JPS6120372A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPS6120372A
JPS6120372A JP59140972A JP14097284A JPS6120372A JP S6120372 A JPS6120372 A JP S6120372A JP 59140972 A JP59140972 A JP 59140972A JP 14097284 A JP14097284 A JP 14097284A JP S6120372 A JPS6120372 A JP S6120372A
Authority
JP
Japan
Prior art keywords
organic material
type organic
type
photoelectric conversion
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59140972A
Other languages
Japanese (ja)
Inventor
Tetsuyuki Kurata
哲之 蔵田
Makoto Tsunoda
誠 角田
Yuji Hizuka
裕至 肥塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59140972A priority Critical patent/JPS6120372A/en
Publication of JPS6120372A publication Critical patent/JPS6120372A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • H10K30/211Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions comprising multiple junctions, e.g. double heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PURPOSE:To increase the photoelectric conversion efficiency by enlarging the response wavelength band by a method wherein the first photopermeable conductive material is successively provided with the first N type organic material layer, second N type organic material layer made of an organic material having the basic absorption end to the lower energy side from the first N type organic material, a P type organic maternal layer, and the second conductive layer. CONSTITUTION:The first conductive material 9 serving as a transparent or semitransparent electrode is successively provided with the first N type organic material layer 10, second N type organic material layer 11, and a P type organic material layer 12; then, the second conductive material 13 serving as the electrode is adhered thereon. As the first and second N type organic material, pi- conjugated polymer having conjugated double-bonds is used for the skeleton of the chemical structure, and then changed to an N type material by doping with suitable electron donors. Besides, the basic absorption end of the material made as the first N type organic material is so made as to be located to the higher energy side from the second N type organic material. As the P type organic material, a material produced by doping pi-conjugated polymer into P type or the like is used.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は新規な光電変換素子に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a novel photoelectric conversion element.

〔従来技術〕[Prior art]

従来、光電変換素子としては、主としてシリコン半導体
の表面近(Kp−n接合を作ることにより得られる太陽
電池が考案され、実用化されている。
Conventionally, as a photoelectric conversion element, a solar cell obtained mainly by forming a near-surface (Kp-n junction) of a silicon semiconductor has been devised and put into practical use.

しかし、これとは別にもつと安価な有機材料、例えばポ
リアセチレン々どの導電性高分子材料を半導体として利
用したものや、例えばフタロシアニン々どの有機色素の
光増感能を利用したものなどの検討も行われている。
However, in addition to this, we are also investigating other inexpensive organic materials, such as those that use conductive polymer materials such as polyacetylene as semiconductors, and those that utilize the photosensitizing ability of organic dyes such as phthalocyanine. It is being said.

これら有機材料を用いたサンドインチタイプの光電変換
素子は主として第1図に示した構造のようなものである
Sand inch type photoelectric conversion elements using these organic materials mainly have a structure as shown in FIG.

この動作原理は、透明又は半透明電極(1)を透過した
光(8)が、有機化合物層(2)K入射すると、透明又
は半透明電極(1)と有機化合物層(2)の界面に電位
差が生じ、リード線(5)および(7)の間に光誘起電
力が発生するというものである。なお、 (4) 、 
(6)tiリード接続端である。この場合、透明又は半
透明電極(1)と有機化合物層(2)との間には異方接
合(例えばp−n接合)やショットキー接合などができ
ていることが必要で、さらに有機化合物M(2)と電極
(3)は等方接台、例えばオーミック接触例なっている
ことが必要である。さらに詳しく言うと、光照射下での
それ自身の仕事関数(フェルミ準位)の値が透明又は半
透明電極(1)〉有機化合物層(2)二電極(3)、ま
たは透明又は半透明電極(1)〈有機化合物層(2)に
電極(3)となっていることが必要で、リード線(5)
 、 (7)間の電力は、通常前者の場合には(5)が
正極、後者の場合には(7)が正極となる。有機光電変
換素子とはこのような動作原理を応用しようとするもの
である。
The principle of this operation is that when light (8) transmitted through the transparent or semi-transparent electrode (1) enters the organic compound layer (2), it reaches the interface between the transparent or semi-transparent electrode (1) and the organic compound layer (2). A potential difference is generated, and photo-induced power is generated between the lead wires (5) and (7). In addition, (4),
(6) Ti lead connection end. In this case, it is necessary that an anisotropic junction (for example, a p-n junction) or a Schottky junction be formed between the transparent or semi-transparent electrode (1) and the organic compound layer (2), and that the organic compound layer M(2) and electrode (3) need to be in isotropic contact, for example ohmic contact. More specifically, the value of its own work function (Fermi level) under light irradiation is transparent or semitransparent electrode (1) > organic compound layer (2) two electrodes (3), or transparent or semitransparent electrode (1) It is necessary to have an electrode (3) on the organic compound layer (2), and a lead wire (5)
, (7), in the former case, (5) is normally the positive electrode, and in the latter case, (7) is the positive electrode. Organic photoelectric conversion elements are intended to apply this operating principle.

しかしながら、このような有機材料を用いた光電変換素
子は、いずれも光電変換効率が低く、得られる光起電力
が不安定で、寿命が短いというような欠点があり、実用
化のためには解決すべき問題点が多数残されている。
However, all photoelectric conversion elements using such organic materials have drawbacks such as low photoelectric conversion efficiency, unstable photovoltaic force, and short lifespan, which cannot be solved for practical use. Many issues remain to be addressed.

〔発明の概要〕[Summary of the invention]

この発明は上記従来のものの欠点を除去するため罠なさ
れたもので、透光性第1導電材料上に第1n型有機材料
層、第1n型有機材料より低エネルギー側に基礎吸収端
を有する有機材料より成る第2n型有機材料層、p型有
機材料層およびW、2導電材料を順に設けたものを用い
ることにより、応答波長域が広がると共に、nnp接合
による分離作用によりnnおよびpn接合のものよりざ
らに光電変換効率が増大し、さらに安価な有機材料を用
いることができる光電変換素子を提供することを目的と
する。
The present invention has been made to eliminate the drawbacks of the conventional ones, and includes a first n-type organic material layer on a transparent first conductive material. By using a layer in which a second n-type organic material layer, a p-type organic material layer, and two conductive materials are provided in this order, the response wavelength range is broadened, and the separation effect of the nnp junction allows for nn and pn junctions. It is an object of the present invention to provide a photoelectric conversion element in which the photoelectric conversion efficiency increases more roughly and in which a cheaper organic material can be used.

〔発明の実施例〕[Embodiments of the invention]

第2図はこの発明の一実施例の光電変換素子の断面図で
あり、(8)は光、(9)は透明又は半透明電極となる
第1導電材料、00は第1n型有機材料層、Q])#−
i第2n型有機材料層、(6)はp型有機材料層、(至
)は電極となる第2導電材料、α→、 Q6はリード端
、Q6.Q7)はリード線である。
FIG. 2 is a cross-sectional view of a photoelectric conversion element according to an embodiment of the present invention, in which (8) is light, (9) is a first conductive material that becomes a transparent or semi-transparent electrode, and 00 is a first n-type organic material layer. ,Q])#-
i second n-type organic material layer, (6) a p-type organic material layer, (to) a second conductive material that becomes an electrode, α→, Q6 a lead end, Q6. Q7) is the lead wire.

即ち、透明又は半透明電極となる第1導電材料(9)上
に第1n型有機材料層(10、第2n型有機材料層αυ
およびp型有機材料層(6)を順に設け、その上に電極
となる第2導電材料a4を被着し、電極(9)。
That is, a first n-type organic material layer (10, a second n-type organic material layer αυ
and a p-type organic material layer (6) are sequentially provided, and a second conductive material a4 serving as an electrode is deposited thereon to form an electrode (9).

(至)にリード#l(ト)、 a’hを結着し電力を取
り出せるようにして、nnp型光電変換素子を構成する
ものである。
Leads #l (g) and a'h are connected to (to) so that electric power can be extracted, thereby constructing an nnp type photoelectric conversion element.

なお、第1導電材料を、例えばガラスおよ、びポリエス
テルフィルムなどの透−開基板に導電材料を被着した透
明又は半透明電極としても用いられるが、図は第1導電
材料のみで電極を構成した場合を示す。
Note that the first conductive material can also be used as a transparent or semitransparent electrode made by coating a conductive material on a transparent substrate such as glass or polyester film, but the figure shows an electrode made of only the first conductive material. Indicates the case configured.

この発明に係わる第1導電材料としては、n型材料と良
いオーミック接触をとる仕事関数の小さい金属、例えば
In、 A4 Ga、In酸化物、 Sn酸化物、In
−8n酸化物およびIn −Ga合金等が用いられる。
The first conductive material according to the present invention includes a metal with a small work function that makes good ohmic contact with the n-type material, such as In, A4 Ga, In oxide, Sn oxide, In
-8n oxide, In-Ga alloy, etc. are used.

第1導電材料が透明である場合は特に問題は無いが、通
常半透明になるように透明基板に上記金属を真空蒸着、
スパッタリング、CVD(ケミカル・ペーパ・デポジシ
ョン)およびメッキ等の方法によって被着させて、透明
又は半透明電極を得る。
There is no particular problem if the first conductive material is transparent, but usually the metal is vacuum-deposited on a transparent substrate to make it semi-transparent.
The transparent or translucent electrodes are deposited by methods such as sputtering, CVD (chemical paper deposition) and plating.

この時金属層の光透過率としては、第1n型有機材料と
の接触抵抗や金属自身の抵抗を考慮して決められるが、
通常5チから90%の間に制御される。
At this time, the light transmittance of the metal layer is determined by considering the contact resistance with the first n-type organic material and the resistance of the metal itself.
It is usually controlled between 5% and 90%.

この発明に係わる第1n型有機材料および第2n型有機
材料としては、例えばポリアセチレン。
Examples of the first n-type organic material and the second n-type organic material according to the present invention include polyacetylene.

ポリピロール、ポリチェニレン、ポリアニリン。Polypyrrole, polythenylene, polyaniline.

ポリフェニレン、ポリフェニレンスルフィドおよびポリ
フェニレンオキシドなど化学構造の骨格に共役二重結合
を有するπ−共役系高分子が用いられる。通常、π−共
役系高分子はそれ自身では絶縁体であるが、適当な電子
受容体(例えば臭素。
π-conjugated polymers having a conjugated double bond in the chemical structure skeleton are used, such as polyphenylene, polyphenylene sulfide, and polyphenylene oxide. Normally, π-conjugated polymers are insulators by themselves, but they have suitable electron acceptors (e.g. bromine).

ヨウ素、ヨウ化臭素、五フッ化ヒ素および過塩菓酸等)
をドーピングすることによってp型に、また適当な電子
供与体(例えばNa、 Li、 Kおよびアミン等)を
ドーピングすることによってn型の材料圧することがで
き、その電導度も半導体領域から金属鎖*まで幅広く制
御可能で好ましく用いられる。さらに例えば、ローダミ
ンB、マラカイトグリーン、クリスタルバイオレットお
よびビナシアツールなどのn型電導を示す有機色素も用
いられる。
(Iodine, bromine iodide, arsenic pentafluoride, persalted confectionery acid, etc.)
The material can be made p-type by doping, or n-type by doping with suitable electron donors (e.g. Na, Li, K and amines), and its conductivity can also be changed from the semiconductor region to the metal chain*. It is preferably used because it can be controlled over a wide range of conditions. Furthermore, organic dyes exhibiting n-type conductivity such as, for example, rhodamine B, malachite green, crystal violet and vinacia tool can also be used.

なお、上記π−共役系高分子材料および有機色素を互い
に2種以上組合せて、あるいは重ねて第1および第2n
型有機材料として用いてもよい。
Note that two or more of the above π-conjugated polymer materials and organic dyes may be used in combination with each other, or in combination with each other to form the first and second n-conjugated polymer materials.
It may also be used as a type organic material.

上記π−共役系高分子材料および有機色素を第In型有
機材料および第2n型有機材料として用いる場合、第1
n型有機材料とする材料の基礎吸収端rEg)が第2n
型有機材料よ)高エネルギー側にあるという条件を満足
する組合せを上記π−共役系高分子材料および有機色素
の中から各々選定する。
When using the above-mentioned π-conjugated polymer material and organic dye as the In-type organic material and the second N-type organic material, the first
The basic absorption edge rEg) of the material used as an n-type organic material is the second n-th
(type organic material) A combination satisfying the condition of being on the high energy side is selected from the above-mentioned π-conjugated polymer material and organic dye.

又、第2n型有機材料の電気伝導度は第1n型有機材料
よりも小さいのが望ましいが、上記のようにドーピング
により電気伝導度を制御できることがらπ−共役系高分
子材料が好んで用いられる。
Further, it is desirable that the electrical conductivity of the second n-type organic material is lower than that of the first n-type organic material, but a π-conjugated polymer material is preferably used because the electrical conductivity can be controlled by doping as described above. .

第2n型有機材料は第1n型有機材料上に第2図に示す
ように層状に形成される。この形成方法は通常の溶媒キ
ャスト法(スピナーコートおよびスプレーコート法など
も含む)や、蒸着法などでよいが、ピンホールレスであ
ることや、内部インピーダンスが大きくなりすぎないこ
とを考慮すると膜厚200人〜1μmの範囲内とするの
が好ましい。
The second n-type organic material is formed in a layered manner on the first n-type organic material as shown in FIG. This formation method can be the usual solvent casting method (including spinner coating and spray coating methods) or vapor deposition, but considering that it is pinhole-less and that the internal impedance does not become too large, the film thickness should be It is preferable to set it within the range of 200 people to 1 μm.

又、第2n型有磯材料に゛第2n型有機材料を被着させ
ることは、第1n型有機材料を保護することにもなり、
動作安定性を一段と増す結果につながつてくる。
Furthermore, depositing the second n-type organic material on the second n-type organic material also protects the first n-type organic material.
This leads to a further increase in operational stability.

この発明に係わるp型有機材料としては、上記のπ−共
役系高分子をp型にドープしたものの他に例えは、メロ
シアニンおよびフタロシアニン女どのシアニン系、フェ
ロサフラニンおよびサフラニンTなどのフェナジン系、
チオニンおよびメチレンブルーなどのフェノチアジン系
、エリスロシン、クロロフィル、プロフラビン並びにウ
ラニンなどの有機色素などが用いられる。
In addition to the above p-type doped π-conjugated polymers, p-type organic materials according to the present invention include cyanine-based materials such as merocyanine and phthalocyanine, phenazine-based materials such as ferrosafranin and safranin T,
Phenothiazines such as thionine and methylene blue, organic pigments such as erythrosin, chlorophyll, proflavin, and uranine are used.

この発明に係わる第2導電材料としては、仕事関数の大
きい金属、例えば金、白金、クロム、パラジウム等が用
いられる。勿論、これら材料を2つ以上用いてもよい。
As the second conductive material according to the present invention, a metal with a large work function, such as gold, platinum, chromium, palladium, etc., is used. Of course, two or more of these materials may be used.

この発明の光電変換素子の動作原理の詳細は現時点では
不明であるが、この発明者等は以下に述べるような光電
変換機構を考えている。すなわち、基礎吸収端(Eg:
バンドギャップエネルギー)の異なる2つの半導体を組
み合わせてできるヘテロ接合の界面にできる電位障壁を
利用していると考えられる。第3図に、この発明の光電
変換素子のエネルギーバンド図を示す。図において、(
8)はhνのエネルギーを有する光、(至)、0嗜、(
1)は各々第1n型有機材料、第2n型有機材料、p型
有機材料の基礎吸収端Egl、 1g2. Eg3であ
り、Egl 〉1g2となるように構成されている。
Although the details of the operating principle of the photoelectric conversion element of this invention are currently unknown, the inventors are considering a photoelectric conversion mechanism as described below. That is, the fundamental absorption edge (Eg:
It is thought that the potential barrier created at the interface of a heterojunction formed by combining two semiconductors with different band gap energies is used. FIG. 3 shows an energy band diagram of the photoelectric conversion element of the present invention. In the figure, (
8) is light with energy of hν, (to), 0, (
1) are the fundamental absorption edges Egl, 1g2. of the first n-type organic material, the second n-type organic material, and the p-type organic material, respectively. Eg3, and is configured so that Egl > 1g2.

即ち、入射した光(8)の内hν:)Eglの光は第1
n型有機材料で吸収される。さらに第1n型有機材料を
透過した光のうち1g2 (hν(Eglの光は第2n
型有機材料で吸収される。第1.第2n型有機材料で吸
収された光は電子正孔対を生成し、光電流を生じるが、
ホモ接合に比べて短波長〕光も利用できるので光電流が
大きくなる。す々わち、広帯域特性を実現できる。さら
に、第2n型有機材料とp型有機材料の間のpn接合障
壁によって電子正孔対は分離されるが、第1n型有機材
料と第2n型有機材料の境界の伝導帯ではきわたった障
壁はないために接合で分離された電子は効率よく収集さ
れる。境界の伝導帯での障壁は正孔をp−n接合側に追
いやる働きをするととKなる。また、第1n型有機材料
の電気伝導度が第2n型有磯材料の電気伝導度よりも大
きいことも上の働きを助けることに7Thると考えられ
る。
That is, among the incident light (8), the light hν:)Egl is the first
Absorbed by n-type organic materials. Furthermore, 1g2 (hν(Egl) of the light transmitted through the first n-type organic material is
Type is absorbed by organic materials. 1st. The light absorbed by the second n-type organic material generates electron-hole pairs and generates a photocurrent, but
Compared to homojunctions, light with a shorter wavelength can also be used, resulting in a larger photocurrent. In other words, broadband characteristics can be achieved. Furthermore, the electron-hole pairs are separated by the pn junction barrier between the second n-type organic material and the p-type organic material, but the barrier that is severe in the conduction band at the boundary between the first n-type organic material and the second n-type organic material is Therefore, the electrons separated at the junction are efficiently collected. If the barrier in the conduction band at the boundary acts to drive holes toward the pn junction, it becomes K. It is also believed that the fact that the electrical conductivity of the first n-type organic material is greater than that of the second n-type Aiso material also helps the above function.

又、この発明の光電変換素子の片面あるいは全面を光透
過性を損わない材料、又は紫外線のみを遮断する材料、
例えばシリコン樹脂、エポキシ樹脂などで封止してもよ
い。
Further, one side or the entire surface of the photoelectric conversion element of the present invention may be made of a material that does not impair light transmittance or a material that blocks only ultraviolet rays.
For example, it may be sealed with silicone resin, epoxy resin, or the like.

以下、実施例により、この発明を具体的に説明するが、
これに限定されるものではない。
Hereinafter, this invention will be specifically explained with reference to Examples.
It is not limited to this.

実施例1 3.5cm X 7cmのガラス基板の表面K ITO
を被着したものを作用電極(イ)とした。1oomtの
アセトニトリル罠、ビロール(o、o7g) + Ii
−メチルピロール(0,35g)およびテトラエチルア
ンモニウムバークロレート(0,7g)を溶解させた液
を反応溶液(イ)とした。対極として白金(pt)電極
を、参照電極として80K (飽和カロメル電極)を使
用し、反応溶液(イ)中に作用電極(イ)と共に浸し、
窒素ガス雰囲気下で、作用電極(イ)を陽極として対極
との間に一定電流(Q、15mA)を20分間流し、作
用電極(イ)上にπ−共役系高分子膜を約400への厚
さに形成した。その後対極と作用電極(イ)を短絡して
脱ドープを4時間行い、アセトニトリルで洗浄後、Li
BF4を0 、28 g溶解したアセトニトリル溶液に
浸し、白金電極を対極として用いて共に浸す。この系を
窒素ガス雰囲気下で作用電極を陰極として対極との間に
一定電流(0,15mA) t−90分間流し、作用電
極(イ)上のπ−共役系高分子にL1+をドープしてn
型とする。その後アセトニトリルで洗浄して、真空乾燥
を行い、n型のπ−共役系高分子膜試料(イ)を得た。
Example 1 Surface of 3.5cm x 7cm glass substrate K ITO
The working electrode (A) was coated with . 1oomt acetonitrile trap, virol (o, o7g) + Ii
- A solution in which methylpyrrole (0.35 g) and tetraethylammonium verchlorate (0.7 g) were dissolved was used as a reaction solution (a). Using a platinum (PT) electrode as a counter electrode and an 80K (saturated calomel electrode) as a reference electrode, immerse it together with the working electrode (A) in the reaction solution (A),
In a nitrogen gas atmosphere, a constant current (Q, 15 mA) was passed between the working electrode (a) as an anode and the counter electrode for 20 minutes, and a π-conjugated polymer film was deposited on the working electrode (a) to a thickness of about 400 mA. formed to a thickness. After that, the counter electrode and the working electrode (a) were short-circuited, dedoping was performed for 4 hours, and after washing with acetonitrile, Li
It is immersed in an acetonitrile solution in which 0.28 g of BF4 is dissolved, and a platinum electrode is used as a counter electrode. A constant current (0.15 mA) was passed through this system in a nitrogen gas atmosphere between the working electrode as the cathode and the counter electrode for t-90 minutes, and the π-conjugated polymer on the working electrode (a) was doped with L1+. n
Make it into a mold. Thereafter, it was washed with acetonitrile and vacuum dried to obtain an n-type π-conjugated polymer membrane sample (a).

次にπ−共役系高分子膜試料(イ)上にさらに真空蒸着
でクリスタルバイオレット色素を800Aの凧さに設け
、さらKその上にP型有機材料であるメロシアニン色素
を20Oo人の厚さに真空蒸着した。さらに、この上に
電極としてAuを蒸着した。このようにして得た光電変
換素子試料を試料(イ)とする。このときπ−共役系高
分子であるポリピロールのバンドギャップエネルギーは
3eVであり光吸収極大は400mm又はそれより短波
長側にある。クリスタルバイオレットのバンドギャップ
エネルギーは1.7eVであり、ポリピロールよりその
光吸収極大は低エネルギー側にある。電気伝導度はポリ
ピロールが〜30s/Cmであり、クリスタルバイオレ
ットは〜10  s/C>m程度である。
Next, on the π-conjugated polymer film sample (a), a crystal violet dye was further applied by vacuum deposition to a thickness of 800A, and then a merocyanine dye, which is a P-type organic material, was applied to a thickness of 200 mm on top of the Kite. Vacuum deposited. Furthermore, Au was vapor-deposited thereon as an electrode. The photoelectric conversion element sample thus obtained is referred to as sample (a). At this time, the band gap energy of polypyrrole, which is a π-conjugated polymer, is 3 eV, and the maximum light absorption is at 400 mm or shorter wavelength side. The band gap energy of crystal violet is 1.7 eV, and its light absorption maximum is on the lower energy side than that of polypyrrole. The electrical conductivity of polypyrrole is ~30 s/Cm, and that of crystal violet is approximately ~10 s/C>m.

実施例2 実施例1にて得たπ−共役系高分子膜試料(イ)上に真
空蒸着でクリスタルバイオレット色素を800人の厚さ
に設け、さらに、その上Kp型有機材料である銅フタロ
ンアニンを2000人の厚さに真空蒸着した。さらKこ
の上に電極としてAuを蒸着した。このようKして得た
光電変換素子試料を試料(ロ)とする。
Example 2 A crystal violet dye was applied to a thickness of 800 mm by vacuum evaporation on the π-conjugated polymer film sample (a) obtained in Example 1, and furthermore, copper phthalonanine, which is a Kp type organic material, was applied. was vacuum deposited to a thickness of 2000 mm. Furthermore, Au was deposited on this as an electrode. The photoelectric conversion element sample thus obtained is referred to as a sample (b).

比較例1 実施例1で得た作用電極(イ)上に真空蒸着でクリスタ
ルバイオレット色素を800人の厚さに設け、さらにそ
の上にp型有機材料であるメロシアニン色素を80o人
の厚さに設けた。さらに1この上に電極としてAuを蒸
着した。このようKして得た光電変換素子試料を比較試
料(イ)とする。
Comparative Example 1 Crystal violet dye was deposited on the working electrode (A) obtained in Example 1 to a thickness of 800 mm by vacuum deposition, and merocyanine dye, which is a p-type organic material, was further applied to a thickness of 80 mm on top of the working electrode (A) obtained in Example 1. Established. Furthermore, Au was vapor-deposited on top of this as an electrode. The photoelectric conversion element sample thus obtained is referred to as a comparative sample (a).

比較例2 実施例1で得た作用電極(イ)上に真空蒸着でクリメタ
ルバイオレット色素を800人の厚さに設け、さらKそ
の上Vcp型有型付機材料る銅7タロシアニンを200
0への厚さに真空蒸着した。さらにこの上に電極として
Auを真空蒸着した。このようにして得た光電変換素子
試料を比較試料(ロ)とする。
Comparative Example 2 On the working electrode (A) obtained in Example 1, a creametal violet dye was applied to a thickness of 800 mm by vacuum evaporation, and on top of that, copper 7 talocyanine, which is a Vcp type organic material, was applied to a thickness of 200 mm.
Vacuum deposited to a thickness of 0. Further, Au was vacuum-deposited thereon as an electrode. The photoelectric conversion element sample thus obtained is referred to as a comparative sample (b).

上記実施例1,2および比較例1,2で得た試料(イ)
、(ロ)および比較試料(イ)、(ロ)Kついて光電変
換特性を、各試料のネサガラス側を正、Au側を負とし
て以下に示す各試験により調べた。
Samples (A) obtained in Examples 1 and 2 and Comparative Examples 1 and 2 above
, (b) and comparative samples (a) and (b) K, the photoelectric conversion characteristics of each sample were investigated by the following tests, with the Nesa glass side of each sample being positive and the Au side being negative.

光起電力試験 250Wのキセノンランプおよび紫外線カツトフィルタ
ー(東芝製:商品名UV−38)、熱線カットフィルタ
ー(保谷ガラス製:商品名HA−30)を用いて受光面
で10 mW/c m 2の光を各試料のAu電極側か
ら照射した。光照射開始3分後に各試料が発生した開放
端電圧(voc)および短絡電流(工sc)を表1Kま
とめて示す。
Photovoltaic power test Using a 250W xenon lamp, an ultraviolet cut filter (manufactured by Toshiba, product name: UV-38), and a heat ray cut filter (manufactured by Hoya Glass, product name: HA-30), a power of 10 mW/cm2 was generated at the light receiving surface. Light was irradiated from the Au electrode side of each sample. The open circuit voltage (voc) and short circuit current (sc) generated in each sample 3 minutes after the start of light irradiation are summarized in Table 1K.

表1 各試料のVocおよびIsc 上表から、この発明の光電変換素子は優れた光起電力を
示し、特に大きな電流密度が得られるのが特徴であると
言える。
Table 1 Voc and Isc of each sample From the above table, it can be said that the photoelectric conversion element of the present invention exhibits excellent photovoltaic force and is characterized by being able to obtain a particularly large current density.

波長依存性試験 250Wのキセノンランプおよびバンドパスフィルター
(東芝干渉フィルター:商品名KL−42〜KL65)
を用いて、受光面で1mW/cm2の光を試料(イ)お
よび比較試料(イ)のAu電極側から照射し、Voc(
mV)の光波長(nm)依存性を測定した。湧」定結果
を第4図に示す。図中、Aは試料(イL Bは比較試料
(イ)の特性である。この図からこの発明の光電変換素
子は短波長側の元に対しても、長波長側の光に対しても
応答することがわかる。
Wavelength dependence test 250W xenon lamp and bandpass filter (Toshiba interference filter: product name KL-42 to KL65)
Using a light-receiving surface, 1 mW/cm2 light was irradiated from the Au electrode side of the sample (a) and comparative sample (a), and Voc (
mV) dependence on light wavelength (nm) was measured. Figure 4 shows the results. In the figure, A is the characteristic of the sample (A), and B is the characteristic of the comparative sample (A).From this figure, the photoelectric conversion element of the present invention is effective both for light on the short wavelength side and for light on the long wavelength side. You can see that it responds.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、この発明は透光性第1導電材料上
に第1n型有機材料層、第1n型有機材料より低エネル
ギー側に基礎吸収端を有する有機材料より成る第2n型
有機材料層、p型有機材料層および第2導電材料を順に
設けたものを用いることにより、応答波長域が広がると
共に%nnp接合による分離作用によりnn接合単独あ
るいはpn接合単独のものよりさらに光電変換効率が増
大し、さらに安価な有機材料を用いることのできる光電
変換素子を得ることができ、例えば太陽電池、カラーセ
ンサーおよび色彩認職センサーなどに広く適応すること
ができる。
As explained above, the present invention includes a first n-type organic material layer on a transparent first conductive material, a second n-type organic material layer made of an organic material having a fundamental absorption edge on the lower energy side than the first n-type organic material, By using a layer in which a p-type organic material layer and a second conductive material are provided in this order, the response wavelength range is broadened, and due to the separation effect of the nnp junction, the photoelectric conversion efficiency is further increased compared to the nn junction alone or the pn junction alone. Furthermore, it is possible to obtain a photoelectric conversion element that can use cheaper organic materials, and it can be widely applied to, for example, solar cells, color sensors, color recognition sensors, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光電変換素子の断面図、第2図はこの発
明の一実施例の光電変換素子の断面図、第3図はこの発
明の一実施例の光電変換素子のエネルギーバンド図、M
4図はこの発明の一実施例の光電変換素子と従来の光電
変換素子の照射波長(nm)Kよる電圧(mV)特性図
である。 図において、(9)は第14電材料、C1Oは@1n1
n型有料層、01)けM2n2n型有料層、(6)はP
型有機材料層、(至)は第24電材料、 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a cross-sectional view of a conventional photoelectric conversion element, FIG. 2 is a cross-sectional view of a photoelectric conversion element according to an embodiment of the present invention, and FIG. 3 is an energy band diagram of a photoelectric conversion element according to an embodiment of the present invention. M
FIG. 4 is a voltage (mV) characteristic diagram according to the irradiation wavelength (nm) K of a photoelectric conversion element according to an embodiment of the present invention and a conventional photoelectric conversion element. In the figure, (9) is the 14th electric material, C1O is @1n1
n type paid layer, 01) ke M2n2n type paid layer, (6) is P
type organic material layer, (to) is the 24th electric material. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)透光性第1導電材料、この第1導電材料上に設け
られた第1n型有機材料層、この第1n型有機材料層上
に設けられ、第1n型有機材料より低エネルギー側に基
礎吸収端を有する有機材料より成る第2n型有機材料層
、この第2n型有機材料層上に設けられたp型有機材料
層、およびこのp型有機材料層上に設けられた第2導電
材料を備えた光電変換素子。
(1) a translucent first conductive material; a first n-type organic material layer provided on the first conductive material; A second n-type organic material layer made of an organic material having a fundamental absorption edge, a p-type organic material layer provided on the second n-type organic material layer, and a second conductive material provided on the p-type organic material layer. A photoelectric conversion element equipped with
(2)第1n型有機材料の電気伝導度が、第2n型有機
材料の電気伝導度より大きい特許請求の範囲第1項又は
第2項記載の光電変換素子。
(2) The photoelectric conversion element according to claim 1 or 2, wherein the electrical conductivity of the first n-type organic material is higher than the electrical conductivity of the second n-type organic material.
JP59140972A 1984-07-06 1984-07-06 Photoelectric conversion element Pending JPS6120372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140972A JPS6120372A (en) 1984-07-06 1984-07-06 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140972A JPS6120372A (en) 1984-07-06 1984-07-06 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPS6120372A true JPS6120372A (en) 1986-01-29

Family

ID=15281119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140972A Pending JPS6120372A (en) 1984-07-06 1984-07-06 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPS6120372A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125090A (en) * 1984-11-21 1986-06-12 Toyota Central Res & Dev Lab Inc Photoelectric conversion element
JPS63174377A (en) * 1987-01-14 1988-07-18 Mitsubishi Kasei Corp Photoelectric conversion thin film
WO1994017556A1 (en) * 1993-01-26 1994-08-04 Fci-Fiberchem, Inc. Optical sensor with electroluminescent light source and polymer light detector
JP2005032793A (en) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd Organic photoelectric converter
JP2006048946A (en) * 2004-07-30 2006-02-16 Dainippon Printing Co Ltd Organic functional element, organic el element, organic semiconductor element, organic tft element, and manufacturing method for them
JP2006527491A (en) * 2003-06-12 2006-11-30 コナルカ テクノロジーズ インコーポレイテッド Organic solar cells with intermediate layers with asymmetric transport properties
JP2007134444A (en) * 2005-11-09 2007-05-31 Japan Advanced Institute Of Science & Technology Hokuriku Solar cell
JP2010141268A (en) * 2008-12-15 2010-06-24 Shinshu Univ Photoelectric conversion device and solar battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125090A (en) * 1984-11-21 1986-06-12 Toyota Central Res & Dev Lab Inc Photoelectric conversion element
JPS63174377A (en) * 1987-01-14 1988-07-18 Mitsubishi Kasei Corp Photoelectric conversion thin film
WO1994017556A1 (en) * 1993-01-26 1994-08-04 Fci-Fiberchem, Inc. Optical sensor with electroluminescent light source and polymer light detector
JP2006527491A (en) * 2003-06-12 2006-11-30 コナルカ テクノロジーズ インコーポレイテッド Organic solar cells with intermediate layers with asymmetric transport properties
JP2005032793A (en) * 2003-07-08 2005-02-03 Matsushita Electric Ind Co Ltd Organic photoelectric converter
JP2006048946A (en) * 2004-07-30 2006-02-16 Dainippon Printing Co Ltd Organic functional element, organic el element, organic semiconductor element, organic tft element, and manufacturing method for them
US7750553B2 (en) 2004-07-30 2010-07-06 Dai Nippon Printing Co., Ltd. Organic EL element provided with an electrode in a liquid state and method for producing the same
JP4544937B2 (en) * 2004-07-30 2010-09-15 大日本印刷株式会社 Organic functional device, organic EL device, organic semiconductor device, organic TFT device, and manufacturing method thereof
JP2007134444A (en) * 2005-11-09 2007-05-31 Japan Advanced Institute Of Science & Technology Hokuriku Solar cell
JP2010141268A (en) * 2008-12-15 2010-06-24 Shinshu Univ Photoelectric conversion device and solar battery

Similar Documents

Publication Publication Date Title
Tang Two‐layer organic photovoltaic cell
US4127738A (en) Photovoltaic device containing an organic layer
Tang et al. Photovoltaic effects of metal–chlorophyll‐a–metal sandwich cells
US5264048A (en) Photoelectric conversion device
JP2014042082A (en) Solid hetero junction and solid sensitization (photosensitive) photovoltaic cell
US20060137737A1 (en) Photoelectric conversion device
JPS6243553B2 (en)
US5126802A (en) Electric device
JPS6028278A (en) Photoelectric conversion element
JPS6120372A (en) Photoelectric conversion element
JP4317381B2 (en) Method for producing oxide semiconductor electrode for photoelectric conversion
US20070262231A1 (en) Imaging device and imaging method
JPH0434833B2 (en)
Kunzmann et al. Tuning pentacene based dye-sensitized solar cells
JPS60165768A (en) Photoelectric converter
Meyer Solid state nanocrystalline titanium oxide photovoltaic cells
RU1801232C (en) Solid photogalvanic element for conversion of light energy into electric power
Loutfy et al. Conductor-insulator-semiconductor organic solar cells
JP2005310666A (en) Dye-sensitized solar cell
Bach et al. Concept of dye-sensitized mesoporous solid state heterojunction solar cells
Grätzel Photoelectrochemical solar energy conversion by dye sensitization
JP2947593B2 (en) Stacked organic solar cells
JPH03166773A (en) Photovoltaic element
Uehara et al. The Al/indigo/Au photovoltaic cell
Uehara et al. Photovoltaic sandwich cells based on the chlorophyll a/Wet poly (vinyl alcohol) junction