JPS61203541A - Electron gun structure for cathode-ray tube - Google Patents

Electron gun structure for cathode-ray tube

Info

Publication number
JPS61203541A
JPS61203541A JP4305085A JP4305085A JPS61203541A JP S61203541 A JPS61203541 A JP S61203541A JP 4305085 A JP4305085 A JP 4305085A JP 4305085 A JP4305085 A JP 4305085A JP S61203541 A JPS61203541 A JP S61203541A
Authority
JP
Japan
Prior art keywords
electrode
cathode
ray tube
electron gun
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4305085A
Other languages
Japanese (ja)
Other versions
JPH0524608B2 (en
Inventor
Kazuaki Naiki
内記 一晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4305085A priority Critical patent/JPS61203541A/en
Publication of JPS61203541A publication Critical patent/JPS61203541A/en
Publication of JPH0524608B2 publication Critical patent/JPH0524608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/488Schematic arrangements of the electrodes for beam forming; Place and form of the elecrodes

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PURPOSE:To enable inter-electrode voltage withstand processing without damaging the cathode face by switching G4 electrode at main electron lens section from G2 electrode under manufacture to G1 electrode under usage at the outside of cathode ray tube. CONSTITUTION:The electron gun structure is constructed with beam forming section comprised of cathode 1, G1 electrode 2 and G2 electrode 3 and main lens section comprised of G3 electrode 11, G4 electrode 12, G5 electrode 13 and G6 electrode 14. Then an intermediate potential voltage of 20-40% of that to be applied onto G6 electrode 14 is applied in common onto G3 and G5 electrodes 11, 13. G4 electrode 12 is connected go G2 electrode 2 under manufacturing at the outside of tube while connected to G1 electrode 2 for providing the potential lower than the ground potential under usage. Consequently, main electron lens splitted into two stages will reduce the astigmatism while to improve the resolution and to enable voltage withstand processing without damaging the cathode resulting in improvement of the reliability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は陰極線管の電子銃構体に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an electron gun assembly for a cathode ray tube.

(従来の技術およびその問題点) 従来、陰極線管の電子銃としては、パイ・ポテンシャル
型電子銃またはユニ・ポテンシャル型電子銃が用いられ
ている。パイ・ポテンシャル型電子銃は第4図に示すよ
うに陰極1.G1電極2゜G2電極3.G3電極4.G
4電極5を同軸に設置し、G4電極5は高圧電源に、G
s電極4は高圧電源電位Ebの10〜40%程度の電位
VFにある中高圧電源に!Ifeされ、第6図の等価光
学模形図で示すように陰極1から放射された電子ビーム
はG1電極2とG2電極3付近に形成されるクロス・オ
ーバ点0よシ発散され、G2[極3とG311極4間に
形成されるブリ・フォーカス・レンズLpであらかじめ
集束された後G3電極4とG4電極5とで形成される主
・フォーカス・レンズLhiによシ蛍元面P上で最小の
ビーム径を持つように集束される。ユニ・ポテンシャル
型電子銃は第5図に示すように陰極1.G1電極2.G
2電極3.G3[極6.G4電極7.G5電極8を同軸
に設置し、G3電極6と051[極8は共通の高圧電源
に接続され、G4電極7は接地電位、又は接地電位に近
い電源に接続される。この場合G3電極6.G4電極7
.G5電極8により主フオーカスレンズLMが形成され
る以外は上述と同様に第6図に示される等価光学模型が
成立する。
(Prior Art and its Problems) Conventionally, a pi-potential type electron gun or a uni-potential type electron gun has been used as an electron gun for a cathode ray tube. As shown in FIG. 4, the pi-potential type electron gun has a cathode 1. G1 electrode 2° G2 electrode 3. G3 electrode 4. G
4 electrodes 5 are installed coaxially, G4 electrode 5 is connected to the high voltage power supply,
The s electrode 4 is connected to a medium-high voltage power supply at a potential VF of about 10 to 40% of the high voltage power supply potential Eb! As shown in the equivalent optical model diagram of FIG. After being focused in advance by the main focus lens Lp formed between the G3 electrode 4 and the G311 pole 4, the main focus lens Lhi formed by the G3 electrode 4 and the G4 electrode 5 focuses the light at the minimum on the fluorescent plane P. The beam is focused to have a beam diameter of As shown in Figure 5, the uni-potential type electron gun has a cathode 1. G1 electrode 2. G
2 electrodes 3. G3 [pole 6. G4 electrode7. The G5 electrode 8 is installed coaxially, the G3 electrode 6 and the 051[pole 8 are connected to a common high-voltage power source, and the G4 electrode 7 is connected to a ground potential or a power source close to the ground potential. In this case G3 electrode 6. G4 electrode 7
.. The equivalent optical model shown in FIG. 6 is established in the same manner as described above except that the main focus lens LM is formed by the G5 electrode 8.

パイ−ポテンシャル型電子銃はレンズ強度が大きいため
、特に陰極より発射される電子ビームが高電流になると
収差によシ解像度の劣化が著しいが、電子銃の長さを一
定とすれば電子光学倍率は小さく、低電流では集束され
た電子ビーム径は尖鋭になる。更に低電位の02電極3
に対向するG3電極4は高圧電源電位Ebの10〜40
%相当の中高圧電位に保たれるため、ユニ・ポテンシャ
ル型電子銃の03電極6が高圧電源に接続されるのと比
較し、G2電極3とG3電極4間の電位差は小さく、耐
電圧特性は良好となる。一方ユニ・ポテンシャル型電子
銃は上述した様に03電極6は高圧電位にあるためG2
1!極3とG3電極6間の電位差が大きく、耐電圧特性
はバイ拳ポテンシャル型電子銃よシ悪いが、ここに形成
されるブリ・フォーカスレンズLpは強くなシ、電流の
増加に対し、電子ビームはパイ・ポテンシャル型電子銃
程発散せず、主フオーカス・レンズLMの球面収差を低
下させて、パイ・ポテンシャル型電子銃と異シ電流依存
性は少ないく、フォーカス調整を低電圧で行うことが出
来るため高電圧変動の影響は少ないが、ビーム径の尖鋭
度に欠けている。
Since the pi-potential type electron gun has a large lens strength, the resolution deteriorates significantly due to aberrations especially when the electron beam emitted from the cathode has a high current. However, if the length of the electron gun is constant, the electron optical magnification is small, and the diameter of the focused electron beam becomes sharp at low currents. Even lower potential 02 electrode 3
The G3 electrode 4 facing 10 to 40 of the high voltage power supply potential Eb
%, the potential difference between the G2 electrode 3 and the G3 electrode 4 is small compared to the 03 electrode 6 of a uni-potential electron gun, which is connected to a high voltage power supply, and the withstand voltage characteristics are will be good. On the other hand, in the uni-potential type electron gun, as mentioned above, the 03 electrode 6 is at a high voltage potential, so the G2
1! The potential difference between the pole 3 and the G3 electrode 6 is large, and the withstand voltage characteristics are worse than those of the bifist potential type electron gun. does not diverge as much as a pi-potential type electron gun, reduces the spherical aberration of the main focus lens LM, has less current dependence compared to a pi-potential type electron gun, and can perform focus adjustment with a low voltage. Although it is less affected by high voltage fluctuations, the beam diameter lacks sharpness.

このように従来用いられているパイ・ポテンシャル型電
子銃もユニψポテンシャル型電子銃も長所、短所を備え
ており、いずれも高電流域では尖鋭なビーム径は得られ
ず、高輝度画面に於ける解像度が劣化している。
In this way, both the pi-potential type electron gun and the uni-ψ potential type electron gun, which are conventionally used, have their advantages and disadvantages.None of them can obtain a sharp beam diameter in a high current range, and they are difficult to use for high-brightness screens. resolution has deteriorated.

本発明は上述した従来の欠点を除去するためになされた
もので、収差の小さく、低電流域から高電流域迄解像が
優れ、耐電圧特性の良好な主電子レンズを備えた電子銃
構体を提供することを目的とする。
The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and is an electron gun assembly equipped with a main electron lens that has small aberrations, excellent resolution from low current range to high current range, and good withstand voltage characteristics. The purpose is to provide

(問題点を解決するための手段) 本発明は、少くとも陰極、G1電極、G2電極からなる
電子ビーム形成部と複数の主電子レンズ電極からなる主
電子レンズ部とが電子銃の軸上に順次同軸配列される電
子銃構体に於て、陰極側より主電子レンズを形成するG
3[極、G4電極、G5電極及び、G6電極からなる四
つの電極が同軸に配設され、G3を極とG5電極には最
終電極であるG6t[極に印加される陽極電圧の20〜
40チにある中高圧の集束電圧が共通に印加され、G4
電極は陰極線管外に於て陰極線管製造工程中はG2電極
に1実際に陰極線管として使用する時は接地電位以下の
電位が与えられるG1電極に接続するようにしたことを
特徴とする。
(Means for Solving the Problems) The present invention provides an electron beam forming section that includes at least a cathode, a G1 electrode, and a G2 electrode, and a main electron lens section that includes a plurality of main electron lens electrodes on the axis of an electron gun. In the electron gun structure which is arranged coaxially in sequence, the G forming the main electron lens from the cathode side
3 [pole, G4 electrode, G5 electrode, and G6 electrode are arranged coaxially, G3 is the pole and G5 electrode is the final electrode G6t [20~20~ of the anode voltage applied to the pole]
A medium-high focused voltage at G40 is commonly applied, and G4
The electrode is characterized in that it is connected to the G2 electrode outside the cathode ray tube during the cathode ray tube manufacturing process, and to the G1 electrode to which a potential below ground potential is applied when actually used as a cathode ray tube.

(実施例) 以下図面に従って本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図に示す様に、本発明による電子銃構体は陰極1、
oitaz、G2電極3及び集束電極である口径りを持
りG3電極11,04[極12vG5電極13、G6電
極14を夫々電子銃の軸上に配列している。陰極線管使
用時にはG6を極14は図示しない陽極釦から陽極電圧
Ebが供給され、G3電極11と05寛極13は同電位
となるように陰極線管内で接続され、更Kjテム15の
外部導入線16Aによシ管外に導出されて陰極線管使用
時には外部導入線16Aから高電圧Ebの20〜40チ
程度の中高電位にある集束電圧VFが与えられ、G4[
極12はステム15の内部導入線を通し外部導入線16
BK接続されている。然るに、陰極線管製造工程中は外
部導入N16BはG2電極3と接続された外部導入#1
6Cと外部接続され、実際の陰極線管としての使用時に
はG1電極2に接続されている外部導入&16Dと外部
接続されて、G1電極2とG4[極12は共に接地電位
以下の電位EC,が与えられる。
As shown in FIG. 1, the electron gun assembly according to the present invention includes a cathode 1,
G3 electrodes 11, 04 [poles 12v, G5 electrodes 13, and G6 electrodes 14 are arranged on the axis of the electron gun, respectively. When using a cathode ray tube, the anode voltage Eb is supplied to the G6 electrode 14 from an anode button (not shown), and the G3 electrode 11 and the 05 electrode 13 are connected within the cathode ray tube so that they have the same potential, and the external lead wire of the Kj stem 15 16A is led out of the tube, and when the cathode ray tube is used, a focusing voltage VF at a medium-high potential of about 20 to 40 inches of the high voltage Eb is applied from the external lead-in line 16A.
The pole 12 passes through the internal lead-in wire of the stem 15 and connects to the external lead-in wire 16.
BK is connected. However, during the cathode ray tube manufacturing process, external introduction N16B is connected to external introduction #1 connected to G2 electrode 3.
Externally connected to 6C and connected to G1 electrode 2 when actually used as a cathode ray tube & externally connected to 16D, G1 electrode 2 and G4 [pole 12 are both given a potential EC, which is less than the ground potential. It will be done.

この場合の等価元学模型は第2図に示す様に、陰極1か
ら放射された電子ビームかG1電極2とG2を極3付近
に形成されるクロスオーバ点Oよシ発散され、02を極
3と03電極11間に形成されるブリ・フォーカス・レ
ンズLpで予備集束されることは従来の電子銃と同一で
ある。G3電極11とG51i1:極13とには同電位
の中高電位にある集中電圧VFが印加され、その中間に
位置するG4電極12にはG1電位と同電位で接地電位
以下の電位EC1が印加され、第5図と同様のユニーポ
テンシャル・フォーカス型の電子レンズLMIが形成さ
れる。集束電圧VFが印加されるG5電極13と陽極電
位Ebが印加されるG6を極14間にはバイ・ポテンシ
ャル・フす−カス型の電子レンズLM2が形成される。
As shown in Figure 2, the equivalent model in this case is that the electron beam emitted from the cathode 1 is diverged from the G1 electrode 2 and G2 to the crossover point O formed near the pole 3, and the electron beam is diverged from the G1 electrode 2 and G2 to the crossover point O formed near the pole 3. Preliminary focusing is performed by a pre-focus lens Lp formed between the 3 and 03 electrodes 11, which is the same as in the conventional electron gun. A concentrated voltage VF at a medium-high potential of the same potential is applied to the G3 electrode 11 and the G51i1:pole 13, and a potential EC1, which is the same potential as the G1 potential and below the ground potential, is applied to the G4 electrode 12 located between them. , a unipotential focusing type electron lens LMI similar to that shown in FIG. 5 is formed. A bipotential fuse type electron lens LM2 is formed between the G5 electrode 13 to which the focusing voltage VF is applied and the G6 electrode 14 to which the anode potential Eb is applied.

従って、ブリ・フォーカス・レンズLpで予備集束され
た電子ビームは2個の主フオーカスレンズで蛍光面P上
に最小ビーム径を持つ様二段で集束されるため、各主電
子レンズLwx、Luxは従来用いられている電子銃に
於ける単一の主フオーカスレンズLMよ°シ夫々のレン
ズ強度は弱く出来て、2個の主電子レンズで徐々にビー
ムを集束出来るため、主レンズ系の球面収差は極めて小
さくなる。
Therefore, since the electron beam pre-focused by the main focus lens Lp is focused in two stages on the phosphor screen P by the two main focus lenses so as to have the minimum beam diameter, each main electron lens Lwx, Lux Compared to the single main focus lens LM in the conventional electron gun, the strength of each lens is weaker, and the beam can be gradually focused by the two main electron lenses, so the main lens system Spherical aberration becomes extremely small.

ここで多段集束方式となっているG3電極11、G4を
極12、G5電極13により構成される前段レンズLM
Iのレンズ作用と04電極12に印加される電圧EC,
の関係を第3図に示す。図中、横軸はG4電極12に独
立した電源より印加される電圧E C4を、縦軸は第2
図に示すレンズLMIのビーム発散角αを示す。図から
明らかなように、EC4≦O■ではα≦2.8度でαは
はは一定値となるが、EC4≧200Vではα≧3,5
度となり、EC。
Here, the front stage lens LM is composed of a G3 electrode 11, a G4 pole 12, and a G5 electrode 13, which is a multi-stage focusing system.
The lens action of I and the voltage EC applied to the 04 electrode 12,
The relationship is shown in Figure 3. In the figure, the horizontal axis represents the voltage E C4 applied to the G4 electrode 12 from an independent power source, and the vertical axis represents the voltage E C4 applied to the G4 electrode 12 from an independent power source.
The beam divergence angle α of the lens LMI shown in the figure is shown. As is clear from the figure, when EC4≦O■, α becomes a constant value when α≦2.8 degrees, but when EC4≧200V, α≧3,5
Degree and EC.

≦Ovより大きい変化率でαは増加している従って、前
段レンズLMIの発散角αは小さい程球面収差を小きく
出来るため、EC4≦Oで使用することが必要であるが
、()4’ic源を独立に設けることは陰極線管の使用
条件を不経済にして望ましくない。
α is increasing at a rate of change greater than ≦Ov. Therefore, the smaller the divergence angle α of the front lens LMI, the smaller the spherical aberration can be, so it is necessary to use it with EC4≦O, but ()4' Providing an independent IC source is undesirable because it makes the conditions for using the cathode ray tube uneconomical.

通常の陰極線管に於て、G2寛位EC,は300V以上
で用いられ、G4電源としては不適当であシ、G1電極
2は接地電位以下のEC,で用いられるため、G4電&
12を01電極2に接続して使用することが最適である
In a normal cathode ray tube, the G2 EC is used at 300V or more, which is inappropriate as a G4 power supply, and the G1 electrode 2 is used at an EC below the ground potential, so the G4 voltage and
It is optimal to use the electrode 12 connected to the 01 electrode 2.

又EC1=EC4≦OとするためにはG4電極長LG4
はその開孔径DK対し0.3<LG4 / D<0.6
を満す必要がある。
Also, in order to satisfy EC1=EC4≦O, G4 electrode length LG4
is the opening diameter DK of 0.3<LG4/D<0.6
need to be met.

一方、陰極線管の製造工程では陰極線管の使用時に於け
る電子銃構体電極間の耐電圧特性を良好に保つため、高
電位差の生じる電極間に使用時の数倍に相当する高電圧
を印加し、電極表面についた微小突起や、汚れを焼成す
ることが行われている。本発明の電子銃橋体では先ずG
6電極14を除<05電極13〜G3電極11.G2電
極3〜陰極1を陰極線管外のステム15の外部導入線で
共通に接地電位とし、G6電極14には図示しない陽極
釦から実際の使用陽極電圧Ebの2〜3倍の高電圧を印
加し、G5−G6電極間の耐電圧処理を行う。次KG4
1に極12に対向するG3[極11、G5を極13及び
G2を極3とG3電極11間の耐電圧処理ではステム1
5の管外にある外部導入線からG3電極11.G5電極
13に実際使用時の集束電圧Vrの2〜4倍の高電圧を
印加し、゛G4電極12.G2電極3.G1電極2.陰
極1をステムの外部導入線で共通に接続し接地電位とし
、耐電圧処理を行う。
On the other hand, in the manufacturing process of cathode ray tubes, in order to maintain good withstand voltage characteristics between the electrodes of the electron gun structure when the cathode ray tube is used, a high voltage equivalent to several times that during use is applied between the electrodes where there is a high potential difference. , microprotrusions and dirt on the electrode surface are burned out. In the electron gun bridge body of the present invention, first G
6 excluding electrode 14<05 electrode 13 to G3 electrode 11. The G2 electrode 3 to the cathode 1 are set to a common ground potential through the external lead-in wire of the stem 15 outside the cathode ray tube, and a high voltage 2 to 3 times the actual used anode voltage Eb is applied to the G6 electrode 14 from an anode button (not shown). Then, voltage resistance treatment is performed between the G5 and G6 electrodes. Next KG4
1 to G3 opposite pole 12 [pole 11, G5 to pole 13 and G2 to pole 3 and G3 In voltage resistance treatment between electrode 11, stem 1
G3 electrode 11. A high voltage 2 to 4 times higher than the focusing voltage Vr during actual use is applied to the G5 electrode 13, and the G4 electrode 12. G2 electrode 3. G1 electrode 2. The cathodes 1 are connected in common through the external lead-in wire of the stem, set to a ground potential, and subjected to voltage resistance treatment.

一方、陰極1とGll電極2関 〜0.3罪の微小距離で対向しており、陰極線管製造工
程中の耐電圧処理に於ける500〜100OAの放電電
流が直接G1電極2に流入すれば、微小距離を越えて陰
極1の熱電子放射面に損傷を与えて陰極線管に必要な陰
極電流が得られなくなったシ、その寿命を極めて短いも
のとする。
On the other hand, the cathode 1 and the G1 electrode 2 face each other at a distance of about 0.3 degrees, and if a discharge current of 500 to 100 OA during the withstand voltage treatment during the cathode ray tube manufacturing process directly flows into the G1 electrode 2. If the cathode 1 exceeds a very small distance and damages the thermionic emission surface of the cathode 1, the cathode current necessary for the cathode ray tube cannot be obtained, and its life becomes extremely short.

然るに本発明によれば、陰極線管製造工程中はG4電極
12は管外でG2を極3と接続されていて、G1電極2
とは管内で接続されず、管外で02電極3と接続されて
いるため、高電圧処理工程中KG3−()4 、G4−
G5電極間に流れる放電電流はG11lt極2に直接流
入することは防止出来て、放電電流が陰極1の熱電子放
射面に損傷を与えることは有効に回避出来る。従って、
陰極1へ損傷を与えることなく、その処理電圧を十分に
高められるため、G2−03 、G3−04 、C+4
−G5及びG5−G6電極間の耐電圧品位を実用上十分
満足の出来るように出来る。
However, according to the present invention, during the cathode ray tube manufacturing process, G4 electrode 12 is connected to G2 to pole 3 outside the tube, and G1 electrode 2 is connected to pole 3.
KG3-()4, G4-
The discharge current flowing between the G5 electrodes can be prevented from flowing directly into the G11lt electrode 2, and damage to the thermionic emission surface of the cathode 1 by the discharge current can be effectively avoided. Therefore,
Since the processing voltage can be sufficiently increased without damaging the cathode 1, G2-03, G3-04, C+4
- The withstand voltage quality between the G5 and G5-G6 electrodes can be made sufficiently satisfactory for practical purposes.

以上の説明では一つの陰極を持った単電子銃構体につい
て説明したが、本発明は複数の陰極に対し共通の電極を
持った複ビーム一体化電子銃構体にも適用可能であるこ
とは云うまでもない。
Although the above explanation has been about a single electron gun structure having one cathode, it goes without saying that the present invention is also applicable to a multi-beam integrated electron gun structure having a common electrode for multiple cathodes. Nor.

(発明の効果) 以上述べた様に、本発明によれは主電子レンズを二段に
分割して多段化し、各段の電子レンズの球面収差を極め
て小さく出来るため、陰極より放射されるビーム電流が
低電流域から高電流域迄変化しても年元面上に形成され
る映像の解像度を極めて高くすることが出来る。この電
子レンズを備えた陰極線の動作時には、管外で04電極
を01電極に接続して、独立電源を必要としないため、
陰極線管の使用に当って経済性を損うことかない。
(Effects of the Invention) As described above, according to the present invention, the main electron lens is divided into two stages to make it multi-stage, and the spherical aberration of each stage electron lens can be made extremely small, so that the beam current emitted from the cathode Even if the voltage changes from a low current range to a high current range, the resolution of the image formed on the year plane can be made extremely high. When operating a cathode ray equipped with this electron lens, the 04 electrode is connected to the 01 electrode outside the tube, and an independent power source is not required.
There is no loss in economic efficiency when using cathode ray tubes.

一方、G2−G3 、G3−G4 、G4−G5電極間
にはG3’tl極と05電極に陽極電位の20〜40%
程度の中高電圧か印加されるため、従来のユニ・ポテン
シャルΦフォーカス型の様に大きな電位差を生じる電極
がない。更に、陰極線管製造工程中に04を極は管外で
G2を極に接続されているため前記電極間の耐電圧処理
を特に陰極面に損傷を与えることなく行うことが出来て
、その電極間の耐電圧品位を十分高められる。従って耐
電圧特性が良好で、信頼性の極めて高い電子銃構体とす
ることが出来る。
On the other hand, between the G2-G3, G3-G4, and G4-G5 electrodes, 20 to 40% of the anode potential is applied to the G3'tl electrode and the 05 electrode.
Since a moderate to high voltage is applied, there is no electrode that generates a large potential difference as in the conventional uni-potential Φ focus type. Furthermore, during the cathode ray tube manufacturing process, the 04 pole is connected to the G2 pole outside the tube, so voltage resistance treatment between the electrodes can be performed without damaging the cathode surface. The withstand voltage quality can be sufficiently increased. Therefore, it is possible to obtain an electron gun assembly with good withstand voltage characteristics and extremely high reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づく電子銃構体の縦断面図、第2図
はその尋価光学模型図、第3図は前段レンズの04電極
に印加される電圧EC4とビーム発散角の関係を示すグ
ラフ、第4図、第5図は夫々従来用いられているバイ拳
ポテンシャルーフォーの等価元学模型図である。 1・・・・・・陰極、2・・・・・・Glt極、3・・
・・・・G2電極、11・・・・・・G3電極、12・
・・・・・G4’!!極、13・・・・・・G5電極、
14・・・・・・G6を極、15・・・・・・ステム、
16A〜16D・・・・・・外部導入線、Lp・・・・
・・プリーフォーカス・レンズ、LM、LMI、LM2
−・・・・・土鈴 ご IJLIJ 第3図
Fig. 1 is a longitudinal cross-sectional view of the electron gun assembly according to the present invention, Fig. 2 is an optical model thereof, and Fig. 3 shows the relationship between the voltage EC4 applied to the 04 electrode of the front lens and the beam divergence angle. The graphs, FIGS. 4 and 5, are equivalent element theory diagrams of the conventionally used Biken potential-four, respectively. 1...Cathode, 2...Glt pole, 3...
...G2 electrode, 11...G3 electrode, 12.
...G4'! ! pole, 13...G5 electrode,
14... G6 as pole, 15... Stem,
16A to 16D... External lead-in line, Lp...
・・Pre-focus lens, LM, LMI, LM2
−・・・・Tsuzu bell IJLIJ Figure 3

Claims (1)

【特許請求の範囲】[Claims] 少くとも陰極、G1電極、G2電極からなる電子ビーム
形成部と複数の主電子レンズ電極からなる主電子レンズ
部とが電子銃の軸上に順次同軸配列される陰極線管電子
銃構体に於て、陰極側より主電子レンズを形成するG3
電極、G4電極、G5電極、G6電極からなる四つの電
極が同軸に配列され、G3電極とG5電極には最終電極
であるG6電極に印加される陽極電圧の20〜40%に
ある集束電圧が共通に印加され、G4電極を陰極線管外
で陰極線管製造工程中はG2電極に接続し、実際に陰極
線管として使用する時には接地電位以下の電位が与えら
れるG1電極に接続する切換手段を設けたことを特徴と
する陰極線管用電子銃構体。
In a cathode ray tube electron gun assembly in which an electron beam forming section consisting of at least a cathode, a G1 electrode, and a G2 electrode and a main electron lens section consisting of a plurality of main electron lens electrodes are sequentially arranged coaxially on the axis of the electron gun, G3 forming the main electron lens from the cathode side
Four electrodes consisting of the electrode G4 electrode, G5 electrode, and G6 electrode are arranged coaxially, and a focusing voltage of 20 to 40% of the anode voltage applied to the G6 electrode, which is the final electrode, is applied to the G3 electrode and the G5 electrode. A switching means is provided which connects the G4 electrode to the G2 electrode outside the cathode ray tube during the cathode ray tube manufacturing process, and connects it to the G1 electrode to which a potential below ground potential is applied when actually used as a cathode ray tube. An electron gun assembly for a cathode ray tube characterized by the following.
JP4305085A 1985-03-05 1985-03-05 Electron gun structure for cathode-ray tube Granted JPS61203541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4305085A JPS61203541A (en) 1985-03-05 1985-03-05 Electron gun structure for cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4305085A JPS61203541A (en) 1985-03-05 1985-03-05 Electron gun structure for cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS61203541A true JPS61203541A (en) 1986-09-09
JPH0524608B2 JPH0524608B2 (en) 1993-04-08

Family

ID=12653051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4305085A Granted JPS61203541A (en) 1985-03-05 1985-03-05 Electron gun structure for cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS61203541A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897171A (en) * 1985-11-26 1990-01-30 Tadahiro Ohmi Wafer susceptor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489472A (en) * 1977-12-27 1979-07-16 Toshiba Corp Electron gun for cathode-ray tube
JPS58142733A (en) * 1982-02-18 1983-08-24 Toshiba Corp Spot knocking process of cathode-ray tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5489472A (en) * 1977-12-27 1979-07-16 Toshiba Corp Electron gun for cathode-ray tube
JPS58142733A (en) * 1982-02-18 1983-08-24 Toshiba Corp Spot knocking process of cathode-ray tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897171A (en) * 1985-11-26 1990-01-30 Tadahiro Ohmi Wafer susceptor

Also Published As

Publication number Publication date
JPH0524608B2 (en) 1993-04-08

Similar Documents

Publication Publication Date Title
KR910007654Y1 (en) Electron gun of multi-step focusing crt
JPS61203541A (en) Electron gun structure for cathode-ray tube
US5039906A (en) Electron gun for color cathode ray tube
KR19980020321A (en) Electron gun for colored cathode ray tube
JPH0550806B2 (en)
KR930009465B1 (en) Electron gun for cathode-ray tube
KR870000281B1 (en) Electron-gun for a c.r.t.
JP3355086B2 (en) In-line type electron gun
KR100719526B1 (en) Electron gun for color cathode ray tube
JPH0138345B2 (en)
JP3053822B2 (en) Electron gun for picture tube
JP3315173B2 (en) Color picture tube equipment
JPS61203542A (en) Electron gun structure for cathode-ray tube
KR0164872B1 (en) Electronic gun for color cathode tube
KR910005089B1 (en) Multi-step focusing electron gun
JP2685485B2 (en) Color picture tube
KR100796682B1 (en) Electron gun for cathode ray tube
KR940010985B1 (en) Electron gun for c-crt
KR200160129Y1 (en) Cathode ray tube
KR820001356Y1 (en) Electron gun for cathode-ray tube
JPH08212938A (en) Electron gun for color cathode-ray tube
JPH01187744A (en) Color image receiving tube
KR100319087B1 (en) Electron gun for color cathode ray tube
JPS59119651A (en) Electron gun assembly for color picture tube
JPH0143423B2 (en)