JPS61238942A - Heat resisting alloy - Google Patents

Heat resisting alloy

Info

Publication number
JPS61238942A
JPS61238942A JP60079414A JP7941485A JPS61238942A JP S61238942 A JPS61238942 A JP S61238942A JP 60079414 A JP60079414 A JP 60079414A JP 7941485 A JP7941485 A JP 7941485A JP S61238942 A JPS61238942 A JP S61238942A
Authority
JP
Japan
Prior art keywords
heat
strength
temperature
added
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60079414A
Other languages
Japanese (ja)
Inventor
Susumu Isobe
磯部 晋
Motoaki Imamura
今村 元昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP60079414A priority Critical patent/JPS61238942A/en
Priority to DE8686303435T priority patent/DE3662917D1/en
Priority to EP86303435A priority patent/EP0244520B1/en
Publication of JPS61238942A publication Critical patent/JPS61238942A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain an Fe-Ni-base heat resisting alloy excelling in corrosion resistance at high temp. and having high strength as well as high toughness by incorporating specific percentage of C, Si, Mn, Ni, Cr, Ti, Al, B, Ca and REM to Fe. CONSTITUTION:The alloy consisting of, by weight, 0.01-0.2% C, <=2% Si, <=2% Mn, 25-50% Ni, 13-23% Cr, 1.5-3.5% Ti, 0.1-0.7% Al, 0.001-0.05% B, 0.001-0.01% Ca, 0.001-0.1% REM, and the balance Fe with inevitable impurities is prepared. It is desirable that this alloy undergoes homogenization at a temp. as high as >=about 1,050 deg.C, working at <=about 1,000 deg.C to be given residual strain and then age-hardening treatment at about 650-850 deg.C.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) ごの発明は、高温耐食性に優れ、しかも高靭性でかつ高
強度のFe−Ni基耐熱合金に関し、例えば、内燃機関
の排気バルブ、耐熱スプリング。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The invention relates to a Fe-Ni-based heat-resistant alloy that has excellent high-temperature corrosion resistance, high toughness, and high strength. Exhaust valve, heat resistant spring.

耐熱ボルト等々の耐熱部品用材料に適する高強度Fe−
Ni基耐熱合金に関するものである。
High-strength Fe- suitable for materials for heat-resistant parts such as heat-resistant bolts
This relates to a Ni-based heat-resistant alloy.

(従来の技術) 近年、燃料経済性に優れたディーゼルエンジンに対する
関心が次第に高まってきており、それに伴ってディーゼ
ルエンジン用排気バルブの使用条件はますます苛酷なも
のになってきている。このため、排気バルブ用材料に対
する要求もより一層厳しいものとなっており、一部のデ
ィーゼルエンジンではNi基耐熱合金などの高級材料が
バルブフェース面の肉盛硬化なしで使用されている。し
かし、このNi基耐熱合金は高価であるため、低廉化の
要請が強く、なかには省Ni型のFe−Ni基耐熱合金
の開発もある。
(Prior Art) In recent years, interest in diesel engines with excellent fuel economy has gradually increased, and as a result, the usage conditions for exhaust valves for diesel engines have become increasingly severe. For this reason, requirements for exhaust valve materials have become even more stringent, and high-grade materials such as Ni-based heat-resistant alloys are used in some diesel engines without hardening overlay on the valve face. However, since this Ni-based heat-resistant alloy is expensive, there is a strong demand for cost reduction, and there is also the development of Ni-saving Fe-Ni-based heat-resistant alloys.

(発明が解決しようとする問題点) このFe−Ni基耐熱合金の強化機構は、Ni基耐熱合
金の場合と同様に、γ′相[N i 3(AJl、Ti
)]の析出によるものであるが、とくにFe−Ni基耐
熱合金の場合、その強化には寄与しないη相[Ni3T
i]の粒界析出が生じやすいため、強度および延性の低
下が避けられず、実際には組織安定性の観点から強化元
素であるAM、Tiなとの添加量が比較的せまく限定さ
れるのが実情である。
(Problems to be Solved by the Invention) The strengthening mechanism of this Fe-Ni-based heat-resistant alloy is similar to that of the Ni-based heat-resistant alloy, due to the γ' phase [N i 3 (AJl, Ti
)], but especially in the case of Fe-Ni-based heat-resistant alloys, the η phase [Ni3T
i] grain boundary precipitation is likely to occur, a decrease in strength and ductility is unavoidable, and in reality, from the perspective of structural stability, the amount of reinforcing elements such as AM and Ti added is relatively narrowly limited. is the reality.

ところで、上記したη相の粒界析出を抑制するためには
Bの添加が有効であるが、この場合には相当量のBの添
加が必要であり、このBは粒界の局部溶融温度を著しく
低下させるので、多量のB添加によって熱間加工性が損
なわれるという問題を有している。そのため、Bの添加
量は熱間加工性を損なわない程度に制限される。
Incidentally, the addition of B is effective in suppressing the grain boundary precipitation of the η phase described above, but in this case, a considerable amount of B is required to be added, and this B increases the local melting temperature of the grain boundaries. Therefore, there is a problem that hot workability is impaired by adding a large amount of B. Therefore, the amount of B added is limited to an extent that does not impair hot workability.

他方、η相の粒界析出抑制にはAM量の増加も有効であ
ることが判明しているが、Fe−Ni基耐熱合金におけ
るγ′相の析出による強化作用は、析出するγ′相とマ
トリックスの結晶格子定数の差にもとづく歪エネルギー
によって生ずるものであるため、大きな強度を得るには
γ′相の格子定数をできるかぎり大きくする必要があり
、このためにはAM量を少なくしてT i / A l
の比率を大きくすることが有効であるので、この理由か
らAMの増加はFe−Ni基耐熱合金の強化にあまり寄
与しないこととなり、そのためAnの添加量は低く制約
される。
On the other hand, it has been found that increasing the amount of AM is also effective in suppressing grain boundary precipitation of the η phase, but the strengthening effect due to the precipitation of the γ' phase in Fe-Ni-based heat-resistant alloys is due to the precipitation of the γ' phase. This is caused by strain energy based on the difference in the crystal lattice constant of the matrix, so in order to obtain a large strength, it is necessary to increase the lattice constant of the γ' phase as much as possible. i/A l
Since it is effective to increase the ratio of , for this reason, an increase in AM does not contribute much to strengthening the Fe-Ni-based heat-resistant alloy, and therefore the amount of An added is restricted to a low value.

そこで、本発明者らはFe−Ni基耐熱合金において、
B、AMを適量添加してη相の析出を抑制し、AMの添
加量が低く制約されたときでも強度の向上をはかること
ができるようにし、さらには高温耐食性をより一層向上
させることが可能であるFe−Ni基耐熱合金を得るこ
とを目的として鋭意研究を進めた結果、この発明を完成
するに至った。
Therefore, in the Fe-Ni-based heat-resistant alloy, the present inventors
B. Adding an appropriate amount of AM can suppress the precipitation of the η phase, making it possible to improve strength even when the amount of AM added is limited to a low level, and further improving high-temperature corrosion resistance. As a result of intensive research aimed at obtaining a Fe-Ni-based heat-resistant alloy, this invention was completed.

[発明の構成] (問題点を解決するための手段) すなわち、この発明による高強度高靭性高耐食性Fe−
Ni基耐熱合金は、重量%で、C:0.01〜0.2%
、Si:2%以下、M n : 2%以下、Ni:25
〜50%、Cr:13〜23%、 Ti:1.5〜3.
5%、 Al 〜0 、1〜0.7%、 B:O,OO
l 〜0.05%、Ca: 0.001〜0.01%、
REM (希土類元素の1種または2種以上):0.0
01〜0.1%、および必要に応じて、N:0.003
〜0.05%、同じく必要に応じて、Zr:0.005
〜0.05%、V:0.05〜1%。
[Structure of the Invention] (Means for Solving the Problems) That is, the present invention provides a high-strength, high-toughness, high-corrosion-resistant Fe-
Ni-based heat-resistant alloy has C: 0.01 to 0.2% in weight%
, Si: 2% or less, M n: 2% or less, Ni: 25
~50%, Cr: 13-23%, Ti: 1.5-3.
5%, Al~0, 1~0.7%, B:O,OO
l ~0.05%, Ca: 0.001~0.01%,
REM (one or more rare earth elements): 0.0
01-0.1%, and if necessary, N: 0.003
~0.05%, also as necessary, Zr: 0.005
~0.05%, V:0.05-1%.

Nb+Ta(いずれか一方が0の場合を含む)〜0.0
5〜3%、 M o : 0 、05〜3%、W:0.
05〜3%のうちの1種または2種以上、残部Feおよ
び不可避的不純物よりなることを特徴としており、より
望ましくは、通常の熱処理として、1050℃以上の温
度で固溶化処理したのち650〜850℃で時効硬化処
理を施し、さらに望ましくは加工熱処理として、105
0°C以上の高温で均質化したのち、10006C以下
の温度で加工して残留歪を与え、650〜850°Cで
時効硬化処理を施し、これによってγ′相[Ni3(A
JI、Ti)]の粒粒内比を促進するとともに、有害な
η相[Ni3Ti]の析出を抑制し、靭性を害すること
なく高強度でしかも高温耐食性に著しく優れた耐熱合金
が得られるようにしたことを特徴としている。
Nb+Ta (including cases where either one is 0) ~ 0.0
5-3%, Mo: 0, 05-3%, W: 0.
05 to 3%, the balance being Fe and unavoidable impurities, and more preferably, as a normal heat treatment, after solid solution treatment at a temperature of 1050 ° C. or higher, 650 ° C. Age hardening treatment is performed at 850°C, and more preferably, as processing heat treatment, 105
After homogenization at a high temperature of 0°C or higher, processing is performed at a temperature of 10006°C or lower to give residual strain, and age hardening treatment is performed at 650 to 850°C, thereby forming the γ' phase [Ni3(A
In order to promote the intragranular ratio of JI, Ti) and suppress the precipitation of the harmful η phase [Ni3Ti], we can obtain a heat-resistant alloy that has high strength without impairing toughness and has outstanding high-temperature corrosion resistance. It is characterized by what it did.

次に、この発明による高強度高靭性高耐食性Fe−Ni
基耐熱合金の成分範囲(重量%)の限定理由について説
明する。
Next, the high-strength, high-toughness, high-corrosion-resistant Fe-Ni according to the present invention
The reason for limiting the component range (wt%) of the base heat-resistant alloy will be explained.

Cニー0.01 NO,2% CはCrおよびTiと結合して炭化物を形成し、高温強
度を高めるために有効な元素であって、このような効果
を得るためには0.01%以上含有させることが必要で
ある。しかし、多量に添加すると靭延性が損なわれ1例
えば排気パルプに適用した場合にその性能を低下させる
ので、092%以下とすることが必要である。
C: 0.01 NO, 2% C is an element that combines with Cr and Ti to form carbides and is an effective element for increasing high-temperature strength. It is necessary to contain it. However, if added in a large amount, the toughness and ductility will be impaired and, for example, when applied to exhaust pulp, the performance will be lowered, so it is necessary to limit the amount to 0.92% or less.

Si:2%以下 Stは主として溶製時の脱酸剤として添加されるが、多
量に添加しすぎると靭延性が低下するので、2%以下に
限定した。
Si: 2% or less St is mainly added as a deoxidizing agent during melting, but since adding too much will reduce toughness and ductility, it is limited to 2% or less.

Mn:2%以下 MnはSiと同様に溶製時の脱酸脱硫剤とじて添加する
が、多量に添加しすぎると高温における耐酸化性を低下
させるので、2%以下に限定した。
Mn: 2% or less Mn, like Si, is added as a deoxidizing and desulfurizing agent during melting, but since adding too much will reduce oxidation resistance at high temperatures, it is limited to 2% or less.

Ni : 25〜50% Niはオーステナイト組織の安定化に必要であると同時
にγ′相[Ni3 (A交、Ti)]を形成させるのに
必要な元素である。しかし、25%未満では、高温で使
用中にσ相等の脆化相が形成されて高温特性が低下する
ため25%以上に限定した、一方、必要以上に添加して
も高温性能の向上はそれほど期待できず、かえってコス
トの上昇をもたらすだけであるので50%以下に限定し
た。
Ni: 25-50% Ni is an element necessary for stabilizing the austenite structure and at the same time forming the γ' phase [Ni3 (A-cross, Ti)]. However, if it is less than 25%, brittle phases such as σ phase will be formed during use at high temperatures and the high-temperature properties will deteriorate. This is not expected and would only lead to an increase in costs, so we limited it to 50% or less.

Cr:13〜23% Crは耐熱合金に必要な耐食性および耐酸化性を確保す
るために有効な元素であって、このような効果を得るた
めには13%以上添加する必要がある。しかし、多すぎ
るとσ相が形成され、靭延性が低下するので23%以下
とする必要がある。
Cr: 13-23% Cr is an effective element for ensuring the corrosion resistance and oxidation resistance required for heat-resistant alloys, and in order to obtain such effects, it is necessary to add 13% or more. However, if the content is too large, a σ phase will be formed and the toughness and ductility will decrease, so the content should be 23% or less.

T f  :  1  、 5〜3.5%TiはNiお
よびAnと結合して高温強度の向上に有効なγ′相[N
i3 (A見、Ti)]を形成させるために必要な元素
であって、このためには1.5%以上添加する。しかし
、多量に添加するとη相[N15Tilの析出により高
温特性が劣化するので、3.5%以下とする必要がある
Tf: 1, 5-3.5% Ti combines with Ni and An to form the γ' phase [N
i3 (see A, Ti)], and is added in an amount of 1.5% or more for this purpose. However, if added in a large amount, the high-temperature properties will deteriorate due to the precipitation of the η phase [N15Til, so it is necessary to limit the content to 3.5% or less.

Al:0.1〜0.7% A!QはTiと同様にγ′相の形成に必要な元素であり
、このためには0.1%以上添加する。しかし、多量に
添加するとT i / A l比が減少して強度の低下
をきたすので0.7%以下とする必要がある。
Al: 0.1-0.7% A! Like Ti, Q is an element necessary for forming the γ' phase, and for this purpose it is added in an amount of 0.1% or more. However, if added in a large amount, the Ti/Al ratio decreases and the strength decreases, so it is necessary to limit the amount to 0.7% or less.

B:O,OO1〜0.05% Bはη相の析出を抑制する効果のある元素であり、この
ような効果を得るためにはo、ooi%以上添加する必
要がある。しかし、多すぎると粒界の局部溶融温度を著
しく低下させ、熱間加工性も損なわれるので0.05%
以下とする必要がある。
B: O, OO 1 to 0.05% B is an element that has the effect of suppressing precipitation of the η phase, and in order to obtain such an effect, it is necessary to add O, OO% or more. However, if the amount is too large, the local melting temperature of grain boundaries will be significantly lowered and hot workability will be impaired, so 0.05%
It is necessary to do the following.

Ca:0.001’ 〜0.01% CaはSを固定することによって熱間加工性を向上させ
、炭化物の分布形態を制御して靭延性を高め、コのに有
効な元素であり、AM添加量が低く制約されたときでも
強度の向上に寄与する元素であって、このような効果を
得るためには0.001%以上添加する。しかし、多量
に添加すると加工性を劣化するので0.01%以下とす
る必要がある。
Ca: 0.001' to 0.01% Ca improves hot workability by fixing S, increases toughness and ductility by controlling the distribution form of carbides, and is an effective element for AM. It is an element that contributes to improving strength even when the amount added is limited to a low level, and in order to obtain this effect, it should be added in an amount of 0.001% or more. However, if added in a large amount, processability deteriorates, so it is necessary to limit the amount to 0.01% or less.

REM (希土類元素の1種または2種以上):0.0
01〜0.1% REMは酸化皮膜の密着性を著しく向上させる元素であ
り、高温耐食性の向上に有効である。
REM (one or more rare earth elements): 0.0
01-0.1% REM is an element that significantly improves the adhesion of the oxide film, and is effective in improving high-temperature corrosion resistance.

そして、とくに使用温度の変動が著しい場合にREM添
加の効果が顕著に表れるので、このような効果を得るた
めに0.001%以上含有させた。しかし、REM含有
量が0.1%を超えると熱間加工性が損なわれやすくな
るので0.001〜0.1%の範囲にした。
Since the effect of REM addition is particularly noticeable when the operating temperature fluctuates significantly, REM is added in an amount of 0.001% or more in order to obtain such an effect. However, if the REM content exceeds 0.1%, hot workability is likely to be impaired, so it is set to a range of 0.001 to 0.1%.

Zr:0.005〜0.05% 、V:0.05〜1%
、Nb+Ta(いずれか一方が0の場合を含む’l−0
,05〜3%、Mo:0.05〜3%。
Zr: 0.005-0.05%, V: 0.05-1%
, Nb+Ta ('l-0 including the case where either one is 0)
, 05-3%, Mo: 0.05-3%.

W:0.05〜3%のうちの1種または2種以上 Zr、V、Nb、Ta、Mo、Wは、炭化物を形成して
、高温強度および靭性を高めるのに有効な元素であり、
中でも、Zrは粒界を強化するのにも有効な元素であっ
て、このような効果を得るためにはZr、V、Nb、T
a、Mo、Wc7)1種または2種以上を必要に応じて
添加することができる。しかし、多すぎると靭性や加工
性を劣化するのでE記した範囲に制限する必要がある。
W: One or more of 0.05 to 3% Zr, V, Nb, Ta, Mo, and W are effective elements for forming carbides and increasing high-temperature strength and toughness,
Among them, Zr is an effective element for strengthening grain boundaries, and in order to obtain this effect, Zr, V, Nb, T
a, Mo, Wc7) One or more types can be added as necessary. However, if the amount is too large, the toughness and workability will deteriorate, so it is necessary to limit the amount to the range shown in E.

N:0.003〜0.05% Nは結晶粒の成長を抑制し、組織の微細化をはかるのに
南効な元素であるので、必要に応じて0.003%以上
添加することができる。しかし、多すぎると窒化物の凝
集したストリンガ−を形成して延性を低下するので0.
05%以下に抑える必要がある。
N: 0.003 to 0.05% N is an effective element for suppressing the growth of crystal grains and refining the structure, so it can be added in an amount of 0.003% or more as necessary. . However, if it is too large, stringers with agglomerated nitrides will be formed and the ductility will be reduced.
It is necessary to keep it below 0.5%.

この発明による高強度高靭性でかつ高温#食性に優れた
Fe−Ni基耐熱合金は以上のような成分組成を有する
ものであり、この成分組成のものに対し、通常の熱処理
として、1050℃以上の温度で固溶化処理を行ったの
ち650〜850 ’Cで時効硬化処理を施して使用す
るのがより望ましく、さらに望ましくは、1050℃以
丘の高温で均質化したのち、1ooo℃以下の温度で加
工歪を与え、650〜850℃の温度で時効硬化処理を
施して使用するのが良いことも種々の実験から明らかと
なり、これによってγ′相の粒内析出を促進するととも
に、有害なη相の析出を抑制し、靭性を害することなく
高強度が得られると同時に高温耐食性を著しく向上させ
たFe−Ni系の耐熱合金を得たものである・ (実施例1) 第1表に示す化学成分の合金を50kg高周波誘導炉に
よって溶製し、30kgインゴットに造塊した0次いで
、1150℃X16hrの条件で均質化処理したのち、
40mm角のビレットに鍛伸した。
The Fe-Ni-based heat-resistant alloy according to the present invention, which has high strength, high toughness, and excellent high-temperature corrosion resistance, has the above-mentioned composition, and as a normal heat treatment, it is heated at 1050°C or higher. It is more desirable to perform solution treatment at a temperature of 1,000 to 850'C, and then age harden at a temperature of 650 to 850'C. It has become clear from various experiments that it is better to apply processing strain at a temperature of 650 to 850 degrees Celsius and age harden at a temperature of 650 to 850 degrees Celsius. This is a Fe-Ni heat-resistant alloy that suppresses phase precipitation, provides high strength without impairing toughness, and at the same time significantly improves high-temperature corrosion resistance. (Example 1) Shown in Table 1 An alloy of chemical components was melted in a 50 kg high-frequency induction furnace and formed into a 30 kg ingot.Then, after homogenization treatment under the conditions of 1150 ° C. x 16 hours,
It was forged into a 40mm square billet.

まず、各供試鋼の熱間加工性を調べるために、上記各ビ
レットから削り出した直径L5mm、長さ20mmの試
験片を900〜1150℃に加熱し、メカニカルプレス
でアプセット試験を行い、自由表面に割れが発生する限
界圧下率を求めた。
First, in order to investigate the hot workability of each test steel, a test piece with a diameter of 5 mm and a length of 20 mm cut from each billet was heated to 900 to 1150°C, and an upset test was performed using a mechanical press. The critical reduction rate at which cracks occur on the surface was determined.

ここで、代表的な加工温度である1100℃におけるア
プセット試験結果を第2表に示す。
Table 2 shows the upset test results at a typical processing temperature of 1100°C.

次に、前記ビレットに対し、一部は加工熱処理を行い、
残りは通常の熱処理(固溶化十時効)を行って、各々の
機械的性質を測定した。このとき行った加工熱処理の条
件はつぎのとおりである。
Next, a part of the billet is subjected to processing heat treatment,
The remaining samples were subjected to normal heat treatment (solution aging) and their mechanical properties were measured. The conditions for the processing heat treatment performed at this time are as follows.

すなわち、まずビレットを1000°Cに均熱した後、
エアハンマーにて迅速に50%加工率まで鍛圧を行い、
直ちに急冷し、次に750℃×16hrの条件で時効処
理を行った。一方、通常の熱処理としては1000’0
X1hrの条件で固溶化処理した後急冷し、次いで75
0’0X16hrの条件で時効処理を行った。この結果
を同じく第2表に示す。
That is, after first soaking the billet at 1000°C,
Press quickly to 50% processing rate with an air hammer,
It was immediately quenched and then aged at 750° C. for 16 hours. On the other hand, normal heat treatment is 1000'0
After solid solution treatment under the conditions of X1hr, it was rapidly cooled and then
Aging treatment was performed under the conditions of 0'0 x 16 hr. The results are also shown in Table 2.

第2表に示すように、割れが発生する限界圧下率は比較
合金Aでは47%にすぎないが、本発明合金B−Fでは
60〜72%と高い値を示しており、Ca添加の有効性
が明らかである。
As shown in Table 2, the critical reduction rate at which cracks occur is only 47% for comparative alloy A, but it is as high as 60-72% for alloys B-F of the present invention, demonstrating the effectiveness of Ca addition. gender is obvious.

また、機械的性質は、本発明合金B−Fでは比較合金A
よりも強度および靭性が優れており、なかでも加工熱処
理を行った合金は、通常熱処理を行った合金に比べてよ
り一層強度が高く、延性も十分に大きいことが判った。
In addition, the mechanical properties of the invention alloys B-F and the comparative alloy A
It was found that the strength and toughness of the alloys were higher than those of the alloys that were heat-treated, and that the alloys that had been heat-treated had even higher strength and sufficiently high ductility than the alloys that had been heat-treated.

(実施例2) 電気炉によって第3表に示す化学成分の合金を溶製し、
1tonインゴツトから鍛伸して直径180mmのビレ
ットを製造し、このビレットから大型舶用排気バルブを
製造した。このとき行った排気バルブの鍛造は、軸部の
鍛伸と傘部の型入れとに分かれるが、まず、軸部の鍛造
では加熱を1000℃とし、3ヒートかけて直径70m
mに仕上げた、そして、3ヒート目の加工率は30%、
終止温度は約900°Cとした。次に、傘部の鍛造では
加熱温度を1000℃とし、型入れを行って1ヒートで
直径約300mmに仕上げた。
(Example 2) An alloy having the chemical components shown in Table 3 was melted in an electric furnace,
A billet with a diameter of 180 mm was manufactured by forging and elongating a 1 ton ingot, and a large marine exhaust valve was manufactured from this billet. The forging of the exhaust valve that was carried out at this time was divided into forging of the shaft part and molding of the umbrella part. First, for the forging of the shaft part, the heating was set to 1000 degrees Celsius, and the diameter was 70 mm over 3 heats.
m, and the processing rate of the third heat was 30%,
The final temperature was approximately 900°C. Next, in the forging of the umbrella part, the heating temperature was set to 1000°C, and the molding was performed to form a diameter of about 300 mm in one heat.

この際の仕上げ温度はバルブのフェース部で約850°
C9傘先端中央部で約900℃であった。
The finishing temperature at this time is approximately 850° at the face of the valve.
The temperature at the center of the C9 umbrella tip was approximately 900°C.

また、加工率はフェース部で最大的60%であった。Furthermore, the maximum machining rate was 60% on the face portion.

次に、このバルブに直径750℃X16hrの時効硬化
処理を加えたものすなわち加工熱処理を行ったものと、
1000℃xihr水冷の固溶化処理の後750’0X
16hrの時効処理を加えたものすなわち通常熱処理を
行ったものについて、それぞれ軸部の引張強さおよび傘
部の硬さを調査した。その結果を第4表に示す。
Next, this valve was subjected to age hardening treatment at 750°C in diameter for 16 hours, that is, one that was subjected to processing heat treatment.
750'0X after 1000℃xihr water cooling solid solution treatment
The tensile strength of the shaft portion and the hardness of the cap portion were investigated for those subjected to 16 hours of aging treatment, that is, those subjected to normal heat treatment. The results are shown in Table 4.

第4表に示す結果から明らかなように、加工熱処理およ
び通常熱処理を行ったものはいずれも従来のものよりも
良好な結果となっており、なかでも、加工熱処理を行っ
たバルブでは通常熱処理を行ったバルブに比べて軸部の
引張強さ、耐力、傘部の硬さとも優れており、軸部の延
性も実用上上方な値をもつことが確認された。
As is clear from the results shown in Table 4, both valves subjected to mechanical heat treatment and conventional heat treatment have better results than conventional valves, and in particular, the valves subjected to mechanical heat treatment have better results than those subjected to conventional heat treatment. It was confirmed that the tensile strength of the shaft, yield strength, and hardness of the cap were superior to those of the valves tested, and that the ductility of the shaft was superior to practical values.

(実験例) 実用の排気バルブでは、強度および靭性に優れたもので
あることはもちろん、排気バルブとしての性能上、燃料
残渣中の■や5分によって惹起される高温腐食に対する
耐食性も極めて重要なものである。そして、とくに排気
バルブのように使用温度の変動が著しい場合においても
酸化皮膜の密着性に著しく優れていることが要求される
。そこで、実施例2において製造した排気バ)vブのフ
ェース面から切り出した試験片を用いていわゆるバナジ
ウムアタック試験を行った。
(Example of experiment) In addition to having excellent strength and toughness, a practical exhaust valve must also have corrosion resistance against high-temperature corrosion caused by It is something. In particular, even in cases where the operating temperature fluctuates significantly, such as in the case of exhaust valves, it is required that the oxide film has excellent adhesion. Therefore, a so-called vanadium attack test was conducted using a test piece cut out from the face of the exhaust valve manufactured in Example 2.

この試験では800℃に保持した5酸化バナジウム+硫
酸ナトリウムの溶融混合塩中に各試験片を5hr浸漬し
た後、腐食による減量を測定した。この結果を第1図に
示す。第1図に示すように、第3表の合金からなる排気
バルブにおいて、加工熱処理を行ったものは、通常熱処
理を行ったものに勝るとも劣らない優れた高温耐食性を
有しており、従来より使用されている高価なNt基耐熱
合金であるNimonic80Aとほとんど同等の性能
を有していることが確かめられた。
In this test, each test piece was immersed for 5 hours in a molten mixed salt of vanadium pentoxide and sodium sulfate held at 800°C, and then the weight loss due to corrosion was measured. The results are shown in FIG. As shown in Figure 1, exhaust valves made of the alloys listed in Table 3 that have been subjected to processing heat treatment have excellent high-temperature corrosion resistance that is comparable to those that have been normally heat treated. It was confirmed that it has almost the same performance as Nimonic 80A, which is an expensive Nt-based heat-resistant alloy used.

[発明の効果] 以上説明してきたように、この発明によるFe−Ni基
耐熱合金は、重量%で、C:0.01〜0.2%、Si
:2%以下、M n : 2%以下、Ni:25〜50
%、Cr:13〜23%、Ti:1.5〜3.5%、A
l二0.1〜0.7%、B:O,OOl 〜0.05%
、Ca:0.001〜0.01%、REM(希土類元素
の1種または2種以上):0.001〜0.1%、およ
び必要に応じて、N:0.003〜0.05%、同じく
必要に応じて、Zr:0.005〜0.05%、■:0
.05〜1%、Nb+Ta(いずれか一方がOの場合を
含む):0.u5〜3%、Mo:0゜05〜3%、W:
0.05〜3%のうちの1種または2種以上、残部Fe
および不可避的不純物よりなるものであり、Feを基地
とし、Ni 、Crの添加によって耐熱および耐食性の
向上をはかり、Ti、Aiの添加によって高温強度の向
上に有効なγ′相の形成を生じさせ、B、AMの添加に
よってη相の析出を抑制し、Caの添加によって強度の
向上をはかり、REMの添加によって高温耐食性の向上
をはかり、必要に応じてZr。
[Effects of the Invention] As explained above, the Fe-Ni-based heat-resistant alloy according to the present invention has C: 0.01 to 0.2%, Si
: 2% or less, Mn: 2% or less, Ni: 25-50
%, Cr: 13-23%, Ti: 1.5-3.5%, A
l2 0.1-0.7%, B:O,OOl ~0.05%
, Ca: 0.001-0.01%, REM (one or more rare earth elements): 0.001-0.1%, and if necessary, N: 0.003-0.05% , Similarly, as necessary, Zr: 0.005 to 0.05%, ■: 0
.. 05-1%, Nb+Ta (including the case where either one is O): 0. u5~3%, Mo: 0°05~3%, W:
One or more of 0.05 to 3%, balance Fe
It is made of Fe as a base, and the addition of Ni and Cr improves heat resistance and corrosion resistance, and the addition of Ti and A causes the formation of γ' phase, which is effective in improving high-temperature strength. , B, and AM are added to suppress the precipitation of the η phase, Ca is added to improve strength, REM is added to improve high-temperature corrosion resistance, and Zr is added as necessary.

V、Nb、Ta、Mo、Wを添加して強度のより一層の
向上をはかり、同じく必要に応じてNを添加して組織の
微細化をはかり、通常熱処理または加工熱処理を施して
使用するものであるから、結晶粒内で高温強度の向上に
有効なγ′相の析出が促進されると共に、強度および切
欠感受性に有害なη相の粒界析出を抑制することができ
、高強度でかつ高靭性であり、しかも高温耐食性に著し
く優れたものであり、Ni基耐熱合金に比べて安価なF
e−Ni基耐熱合金が提供でき、内燃機関の排気バルブ
、耐熱スプリング、#熱ポルト等々の耐熱部品用材料に
適するものであるという著大なる効果をもたらすもので
ある。
V, Nb, Ta, Mo, and W are added to further improve the strength, and if necessary, N is also added to make the structure finer, and the product is used after being subjected to normal heat treatment or processing heat treatment. Therefore, the precipitation of the γ' phase, which is effective for improving high-temperature strength, is promoted within the grains, and the grain boundary precipitation of the η phase, which is harmful to strength and notch sensitivity, can be suppressed, resulting in high strength and It has high toughness and excellent high-temperature corrosion resistance, and is cheaper than Ni-based heat-resistant alloys.
This provides an e-Ni-based heat-resistant alloy, which has the great effect of being suitable as a material for heat-resistant parts such as exhaust valves of internal combustion engines, heat-resistant springs, #thermal ports, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例において調べた高温耐食性の
実験結果を示すグラフである。
FIG. 1 is a graph showing the experimental results of high-temperature corrosion resistance investigated in Examples of the present invention.

Claims (1)

【特許請求の範囲】 (1)重量%で、C:0.01〜0.2%、Si:2%
以下、Mn:2%以下、Ni:25〜50%、Cr:1
3〜23%、Ti:1.5〜3.5%、Al:0.1〜
0.7%、B: 0.001〜0.05%、Ca:0.001〜0.01
%、REM:0.001〜0.1%、残部Feおよび不
可避的不純物よりなることを特徴とする高強度Fe−N
i基耐熱合金。 (2)重量%で、C:0.01〜0.2%、Si:2%
以下、Mn:2%以下、Ni:25〜50%、Cr:1
3〜23%、Ti:1.5〜3.5%、Al:0.1〜
0.7%、B: 0.001〜0.05%、Ca:0.001〜0.01
%、REM:0.001〜0.1%、およびZr:0.
005〜0.05%、V:0.05〜1%、Nb+Ta
:0.05〜3%、Mo:0.05〜3%、W:0.0
5〜3%のうちの1種または2種以上、残部Feおよび
不可避的不純物よりなることを特徴とする高強度Fe−
Ni基耐熱合金。 (3)重量%で、C:0.01〜0.2%、Si:2%
以下、Mn:2%以下、Ni:25〜50%、Cr:1
3〜23%、Ti:1.5〜3.5%、Al:0.1〜
0.7%、B: 0.001〜0.05%、Ca:0.001〜0.01
%、REM:0.001〜0.1%、N:0.003〜
0.05%、およびZr:0.005〜0.05%、V
:0.05〜1%、Nb+Ta:0.05〜3%、Mo
:0.05〜3%、W:0.05〜3%のうちの1種ま
たは2種以上、残部Feおよび不可避的不純物よりなる
ことを特徴とする高強度Fe−Ni基耐熱合金。
[Claims] (1) In weight%, C: 0.01 to 0.2%, Si: 2%
Below, Mn: 2% or less, Ni: 25-50%, Cr: 1
3-23%, Ti: 1.5-3.5%, Al: 0.1-
0.7%, B: 0.001-0.05%, Ca: 0.001-0.01
%, REM: 0.001 to 0.1%, the balance consisting of Fe and inevitable impurities High strength Fe-N
I-base heat-resistant alloy. (2) In weight%, C: 0.01-0.2%, Si: 2%
Below, Mn: 2% or less, Ni: 25-50%, Cr: 1
3-23%, Ti: 1.5-3.5%, Al: 0.1-
0.7%, B: 0.001-0.05%, Ca: 0.001-0.01
%, REM: 0.001-0.1%, and Zr: 0.
005-0.05%, V: 0.05-1%, Nb+Ta
:0.05~3%, Mo:0.05~3%, W:0.0
High-strength Fe-
Ni-based heat-resistant alloy. (3) In weight%, C: 0.01-0.2%, Si: 2%
Below, Mn: 2% or less, Ni: 25-50%, Cr: 1
3-23%, Ti: 1.5-3.5%, Al: 0.1-
0.7%, B: 0.001-0.05%, Ca: 0.001-0.01
%, REM: 0.001-0.1%, N: 0.003-
0.05%, and Zr: 0.005-0.05%, V
:0.05~1%, Nb+Ta:0.05~3%, Mo
A high-strength Fe-Ni-based heat-resistant alloy comprising one or more of the following: 0.05 to 3%, W: 0.05 to 3%, and the balance being Fe and inevitable impurities.
JP60079414A 1985-04-16 1985-04-16 Heat resisting alloy Pending JPS61238942A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60079414A JPS61238942A (en) 1985-04-16 1985-04-16 Heat resisting alloy
DE8686303435T DE3662917D1 (en) 1985-04-16 1986-05-06 Heat resistant alloys
EP86303435A EP0244520B1 (en) 1985-04-16 1986-05-06 Heat resistant alloys

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60079414A JPS61238942A (en) 1985-04-16 1985-04-16 Heat resisting alloy
EP86303435A EP0244520B1 (en) 1985-04-16 1986-05-06 Heat resistant alloys

Publications (1)

Publication Number Publication Date
JPS61238942A true JPS61238942A (en) 1986-10-24

Family

ID=39628919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60079414A Pending JPS61238942A (en) 1985-04-16 1985-04-16 Heat resisting alloy

Country Status (3)

Country Link
EP (1) EP0244520B1 (en)
JP (1) JPS61238942A (en)
DE (1) DE3662917D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639654A2 (en) 1993-08-19 1995-02-22 Hitachi Metals, Ltd. Fe-Ni-Cr-base super alloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
US5660938A (en) * 1993-08-19 1997-08-26 Hitachi Metals, Ltd., Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3308090B2 (en) * 1993-12-07 2002-07-29 日立金属株式会社 Fe-based super heat-resistant alloy
JP3424314B2 (en) * 1994-02-24 2003-07-07 大同特殊鋼株式会社 Heat resistant steel
US5873950A (en) * 1996-06-13 1999-02-23 Inco Alloys International, Inc. Strengthenable ethylene pyrolysis alloy
JP4277113B2 (en) * 2002-02-27 2009-06-10 大同特殊鋼株式会社 Ni-base alloy for heat-resistant springs
JP6337514B2 (en) * 2013-05-21 2018-06-06 大同特殊鋼株式会社 Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
CN103526124B (en) * 2013-10-28 2015-10-21 江西省萍乡市三善机电有限公司 A kind of novel high heat resistant Sealing Ring of Turbocharger and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1082739B (en) * 1953-05-29 1960-06-02 Nyby Bruk Ab Use of non-precipitation-hardening, overheating-insensitive alloys
GB999439A (en) * 1962-05-10 1965-07-28 Allegheny Ludlum Steel Improvements in or relating to an austenitic alloy
US3575734A (en) * 1968-07-26 1971-04-20 Carpenter Technology Corp Process for making nickel base precipitation hardenable alloys
JPS5631345B2 (en) * 1972-01-27 1981-07-21
US4494987A (en) * 1982-04-21 1985-01-22 The United States Of America As Represented By The United States Department Of Energy Precipitation hardening austenitic superalloys

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0639654A2 (en) 1993-08-19 1995-02-22 Hitachi Metals, Ltd. Fe-Ni-Cr-base super alloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
US5660938A (en) * 1993-08-19 1997-08-26 Hitachi Metals, Ltd., Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer

Also Published As

Publication number Publication date
EP0244520A1 (en) 1987-11-11
EP0244520B1 (en) 1989-04-19
DE3662917D1 (en) 1989-05-24

Similar Documents

Publication Publication Date Title
JPH09279309A (en) Iron-chrome-nickel heat resistant alloy
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JPH1122427A (en) Manufacture of diesel engine valve
JP2820776B2 (en) Precipitation hardened ferrite-pearlite steel
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JPH0138848B2 (en)
JP5788360B2 (en) Heat-resistant steel for exhaust valves
JP3535112B2 (en) Hot tool steel excellent in erosion resistance and high temperature strength and high temperature member made of the hot tool steel
JPS61238942A (en) Heat resisting alloy
JP2947913B2 (en) Rotor shaft for high temperature steam turbine and method of manufacturing the same
JP3412234B2 (en) Alloy for exhaust valve
JP2002161342A (en) Structural steel superior in strength, fatigue resistance and corrosion resistance
JPH11241145A (en) Austenitic stainless steel excellent in high temperature setting resistance and its production
EP0669405B1 (en) Heat resisting steel
JPH11117019A (en) Production of heat resistant parts
JPS6013050A (en) Heat-resistant alloy
JPH11117020A (en) Production of heat resistant parts
JPH03177543A (en) Valve steel
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP2000204449A (en) Iron base superalloy excellent in cold workability and high temperature thermal stability
JPH05179378A (en) Ni-base alloy excellent in room temperature and high temperature strength
JP4683712B2 (en) Ni-base alloy with excellent hot workability
JPH06228713A (en) Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JPH10130790A (en) Heat resistant alloy excellent in cold workability and overaging characteristic