JPS61241710A - Method for forming very small lens at end face of optical fiber - Google Patents

Method for forming very small lens at end face of optical fiber

Info

Publication number
JPS61241710A
JPS61241710A JP60083739A JP8373985A JPS61241710A JP S61241710 A JPS61241710 A JP S61241710A JP 60083739 A JP60083739 A JP 60083739A JP 8373985 A JP8373985 A JP 8373985A JP S61241710 A JPS61241710 A JP S61241710A
Authority
JP
Japan
Prior art keywords
optical fiber
section
face
heating
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60083739A
Other languages
Japanese (ja)
Inventor
Satoshi Ishizuka
石塚 訓
Kazuo Toda
戸田 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60083739A priority Critical patent/JPS61241710A/en
Publication of JPS61241710A publication Critical patent/JPS61241710A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily form a very small lens at the end face of an optical fiber and, at the same time, to accurately align the optical fiber, by making it sufficient to prepare two optical fiber of the same kind. CONSTITUTION:A wedge-shaped tapered section 3 is formed at the end section of an optical fiber 1 with an end face 2 perpendicular to its axis and then the end section is heated and melted so that a circular cross section can be formed at the end section. Then a manufactured optical fiber 10 having an elliptical cross section at the end part of its core layer and another optical fiber 11 of the same kind is put between electrodes 6 and 7 for electrospark heating, with the optical fibers 10 and 11 being faced to each other, and electrospark heating 12 is performed. As the discharging current is gradually increased, a projected section 13 of the core having a curved shape is obtained at the end face of each optical fiber 10 and 11. Then the optical fibers 10 and 11 are brought closer to each other so that the projected sections 13 can be contacted with each other on the axis 14 of the electrodes 6 and 7, and the electrospark heating 15 is again performed. While the heating 15 is performed, the optical fibers 10 and 11 are separated from each other and, when the core projected parts 16 have cone-like shapes, the electrosparking heating is stopped. When the electrospark heating 17 is again performed and the cone-shaped core part is melted, a very small lens 18 having an elliptical cross section is formed at the end face of the optical fiber 10 by surface tension.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信等の光信号伝送に用いられる半導体レ
ーザと光ファイバとの結合装置における光ファイバ端面
微小レンズの形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming a microlens on an end face of an optical fiber in a coupling device for a semiconductor laser and an optical fiber used for optical signal transmission such as optical communication.

従来の技術 光通信等の光信号伝送システムにおける半導体レーザと
光ファイバとの結合部の結合効率は、伝送系の伝送距離
を決定する最も大きな要因の一つであるが、ただ単に半
導体レーザと光ファイバとを近接させただけでは高い結
合効率が得られない。
Conventional technology The coupling efficiency of the coupling part between a semiconductor laser and an optical fiber in an optical signal transmission system such as optical communication is one of the biggest factors that determines the transmission distance of a transmission system. High coupling efficiency cannot be obtained simply by placing the fibers in close proximity.

時にコア径の微小な単一モード光ファイバの場合は約1
0%程度しか得られない。その上、半導体レーザからの
出射光が近接した光ファイバの端面で一部反射し、再び
半導体レーザに帰還すると、半導体レーザの発振特性の
不安定化や雑音増加をひき起す原因となる。
In the case of a single mode optical fiber with a small core diameter, it is approximately 1
Only about 0% can be obtained. Moreover, if the light emitted from the semiconductor laser is partially reflected by the end face of a nearby optical fiber and returns to the semiconductor laser again, this causes instability of the oscillation characteristics of the semiconductor laser and an increase in noise.

これらの問題を解決するために、一般的に、半導体レー
ザと光ファイバとの間にレンズ系を挿入し、半導体レー
ザから出射する光ビーム?コントロールし、高結合効率
化を図るとAもに、半導体レーザに近接する側のレンズ
の面を曲面とし、半導体レーザに帰還する反射光を防止
する方法がとられる。具体的には、(1)集束形ロッド
レンズや球レンズを使用し半導体レーザからの出射光を
集束して光ファイバに結合させる方法。(2) 2種類
以上のレンズを組合せて、初段のレンズで半導体レーザ
からの出射光の広がりをおさえ、次段のレンズで集束し
て光ファイバに結合する方法、(3)微小な球面レンズ
や円柱状のレンズを光ファイバ端面に近接または一体化
した方法等がある。
In order to solve these problems, generally a lens system is inserted between the semiconductor laser and the optical fiber, and the light beam emitted from the semiconductor laser? In order to achieve high coupling efficiency through control, method A uses a method in which the surface of the lens close to the semiconductor laser is curved to prevent reflected light from returning to the semiconductor laser. Specifically, (1) a method in which a focusing rod lens or a ball lens is used to focus the emitted light from a semiconductor laser and couple it to an optical fiber. (2) A method in which two or more types of lenses are combined, the first stage lens suppresses the spread of the emitted light from the semiconductor laser, and the second stage lens focuses it and couples it to an optical fiber; (3) A method using a microscopic spherical lens or There is a method in which a cylindrical lens is placed close to or integrated with the end face of an optical fiber.

光ファイバ端面に微小レンズを形成する方法として従来
は、例えば第2図のような方法がとられている。
Conventionally, a method as shown in FIG. 2, for example, has been used to form a microlens on the end face of an optical fiber.

すなわち、放電加熱溶融用の電極6及び7の間に光ファ
イバ11を配置し、この光ファイバ11とは別に直径3
0〜60μm程度の石英ロッド19を用意し、光ファイ
バ11と石英ロッド19との軸を合せた後、電極6及び
7間の放電による加熱溶融で石英ロッド19の一部を光
ファイバ11の端面に融着し、再び放電加熱を行ない微
小レンズを形成するものである。
That is, an optical fiber 11 is arranged between electrodes 6 and 7 for discharge heating and melting, and a diameter 3
A quartz rod 19 with a diameter of about 0 to 60 μm is prepared, and after aligning the axes of the optical fiber 11 and the quartz rod 19, a part of the quartz rod 19 is heated and melted by electric discharge between the electrodes 6 and 7, so that a part of the quartz rod 19 is attached to the end surface of the optical fiber 11. The microlens is then fused to the glass and subjected to discharge heating again to form a microlens.

発明が解決しようとする問題点 しかし、このような方法では、光7アイパ3とは別に石
英ロッド4を準備する必要があシ、その上、石英ロッド
4の直径が30〜50μmと微細なため取扱いがむずか
しい。又、モニタ光を用いて光ファイバ3と石英ロッド
4の軸合せを行なう際、光ファイバ3が時に単一モード
光ファイバのようにコア径が数μmと小さい場合、直径
30〜60μmの石英ロンドとの軸合せ精度は低下する
Problems to be Solved by the Invention However, in such a method, it is necessary to prepare the quartz rod 4 separately from the optical 7 eyer 3, and furthermore, the diameter of the quartz rod 4 is as small as 30 to 50 μm. Difficult to handle. In addition, when aligning the optical fiber 3 and the quartz rod 4 using monitor light, if the optical fiber 3 has a small core diameter of several μm, such as a single mode optical fiber, a quartz rod with a diameter of 30 to 60 μm may be used. The accuracy of alignment with

さらに、このような方法で作製した微小レンズの断面は
円形であり、基本的に楕円形の発光分布を有する半導体
レーザからの出射光を光ファイバへ結合する場合、結合
効率に制約を受ける。
Furthermore, the cross section of the microlens produced by such a method is circular, and when coupling the emitted light from the semiconductor laser, which basically has an elliptical emission distribution, to the optical fiber, the coupling efficiency is limited.

問題点を解決するための手段 本発明は、上記の問題を解決するために、光ファイバ端
部に、光ファイバの軸に沿ってくさび状テーパ加工を施
こした後、このくさび状テーパ部を断面が円形となるよ
うに加熱溶融することによυA光ファイバ端部のコア層
の断面を楕円形とし、この光ファイバ端部と他の同一種
類の光ファイバ端部とを対向させ、一般的なファイバの
特性、すなわちコア層の方が周囲のクラッド層よりも融
点が低いという特性を利用し、双方の光ファイバのコア
層のみが溶融する温度でコア層を加熱溶融し、突出させ
、次に双方のコア突出部同志を接触させ、再び加熱溶融
しながら双方を引き離した後、コア層の断面を楕円形と
した光ファイバ側の突出部を加熱溶融することにより、
光ファイバ端面に、断面が楕円形の微小レンズを形成す
るものである。
Means for Solving the Problems In order to solve the above problems, the present invention applies a wedge-shaped taper process to the end of an optical fiber along the axis of the optical fiber, and then removes the wedge-shaped taper part. The cross section of the core layer at the end of the υA optical fiber is made into an elliptical shape by heating and melting so that the cross section becomes circular, and the end of this optical fiber is made to face the end of another optical fiber of the same type. Taking advantage of the characteristic of fibers, that is, the core layer has a lower melting point than the surrounding cladding layer, the core layers of both optical fibers are heated to a temperature that melts only the core layers, causing them to protrude, and then By bringing the protruding parts of both cores into contact with each other and separating them while heating and melting them again, by heating and melting the protruding part on the optical fiber side whose core layer has an elliptical cross section,
A microlens with an elliptical cross section is formed on the end face of the optical fiber.

作  用 本発明は上記の方法によシ、光ファイバ端面に微小レン
ズを形成する際に、同一種類の光ファイバを2本準備す
るだけでよく、石英ロッドは不要となる。このため、取
り扱いが容易であり、且つ軸合せも精度よく行なうこと
ができる。また、微小レンズの断面は、半導体レーザか
らの出射光の発光分布の楕円形状とほぼ相似な楕円形状
とすることが可能であり、結合効率の改善が実現できる
Operation According to the present invention, when forming a microlens on the end face of an optical fiber, it is only necessary to prepare two optical fibers of the same type, and a quartz rod is not required. Therefore, it is easy to handle and alignment can be performed with high precision. Further, the cross section of the microlens can be made into an ellipse that is substantially similar to the ellipse of the emission distribution of the light emitted from the semiconductor laser, and the coupling efficiency can be improved.

実施例 第1図は本発明の、光ファイバ端面微小レンズの形成方
法の一実施例である。具体的な方法を、第1図に従かい
以下に述べる。
Embodiment FIG. 1 shows an embodiment of the method of forming a microlens on the end face of an optical fiber according to the present invention. A specific method will be described below according to FIG.

まず第1図^に示すように光ファイバ1の軸に垂直な端
面2を有する光7アイパ端部に、光ファイバの軸に沿っ
てくさび状テーパ3の加工を施こす。
First, as shown in FIG. 1, a wedge-shaped taper 3 is formed along the axis of the optical fiber 1 at the end of the optical fiber 7, which has an end surface 2 perpendicular to the axis of the optical fiber.

次に第1図に)に示すようにくさび状テーパ加工を施こ
した光ファイバ1の端部を光ファイバの断面が円形とな
るように加熱溶融する。これにより、光ファイバコア部
4には、両側のくさび状テーパ部の方向へ応力6が加わ
シ、光ファイバコア部4の断面は、くさび状テーパ部の
方向に長軸を有する楕円形となる。
Next, as shown in FIG. 1), the end of the optical fiber 1, which has been tapered into a wedge shape, is heated and melted so that the cross section of the optical fiber becomes circular. As a result, a stress 6 is applied to the optical fiber core portion 4 in the direction of the wedge-shaped taper portions on both sides, and the cross section of the optical fiber core portion 4 becomes an ellipse with its long axis in the direction of the wedge-shaped taper portions. .

次に第1図(qに示すように、第1図^及び(ロ)で作
製したコア層端部楕円光7フイバ1oと、他の同一種類
の光ファイバ11を放電加熱用電極6及び7の間に対向
させる。ここで一方の光ファイバには光源を、他方には
光パワーメータを接続しておき・光パワーメータへの光
量が量大となるように、光ファイバ1oと11の位置を
調整する。その後、次の工程でコア層が突出した際に光
ファイバ10と11のコア層同志が接触しない程度に対
向間隔をとる。
Next, as shown in FIG. 1 (q), the core layer end elliptical fiber 1o produced in FIGS. Here, a light source is connected to one optical fiber, and an optical power meter is connected to the other.The positions of optical fibers 1o and 11 are adjusted so that the amount of light to the optical power meter is large. Thereafter, when the core layers protrude in the next step, the opposing distance is set so that the core layers of the optical fibers 10 and 11 do not come into contact with each other.

次に第1図qに示すように石英系光ファイバの場合、一
般的にクラッド層は純粋な石英ガラス(シリカ:510
2 )であるが、コア層は屈折率を高くするために5l
o2にゲルマニウム(Go)あるいはシん(P)などの
不純物が添加されておシコア層の方が融点が低い。この
ため、電極6,7間で放電加熱12を行ない、放電々流
を除々に増していくとコア層のみが溶融する放電々流の
領域があシ、この放電々流にょシコア層のみを溶融し、
表面張力によシ曲率を有する形状のコアの突出部13が
得られる。
Next, as shown in Figure 1q, in the case of silica-based optical fibers, the cladding layer is generally made of pure silica glass (silica: 510
2), but the core layer is 5l in order to increase the refractive index.
An impurity such as germanium (Go) or silver (P) is added to O2, and the core layer has a lower melting point. For this reason, when discharge heating 12 is performed between the electrodes 6 and 7 and the discharge stream is gradually increased, there is a region of the discharge stream where only the core layer is melted, and this discharge stream melts only the core layer. death,
A core protrusion 13 having a shape having a curvature due to surface tension is obtained.

次に第1図(E″lに示すように光ファイバ10.11
の端面のコア層突出部13を、放電々極6,7の軸14
上で接するように対向させる。
Next, as shown in FIG.
The core layer protrusion 13 on the end face of the discharge electrode 6, 7
Place them facing each other so that they are touching at the top.

次に第1図(ト)に示すように、第1図(2)の状態で
、再び放電加熱15を行ない、放電加熱16を継続しな
がら光ファイバ1oと11を引き離す。
Next, as shown in FIG. 1(G), in the state shown in FIG. 1(2), discharge heating 15 is performed again, and while continuing discharge heating 16, the optical fibers 1o and 11 are separated.

次に第1図9に示すように、コア突出部16が円すい形
状に突出した時点で放電加熱を停止する。
Next, as shown in FIG. 1, the discharge heating is stopped when the core protrusion 16 protrudes into a conical shape.

次に第1図(ハ)に示すように、再び放電加熱17を行
ない、円すい形状に突出したコア部を溶融すると表面張
力により、光ファイバ1oの端面に断面が楕円形状の微
小レンズ18が形成される。
Next, as shown in FIG. 1(C), the discharge heating 17 is performed again to melt the conically protruding core portion, and due to surface tension, a microlens 18 with an elliptical cross section is formed on the end surface of the optical fiber 1o. be done.

第1図(I)は、コア層端部楕円光ファイバ10の端面
に形成された、断面が楕円形状の微小レンズ18の概略
図である。
FIG. 1(I) is a schematic diagram of a microlens 18 with an elliptical cross section formed on the end face of the core layer end elliptical optical fiber 10.

尚、上記レンズ形成時に放電々流、及び放電時間の調整
によシ光ファイバ端面に任意の曲率の微小レンズを形成
することができるものである。また、第1図(ハ)にお
いて、光ファイバ端部にくさび状テーパ3の加工を施こ
す際に、テーパの大きさを調整することにより任意の楕
円率のコア層端部を形成することができ、これに伴ない
断面が任意の楕円率を有する楕円形状の微小レンズを形
成することができるものである。
Incidentally, by adjusting the discharge current and discharge time during the formation of the lens, it is possible to form a microlens with an arbitrary curvature on the end face of the optical fiber. In addition, in FIG. 1(c), when processing the wedge-shaped taper 3 at the end of the optical fiber, it is possible to form the end of the core layer with an arbitrary ellipticity by adjusting the size of the taper. Accordingly, it is possible to form an elliptical microlens whose cross section has an arbitrary ellipticity.

発明の効果 本発明によれば、光ファイバ端面に微小レンズを形成す
る際に、同一種類の光ファイバを2本準備するだけでよ
く、取扱いが容易であシ、且つ軸合せも精度よく行なう
ことができる。また、半導体レーザからの出射光の発光
分布に基づく最適な微小レンズの曲率、及び断面形状の
楕円率を任意に設定することができ、半導体レーザと光
ファイバとの高効率結合が実現できる。
Effects of the Invention According to the present invention, when forming a microlens on the end face of an optical fiber, it is only necessary to prepare two optical fibers of the same type, and the handling is easy and the axis alignment can be performed with high precision. I can do it. Further, the optimum curvature of the microlens and the ellipticity of the cross-sectional shape can be arbitrarily set based on the emission distribution of the emitted light from the semiconductor laser, and highly efficient coupling between the semiconductor laser and the optical fiber can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(ハ)〜に)は本発明の一実施例における光ファ
イバ端面微小レンズの形成方法を説明するための工程図
、第1図(I)は本実施例方法により形成した微小レン
ズの概略斜視図、第2図は従来の光ファイバ端面微小レ
ンズ形成方法を説明するための図である。 3・・・・・・くさび状テーパ、4・・・・・・光ファ
イバコア部、6.7・・・・・・放電電極、10・・・
・・・コア層端部楕円光ファイバ、11・・・・・・光
ファイバ、12,15゜1γ・・・・・・放電加熱、1
3.16・・・・・・コア突出部、14・・・・・・電
極軸、18・・・・・・微小レンズ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1yXJ 宵 1 図 Ik 2@
Figures 1(c) to 1) are process diagrams for explaining the method of forming a microlens on the end face of an optical fiber in an embodiment of the present invention, and Figure 1(I) shows a microlens formed by the method of this embodiment. FIG. 2 is a schematic perspective view for explaining a conventional method for forming a microlens on an end face of an optical fiber. 3... Wedge-shaped taper, 4... Optical fiber core portion, 6.7... Discharge electrode, 10...
...Core layer end elliptical optical fiber, 11...Optical fiber, 12,15°1γ...Discharge heating, 1
3.16...core protrusion, 14...electrode axis, 18...microlens. Name of agent: Patent attorney Toshio Nakao and 1 other person
1yXJ Yoi 1 Figure Ik 2@

Claims (1)

【特許請求の範囲】[Claims] 光ファイバの軸に垂直な面を有する光ファイバ端部に、
前記光ファイバの軸に沿ってくさび状テーパ加工を施こ
した後、前記くさび状テーパ部を、断面が円形となるよ
うに加熱溶融することにより前記光ファイバ端部のコア
層の断面を楕円形とし、前記光ファイバ端部と光ファイ
バの軸に垂直な面を有する他の同一種類の光ファイバ端
部とを対向させ、双方の光ファイバのコア層のみが溶融
する温度で前記双方の光ファイバのコア層を加熱溶融す
ることにより突出させ、双方のコア突出部同志を接触さ
せ、再び加熱溶融しながら前記双方のコア突出部を引き
離した後、前記コア層の断面を楕円形とした光ファイバ
の前記突出部を加熱溶融することにより、光ファイバ端
面に断面が楕円形状の微小レンズを形成することを特徴
とする光ファイバ端面微小レンズの形成方法。
At the end of the optical fiber with a plane perpendicular to the axis of the optical fiber,
After performing a wedge-shaped taper process along the axis of the optical fiber, the wedge-shaped taper portion is heated and melted so that the cross section becomes circular, thereby making the cross section of the core layer at the end of the optical fiber elliptical. Then, the end of the optical fiber and the end of another optical fiber of the same type having a plane perpendicular to the axis of the optical fiber are faced, and both the optical fibers are heated at a temperature such that only the core layer of both optical fibers melts. An optical fiber in which the core layer is heated and melted to protrude, both core protrusions are brought into contact with each other, and both core protrusions are separated while being heated and melted again, and the core layer has an elliptical cross section. A method for forming a microlens on an end face of an optical fiber, characterized in that a microlens having an elliptical cross section is formed on the end face of the optical fiber by heating and melting the protrusion.
JP60083739A 1985-04-19 1985-04-19 Method for forming very small lens at end face of optical fiber Pending JPS61241710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60083739A JPS61241710A (en) 1985-04-19 1985-04-19 Method for forming very small lens at end face of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60083739A JPS61241710A (en) 1985-04-19 1985-04-19 Method for forming very small lens at end face of optical fiber

Publications (1)

Publication Number Publication Date
JPS61241710A true JPS61241710A (en) 1986-10-28

Family

ID=13810887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60083739A Pending JPS61241710A (en) 1985-04-19 1985-04-19 Method for forming very small lens at end face of optical fiber

Country Status (1)

Country Link
JP (1) JPS61241710A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008738A1 (en) * 1994-09-16 1996-03-21 Namiki Seimitsu Houseki Kabushiki Kaisha Optical fiber with lens and method of manufacturing the same
EP0916976A1 (en) * 1997-05-07 1999-05-19 The Furukawa Electric Co., Ltd. Optical fiber with lens
JP2014059479A (en) * 2012-09-18 2014-04-03 Fujitsu Ltd Manufacturing method of optical connector, and optical connector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996008738A1 (en) * 1994-09-16 1996-03-21 Namiki Seimitsu Houseki Kabushiki Kaisha Optical fiber with lens and method of manufacturing the same
EP0916976A1 (en) * 1997-05-07 1999-05-19 The Furukawa Electric Co., Ltd. Optical fiber with lens
EP0916976A4 (en) * 1997-05-07 2005-07-27 Furukawa Electric Co Ltd Optical fiber with lens
JP2014059479A (en) * 2012-09-18 2014-04-03 Fujitsu Ltd Manufacturing method of optical connector, and optical connector

Similar Documents

Publication Publication Date Title
KR100822953B1 (en) Optical waveguide lens and method of fabrication
US4701011A (en) Multimode fiber-lens optical coupler
US6866429B2 (en) Method of angle fusion splicing silica fiber with low-temperature non-silica fiber
JPH0749432A (en) Optical fiber with lens
KR20040015262A (en) Tapered lensed fiber for focusing and condenser applications
WO2000057220A9 (en) Thermally expanded multiple core fiber
JP2006510057A (en) Optical fiber or waveguide lens
JPH02167506A (en) Coupling without dependence on wavelength
US5078465A (en) Fused fiber optic coupler
AU2020100483A4 (en) An improved 1 × N single-mode optical fiber and multi-core optical fiber coupler and preparation method
EP0234326A2 (en) Single mode optical fiber coupler and method of manufacture thereof
JPS61241710A (en) Method for forming very small lens at end face of optical fiber
JP3224106B2 (en) Optical fiber for laser input
JP3756056B2 (en) Photonic crystal fiber fusion method
JPS60111208A (en) Formation of microlens on end surface of optical fiber
JPS62223709A (en) Multimode optical fiber coupler and manufacture thereof
JPH03189607A (en) Production of fiber type optical coupler
JP2004361846A (en) Method for fusion-splicing glass fiber
CN111025478A (en) Single-mode fiber and coaxial double-waveguide fiber coupler with controllable light splitting ratio
JPS6243609A (en) Optical circuit element
JP3022132B2 (en) Fusion splicing method between silica glass waveguide element and optical fiber
JPH02251916A (en) Method for connecting quartz-based optical waveguide circuit and optical fiber
JPS5879210A (en) Production of pseudo-hyperboloidal body
JPH0284604A (en) Fusion-splicing method for optical fiber
JPS6128566Y2 (en)