as the semiconductor substrate is formed shallower than the first diffusion layer, and extends over three layers, the second diffusion layer, the epitaxial layer, and the diffusion layer, and has the same conductivity type as the semiconductor substrate. A bidirectional Zener diode in which a second PN junction diffusion layer of the type is formed shallower than the second diffusion layer.
JP14823284A 1984-07-16 1984-07-16 Bidirectional zener diode Pending JPS6126267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14823284A JPS6126267A (en) 1984-07-16 1984-07-16 Bidirectional zener diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14823284A JPS6126267A (en) 1984-07-16 1984-07-16 Bidirectional zener diode

Publications (1)

Publication Number Publication Date
JPS6126267A true JPS6126267A (en) 1986-02-05

Family

ID=15448217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14823284A Pending JPS6126267A (en) 1984-07-16 1984-07-16 Bidirectional zener diode

Country Status (1)

Country Link
JP (1) JPS6126267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457881A (en) * 1987-05-23 1989-03-06 Thomson Brandt Gmbh Automatic switching circuit device for regulating speed of phase control circuit
US5880511A (en) * 1995-06-30 1999-03-09 Semtech Corporation Low-voltage punch-through transient suppressor employing a dual-base structure
WO2006022287A1 (en) * 2004-08-27 2006-03-02 Matsushita Electric Industrial Co., Ltd. Semiconductor device for surge protection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326684A (en) * 1976-08-25 1978-03-11 Hitachi Ltd Two-way zener diode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326684A (en) * 1976-08-25 1978-03-11 Hitachi Ltd Two-way zener diode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457881A (en) * 1987-05-23 1989-03-06 Thomson Brandt Gmbh Automatic switching circuit device for regulating speed of phase control circuit
US5880511A (en) * 1995-06-30 1999-03-09 Semtech Corporation Low-voltage punch-through transient suppressor employing a dual-base structure
WO2006022287A1 (en) * 2004-08-27 2006-03-02 Matsushita Electric Industrial Co., Ltd. Semiconductor device for surge protection
KR100898655B1 (en) 2004-08-27 2009-05-22 파나소닉 주식회사 Semiconductor device for surge protection
US8004041B2 (en) 2004-08-27 2011-08-23 Panasonic Corporation Semiconductor device for surge protection

Similar Documents

Publication Publication Date Title
US20140367695A1 (en) Trench high electron mobility transistor device
US4899199A (en) Schottky diode with titanium or like layer contacting the dielectric layer
US4524376A (en) Corrugated semiconductor device
JPH02137368A (en) Semiconductor rectifier
JPS6126267A (en) Bidirectional zener diode
JPS613469A (en) Bi-directional zener diode
JP2010050315A (en) Schottky barrier diode
JP2003338620A (en) Semiconductor device and manufacturing method therefor
JP2002237605A (en) Semiconductor element
JPH02105465A (en) Schottky barrier semiconductor device
JPS613468A (en) Bi-directional zener diode
JPH03276762A (en) Schottky barrier semiconductor device
JPS58125875A (en) Constant voltage diode
JP2817307B2 (en) Semiconductor protection element
JPS5913378A (en) Zener diode
JPS58155769A (en) Semiconductor rectifier diode
JP2002246611A (en) Semiconductor element
JPS5925280A (en) Photo input mos transistor
JP3653969B2 (en) Manufacturing method of Schottky barrier diode
JPH07321347A (en) Manufacture of semiconductor device containing high-concentration p-n junction plane
JPS60123062A (en) Manufacture of semiconductor integrated circuit
JPH0855999A (en) Semiconductor device
JPS60219776A (en) Series diode
JPH0317228B2 (en)
JPH03248466A (en) Schottky barrier semiconductor device