JPS61228658A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61228658A
JPS61228658A JP60069511A JP6951185A JPS61228658A JP S61228658 A JPS61228658 A JP S61228658A JP 60069511 A JP60069511 A JP 60069511A JP 6951185 A JP6951185 A JP 6951185A JP S61228658 A JPS61228658 A JP S61228658A
Authority
JP
Japan
Prior art keywords
groove
diffused layer
polycrystalline silicon
film
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60069511A
Other languages
Japanese (ja)
Other versions
JPH053746B2 (en
Inventor
Yasuaki Hokari
穂苅 泰明
Toshiyuki Shimizu
俊行 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60069511A priority Critical patent/JPS61228658A/en
Priority to EP86104427A priority patent/EP0201706B1/en
Priority to DE8686104427T priority patent/DE3681490D1/en
Publication of JPS61228658A publication Critical patent/JPS61228658A/en
Publication of JPH053746B2 publication Critical patent/JPH053746B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/37DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor being at least partially in a trench in the substrate

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To obtain a memory element, which can sufficiently hold the withstanding voltage between a P<+> diffused layer and an N<+> diffused layer without decreasing integration density, by providing a structure, in which the P<+> diffused layer and the N<+> diffused layer are isolated in the longitudinal direction. CONSTITUTION:Boron is doped in the inner wall of a groove 44 formed by a second groove formation, and a P<+> diffused layer 6 is formed. Then, an SiO2 film 2 and an Si3N4 film 3 are selectively removed in order to form a contact hole 7 at the end part of the groove capacitor. A capacitor insulating film 8 is formed. Then, after polycrystalline silicon 9 is formed on the entire surface of a wafer in gaseous phase, the polycrystalline silicon on the surface of the Si3N4 film is removed, and the groove 44 is buried by polycrystalline silicon 9. The contact hole 7 is formed by photoetching technology again. Thereafter, a polycrystalline silicon electrode 11 is formed. By the diffusion of N-type impurities in the polycrystalline silicon electrode, an N<+> diffused layer 10 is formed on the surface of a substrate at the part of the contact hole. At this time, the N<+> diffused layer 10 and the P<+> diffused layer 6 are separated by about 0.5-1mum so that sufficient withstanding voltage is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置Knit、%にダイナミックRAM
の情報蓄積部の構造に関する@ 〔従来の技術〕 半導体基板特にシリコン半導体基板上に形成される集積
回路は高集積化、大容量化の一途を辿シメモリ素子の様
な集積回路では1Mビット又はそれ以上へと集積度が増
大してきている。現在ダイナミックRAMの様なICメ
モリに於いては記憶単位(セル)か1ケのMOS)ラン
ジスタと1ケのコンデンサから構成される方式が大容量
化に適しておシ主流となりている。lチップ尚り1メガ
ビット以上の記憶容量を持つDRAMを実現するために
は、1素子轟りの面積特に素子面積の大部分を占めるコ
ンデンサーの面積をいかに小さくするかが鍵である。こ
のためコンデンサーの面積を減少させる手段さして、シ
リコン基板に溝を堀〕、この溝の内壁及び底面を利用し
てコンデンサーを形成する方法が提案されている。(1
982Inferna −1ional Elecfr
ou Devices Meeting、Techui
calDigest PP、806−808)、例えば
第2図1a)に示す如く、P型シリコン基板表面に#1
4を形成し、当該溝内Knn十数散層0を形成した後に
容量絶縁膜8と電極9とで容量が構成される。この構造
のセルでは溝1[1を容量として用いているために1素
子歯たシのしめる面積が小さくなる%叡を有している。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor device Knit, a dynamic RAM
[Prior art] Integrated circuits formed on semiconductor substrates, especially silicon semiconductor substrates, are becoming increasingly highly integrated and have a large capacity, and integrated circuits such as memory devices have a capacity of 1M bits or more. The degree of integration is increasing. Currently, in IC memories such as dynamic RAMs, a system consisting of a storage unit (cell) or one MOS transistor and one capacitor is suitable for increasing the capacity and is the mainstream. In order to realize a DRAM with a storage capacity of 1 megabit or more per chip, the key is how to reduce the area of one element, especially the area of the capacitor, which occupies most of the element area. Therefore, as a means to reduce the area of a capacitor, a method has been proposed in which a groove is dug in a silicon substrate and the inner wall and bottom surface of the groove are used to form a capacitor. (1
982Inferna-1ional Elecfr
ou Devices Meeting, Techui
calDigest PP, 806-808), for example #1 on the surface of the P-type silicon substrate, as shown in Figure 2 1a).
4, and after forming a Knn dispersed layer 0 in the groove, a capacitor is formed by the capacitor insulating film 8 and the electrode 9. In the cell of this structure, since the groove 1 [1 is used as a capacitor, the area covered by one element tooth is small.

しかしこの方式は電荷が半導体基板表面On+拡散領域
10に蓄えられるために、高密度化のためにセル間隔を
接近させると蓄えられた電喬がパンチスルーのために隣
夛のセルと干渉を起こしリークしてしまうこと、又深い
溝が形成されることからα線等の電電放射線が半導体基
板に照射された場合、発生するキャリアがセルに集まシ
易いため、記憶された情報の担い手である電荷が消失し
やすいという欠点がある。これを解決する手段として、
鮪2図(b)K示す様に溝内の電極9側に電荷を蓄積す
る方式が提案されている(特開昭59−82761)。
However, in this method, charge is stored in the On+ diffusion region 10 on the surface of the semiconductor substrate, so if the cell spacing is made closer to achieve higher density, the stored charge may interfere with neighboring cells due to punch-through. Because of leakage and the formation of deep grooves, when a semiconductor substrate is irradiated with electromagnetic radiation such as alpha rays, the generated carriers tend to gather in cells, so they are carriers of stored information. The disadvantage is that the charge is easily lost. As a means of solving this,
As shown in Figure 2(b)K, a method has been proposed in which charges are accumulated on the electrode 9 side within the groove (Japanese Patent Laid-Open No. 59-82761).

即ち当該構造ではP型シリコン基板表面に溝を形成し、
当該溝内のシリコン基板表面VcP+拡散層6を形成し
た後に′4量絶縁膜8と電極9とで容量が形成される。
That is, in this structure, a groove is formed on the surface of a P-type silicon substrate,
After forming the VcP+ diffusion layer 6 on the surface of the silicon substrate within the trench, a capacitor is formed between the insulating film 8 and the electrode 9.

又電極9はnチャネルMOS)ランジスタ13のソース
又はドレインとなるn+拡散層10に接続される。この
セルを用いれにセル間隔を接近させても相互の干渉が起
こらず、またα線等の11離放射線が基板に照射され、
基板内部Kit荷が発生してもこの電荷は尚該構セルに
入シにくいためα線による駒動作も防ぐことが出来高密
度、高集積り几AMのセル構造とに極めて有効であると
考えられる。
Further, the electrode 9 is connected to an n+ diffusion layer 10 which becomes a source or drain of an n-channel MOS transistor 13. Using this cell, even if the cell spacing is brought close, mutual interference will not occur, and the substrate will be irradiated with 11-element radiation such as alpha rays.
Even if a charge is generated inside the substrate, it is difficult for this charge to enter the cell structure, so it is possible to prevent the movement of the pieces due to alpha rays, and it is considered to be extremely effective for the cell structure of a high-density, highly integrated AM.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし当該方式で杜、電極に電圧が加わった場合、基板
表面において空乏層が拡がるために容量の低下を生ずる
ζ七から、これを防止する必要がめる。即ち、DRAM
で社電荷の蓄積量の大小による電位差を検出して情報の
Jl、IQ# を読み分ける記憶方式となってお’)%
’l”l”O@の電位差は大きい組信号を読み取り易く
誤動作も防ぐことができることから容量電極に加わる電
圧の変化により容量値が減少するのは好ましくない。従
って溝容量部に接するラリコン基板部分には、高濃度の
不純物をドープし、空乏層の伸びを抑える必要がある。
However, in this method, when a voltage is applied to the electrodes, a depletion layer expands on the substrate surface, causing a decrease in capacitance, which needs to be prevented. That is, DRAM
It is a storage method that detects the potential difference depending on the amount of accumulated electric charge and distinguishes the information Jl and IQ#.
Since the potential difference of 'l"l"O@ makes it easy to read large group signals and prevents malfunctions, it is undesirable for the capacitance value to decrease due to a change in the voltage applied to the capacitor electrode. Therefore, it is necessary to dope a high concentration of impurity into the portion of the lacon substrate in contact with the trench capacitor to suppress the growth of the depletion layer.

即ちnチャネルデバイスの場合には溝容量部に接する基
板表面部分を高濃度のPg(1011〜10*oc*−
リにドープする必要がある。
That is, in the case of an n-channel device, the surface portion of the substrate in contact with the groove capacitance is coated with a high concentration of Pg (1011 to 10*oc*-
It is necessary to dope it.

−盲溝容量の電極9はnチャネルMOS)ランジスタ1
3のソース又はドレインとなるn十領域lOの一方とオ
ーム性接触をとる必要がある。然るに+ P 拡散層6とn 拡散層10が接すると内接合間の耐
圧が著しく低下しその結果溝容量に蓄えるための電荷が
基板へ流出してしまうという問題があった。この解決策
としてliP  拡散層6とn+拡散層10とを位置的
に離す仁とが最も有効であるが、内拡散層を平面内で離
すことはlセル当夛の占める面積が大きくなる仁とから
好ましくない。
- The electrode 9 of the blind groove capacitance is an n-channel MOS) transistor 1
It is necessary to make ohmic contact with one of the n0 regions 1O which will be the source or drain of No. 3. However, when the +P diffusion layer 6 and the n diffusion layer 10 come into contact, the breakdown voltage between the inner junctions is significantly lowered, resulting in a problem in that the charge stored in the groove capacitance flows out to the substrate. The most effective solution to this problem is to separate the LiP diffusion layer 6 and the n+ diffusion layer 10 in position, but separating the inner diffusion layer in a plane increases the area occupied by the l cell. undesirable.

本発明は、上記した従来の欠点を改善する新規なメ七り
素子構造を提供するものであ)、第1図に示す様にP 
拡散層6とn 拡散層10とを縦方向に分離した構造と
するものである。
The present invention provides a novel multi-element structure that improves the above-mentioned conventional drawbacks.
The structure is such that the diffusion layer 6 and the n-diffusion layer 10 are separated in the vertical direction.

即ち、本発明では、メモリ素子は集積密度を低減せしめ
ることなくP 拡散層6とn十数散層10との耐圧を充
分に保持できる特徴を有している0〔実施例〕 第3図は、第1図に示す本発明になるメモリ素子構造を
形成するための製作工程を説明する図であシ、半導体基
板1としてP型基板を用いたれチャネル製セルを取シ上
げる。Pチャネル型は単にnをPKilき換えれは良い
。図中の1は半導体基板、6はP+拡散層、8は容量絶
縁膜、9は多結晶シリコン電極、7は多結晶シリコン電
極9とnチャネルMOSFET 13のn+拡散層10
を結びつけるコンタクト穴である。14はMOSFET
13のゲート電極を兼ねるワード線である。第3図(a
)〜(h)において、第1図に示す構造のメモリーセル
を形成する製造工程を)−を追って説明する〇まず第3
図(a)K示す様&C1〜5 x 101’cr”程度
の不純物濃度のP型単結晶シリコン基板1表面に8i0
冨膜2、および8i1N4膜3を形成した後、衆知のフ
ォトエツチング技術を用いて所望の領域の8i3N4膜
3.stow膜2.シリコン基板1を順次エツチングし
第1の溝4を形成する。5ins膜2および8i3N4
膜3の好ましい厚さはそれぞれ500A程度および10
00Afi度である。シリコン基板lに設けられる溝の
深さは特に制約はないが1〜2μm程度エツチングされ
るのが良い(第1溝形成)。
That is, in the present invention, the memory element has the feature that the breakdown voltage of the P diffusion layer 6 and the n-doped diffusion layer 10 can be sufficiently maintained without reducing the integration density. 1 is a diagram illustrating the manufacturing process for forming the memory element structure according to the present invention shown in FIG. 1, in which a P-type substrate is used as a semiconductor substrate 1 and a channel cell is taken up. For the P-channel type, simply replace n with PKil. In the figure, 1 is a semiconductor substrate, 6 is a P+ diffusion layer, 8 is a capacitive insulating film, 9 is a polycrystalline silicon electrode, 7 is a polycrystalline silicon electrode 9 and an n+ diffusion layer 10 of an n-channel MOSFET 13
It is a contact hole that connects the 14 is MOSFET
This is a word line that also serves as the gate electrode of No. 13. Figure 3 (a
) to (h), the manufacturing process for forming a memory cell having the structure shown in FIG.
Figure (a) As shown in K&C1~5x101'cr'' impurity concentration on the surface of P type single crystal silicon substrate 1.
After forming the thick film 2 and the 8i1N4 film 3, a well-known photoetching technique is used to remove the 8i3N4 film 3 in desired areas. Stow membrane2. The silicon substrate 1 is sequentially etched to form a first groove 4. As shown in FIG. 5ins membrane 2 and 8i3N4
The preferred thickness of the membrane 3 is about 500A and 10A, respectively.
00Afi degree. Although there is no particular restriction on the depth of the groove provided in the silicon substrate 1, it is preferable that the groove be etched to about 1 to 2 .mu.m (first groove formation).

(b)  次にウェーハ全面に8i01膜5を形成する
(b) Next, an 8i01 film 5 is formed on the entire surface of the wafer.

この840g膜5は溝側壁へのボロン拡散を防止するマ
スクに用いる。840g膜5は溝側壁に形成する必要が
あシ、熱酸化あるいは減圧気相成長法等によシ形成した
シあるいは、いりたんポリシリコン膜を形成した彼処こ
れを熱酸化することKよりSiO,@5としても良い。
This 840g film 5 is used as a mask to prevent boron from diffusing into the groove sidewalls. The 840g film 5 needs to be formed on the side walls of the trench, and may be formed by thermal oxidation or low pressure vapor phase growth, or by thermally oxidizing the polysilicon film once formed. You can also set it as @5.

又、さらに8i@N4膜を形成し、840.とSi2N
3膜の2層構造膜としても良い。当該膜はボロン拡散を
防止する必要上1000〜3000A程度設ければ良い
In addition, an 8i@N4 film was further formed to form an 840. and Si2N
It may be a two-layer structure film with three films. The film may have a current of about 1,000 to 3,000 A in order to prevent boron diffusion.

(C1次に反応性イオンエツチングによシ第1の溝4を
更に深くエツチングし@2の溝44を形成する(第2溝
形成)。仁の際第1溝4底部の810鵞膜5はエツチン
グ除去され、つづいて84基板1のエツチングが進むが
、溝側壁の8i01膜5はエツチングされにくいため後
の拡散のマスクとして充分使用できる。
(C1) Next, the first groove 4 is etched deeper by reactive ion etching to form the groove 44 of @2 (second groove formation). After the etching is removed, the etching of the 84 substrate 1 proceeds, but since the 8i01 film 5 on the trench sidewall is difficult to be etched, it can be used satisfactorily as a mask for later diffusion.

(d)  第2溝形成による溝44内壁にボロンを10
1$〜10m’1C1l″″3ドープしP 層6を形成
する。
(d) Add 10% boron to the inner wall of the groove 44 formed by forming the second groove.
A P layer 6 is formed by doping 1$~10m'1C11''3.

この除電1の溝4側壁に残った8i01膜5はボーン拡
散のマスクになシこの部分にはボロンは拡散されない。
The 8i01 film 5 remaining on the side wall of the groove 4 of the static elimination 1 serves as a mask for bone diffusion, and boron is not diffused into this portion.

よって溝44低部の内壁にのみP 層6が形成される。Therefore, the P layer 6 is formed only on the inner wall of the lower portion of the groove 44.

(e)  次に溝容量端部にコンタクト穴7を形成する
ためK 8 i 0鵞膜2および8iHN4膜3を選択
的に除去し、続いて容量絶縁膜8を形成する。この、容
量絶縁膜8は基板を熱酸化して得られる810g膜を用
いても、又はSi偽膜と84HN4膜の2層構造として
も良く、その選択は自由である。容量絶縁膜8の膜厚は
Sin、11[換算で100〜200A程度であること
が望ましい。次にウェーハ全面に多結晶シリコン9を気
相成長した後に%8fN4膜3表面の多結晶シリコンを
除去し溝44に多結晶シリコン9を埋め込む。1度で溝
44が多結晶シリコン9で埋まらない場合は数回気相成
長とエツチングを繰)返せ#i溝は多結晶シリコン9で
埋まる。多結晶シリコン9Ku膜形成中に、もしくは膜
形成後にリン等の不純物をドープし、十分n型にする。
(e) Next, the K 8 i 0 film 2 and the 8iHN4 film 3 are selectively removed to form a contact hole 7 at the end of the trench capacitor, and then a capacitor insulating film 8 is formed. This capacitor insulating film 8 may be an 810g film obtained by thermally oxidizing the substrate, or may have a two-layer structure of a Si pseudo film and an 84HN4 film, and the choice is free. The thickness of the capacitive insulating film 8 is preferably about 100 to 200 A in terms of Sin, 11. Next, polycrystalline silicon 9 is grown in a vapor phase over the entire surface of the wafer, and then the polycrystalline silicon on the surface of the %8fN4 film 3 is removed and the grooves 44 are filled with polycrystalline silicon 9. If the groove 44 is not filled with polycrystalline silicon 9 at one time, repeat the vapor phase growth and etching several times.#i The groove is filled with polycrystalline silicon 9. During or after forming the polycrystalline silicon 9Ku film, an impurity such as phosphorus is doped to make it sufficiently n-type.

(f)  次にフォトエツチング技術化よりコンタクト
穴7を再び形成した後に、多結晶シリコン膜を形成し、
続いてフォトエツチング技術によシ多結晶シリコン電極
11が形成される。当該多結晶シリコン電極11はコン
タクト穴7を通じて基板1に接しておシ、多結晶シリコ
ン電極中のn型不純物が拡散することによシコンタクト
穴部の基板表面にn+拡散層10が形成される。この時
n+拡散層10とP 拡散層6とを0.5〜1μm程度
離し充分な耐圧が得られるようKする。次に多結晶シリ
コン11上はワード線及びビット線を形成するので更に
熱酸化によ!13000〜6000 A1度の8i0鵞
膜12を形成する。
(f) Next, after forming the contact hole 7 again using photoetching technology, a polycrystalline silicon film is formed,
Subsequently, a polycrystalline silicon electrode 11 is formed by photoetching technology. The polycrystalline silicon electrode 11 is in contact with the substrate 1 through the contact hole 7, and as the n-type impurity in the polycrystalline silicon electrode diffuses, an n+ diffusion layer 10 is formed on the substrate surface in the contact hole portion. . At this time, the n+ diffusion layer 10 and the P diffusion layer 6 are separated by about 0.5 to 1 .mu.m to obtain a sufficient breakdown voltage. Next, word lines and bit lines will be formed on the polycrystalline silicon 11, so thermal oxidation will be performed! 13000 to 6000 A1 degree 8i0 gossamer 12 is formed.

(g)  第1被膜であるSi3N4膜a、sto、膜
2ヲエッチング除去した後、トランスファーゲートとし
て用いるnチャネルl’140BFET13を通常の方
法を用いて形成する。folded bit 1ine
タイプのセル構造をとる場合には、当該MOSFE71
3のゲート電極14はワード線となル、隣のセルのワー
ド線が多結晶シリコン電極9上を8i01膜12を介し
て配置される。
(g) After etching and removing the Si3N4 film a, sto, and film 2, which are the first films, an n-channel l'140BFET 13 to be used as a transfer gate is formed using a conventional method. folded bit 1ine
type of cell structure, the relevant MOSFE71
The gate electrode 14 of No. 3 serves as a word line, and the word line of the adjacent cell is placed on the polycrystalline silicon electrode 9 via the 8i01 film 12.

(hl  層間絶縁膜15を形成し、所望のコンタクト
穴を形成した後、アルミ配線16によってビット線を形
成する。
(hl After forming an interlayer insulating film 15 and forming a desired contact hole, a bit line is formed using an aluminum wiring 16.

以上の様に、本発明によれは第1溝形成後反応性イオン
エツチングにより側壁に不純物拡散マスクを残したまま
第2溝形成によシ溝を深く掘りこの後P型不純物を導入
することKより溝の深い部分にのみP 拡散層を形成し
、MOS11″ETのソース又はドレインとなるn+拡
散層との間に充分攻距離をおくことが出来る。従って、
P+拡散層とn+拡散層との間の耐圧が向上し、情報消
失が防止できる。本発明になる半導体装置Fi第1溝形
成工程の溝深さによシP 層の形成される深さが決まる
。溝深さは充分コントロールできるため゛、歩留シ良く
当骸装置を実現することが出来る。
As described above, according to the present invention, after forming the first trench, a deep trench is dug by reactive ion etching to form the second trench while leaving an impurity diffusion mask on the side wall, and then P-type impurities are introduced. By forming the P diffusion layer only in the deeper part of the groove, it is possible to maintain a sufficient distance between it and the n+ diffusion layer which becomes the source or drain of the MOS 11''ET.
The withstand voltage between the P+ diffusion layer and the n+ diffusion layer is improved, and information loss can be prevented. The depth at which the P layer is formed is determined by the groove depth in the first groove forming step of the semiconductor device Fi according to the present invention. Since the groove depth can be sufficiently controlled, this skeleton device can be realized with high yield.

〔発明の効果〕〔Effect of the invention〕

本発明においては溝容量部の高濃度不純物領域とトラン
ジスタ部のンース・ドレイン領域とを縦方向に離すこと
ができるため、この部分の耐圧が向上する。又lセル@
シの面積が縮小できるため高密度のD−RAMが実現で
きる。
In the present invention, the high-concentration impurity region of the trench capacitance section and the source/drain region of the transistor section can be separated in the vertical direction, so that the breakdown voltage of this portion is improved. Mata l cell @
Since the area of the disk can be reduced, a high-density D-RAM can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

略工程を説明する素子断面図である。 l・・・・・・シリコン基板、2・・・・・・8i0.
膜、3・・・・・・8i、N、膜、4・・・・・・溝、
5・・・・・・810m膜(第2被膜)、6・・・・・
・P 拡散層、7・・・・・・コンタクト穴、8・・・
・・・容量絶縁膜、9・・・・・・多結晶シリコン、1
0・・・・・・n+拡散層、11・・・・・・多結晶シ
リコン、12・・・・・・8fO,膜、13・・・・・
・nチャネルMOSFET。 14・・・・・・ワード線、15・・・・・・層間絶縁
膜、16・・・・・・アルξ配線。 代理人 弁理士  内 原   晋 第1図
FIG. 3 is a cross-sectional view of an element schematically explaining a process. l...Silicon substrate, 2...8i0.
Membrane, 3...8i, N, membrane, 4...groove,
5...810m film (second film), 6...
・P diffusion layer, 7...contact hole, 8...
... Capacitive insulating film, 9 ... Polycrystalline silicon, 1
0...n+ diffusion layer, 11...polycrystalline silicon, 12...8fO, film, 13...
・N-channel MOSFET. 14... Word line, 15... Interlayer insulating film, 16... Al ξ wiring. Agent: Susumu Uchihara, patent attorney Figure 1

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に設けられた、内壁に該半導体基板と同
型の高濃度不純物層を設けられてなる溝内に、絶縁膜と
電極とを積層して構成された容量と、当該容量の電極が
前記半導体基板表面に設けられた、ソース又はドレイン
となる不純物領域の一方に接続されたMOS型トランジ
スタとから構成されたダイナミックメモリ素子において
、容量の内壁に設けられた高濃度不純物層が、トランジ
スタのソース又はドレインとなる不純物領域と少くとも
接しない程度に前記半導体基板表面から離れた深い内壁
部に設けられることを特徴とした半導体装置。
A capacitor formed by laminating an insulating film and an electrode in a groove provided on the surface of a semiconductor substrate, the inner wall of which is provided with a highly concentrated impurity layer of the same type as the semiconductor substrate, and an electrode of the capacitor as described above. In a dynamic memory element configured with a MOS transistor connected to either a source or drain impurity region provided on the surface of a semiconductor substrate, a highly concentrated impurity layer provided on the inner wall of the capacitor connects to the source of the transistor. Alternatively, a semiconductor device characterized in that the semiconductor device is provided in a deep inner wall portion away from the surface of the semiconductor substrate to the extent that it does not come into contact with an impurity region that becomes a drain.
JP60069511A 1985-04-01 1985-04-01 Semiconductor device Granted JPS61228658A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60069511A JPS61228658A (en) 1985-04-01 1985-04-01 Semiconductor device
EP86104427A EP0201706B1 (en) 1985-04-01 1986-04-01 Dynamic random access memory device having a plurality of improved one-transistor type memory cells
DE8686104427T DE3681490D1 (en) 1985-04-01 1986-04-01 DYNAMIC MEMORY ARRANGEMENT WITH OPTIONAL ACCESS WITH A VARIETY OF INTRANSISTOR CELLS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60069511A JPS61228658A (en) 1985-04-01 1985-04-01 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61228658A true JPS61228658A (en) 1986-10-11
JPH053746B2 JPH053746B2 (en) 1993-01-18

Family

ID=13404833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60069511A Granted JPS61228658A (en) 1985-04-01 1985-04-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61228658A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208659A (en) * 1986-03-03 1987-09-12 Fujitsu Ltd Dynamic random access memory
US5541440A (en) * 1993-07-28 1996-07-30 Mitsubishi Denki Kabushiki Kaisha Isolation structure for semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982761A (en) * 1982-11-04 1984-05-12 Hitachi Ltd Semiconductor memory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982761A (en) * 1982-11-04 1984-05-12 Hitachi Ltd Semiconductor memory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208659A (en) * 1986-03-03 1987-09-12 Fujitsu Ltd Dynamic random access memory
US5541440A (en) * 1993-07-28 1996-07-30 Mitsubishi Denki Kabushiki Kaisha Isolation structure for semiconductor device

Also Published As

Publication number Publication date
JPH053746B2 (en) 1993-01-18

Similar Documents

Publication Publication Date Title
US4252579A (en) Method for making single electrode U-MOSFET random access memory utilizing reactive ion etching and polycrystalline deposition
US7211867B2 (en) Thin film memory, array, and operation method and manufacture method therefor
KR100587782B1 (en) Bottle-shaped trench capacitor with epi buried layer
US6204140B1 (en) Dynamic random access memory
US4646118A (en) Semiconductor memory device
EP0167764B1 (en) Dynamic ram cell
JPH0616549B2 (en) Semiconductor integrated circuit device
US8669603B2 (en) Semiconductor constructions
US5156993A (en) Fabricating a memory cell with an improved capacitor
US20070002691A1 (en) Buried strap contact for a storage capacitor and method for fabricating it
US8431986B2 (en) Semiconductor device having three-dimensional transistor and manufacturing method thereof
JPH04234166A (en) Semiconductor integrated circuit device
JPS61185965A (en) Memory cell and making thereof
US6441423B1 (en) Trench capacitor with an intrinsically balanced field across the dielectric
US5214496A (en) Semiconductor memory
US4901128A (en) Semiconductor memory
JPH0642534B2 (en) Method of forming a contact on a wall extending to a substrate
JPS60154664A (en) Semiconductor memory device
JPS61228658A (en) Semiconductor device
JPS6350056A (en) Semiconductor storage device
JPS61107768A (en) Semiconductor memory device
JPS6340362A (en) Semiconductor storage device
EP0194682A2 (en) Semiconductor memory device
JPS6058662A (en) Memory device for temporary storage of charge
KR900005355B1 (en) Semiconductor memory device and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees