JPS61196565A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS61196565A
JPS61196565A JP3707585A JP3707585A JPS61196565A JP S61196565 A JPS61196565 A JP S61196565A JP 3707585 A JP3707585 A JP 3707585A JP 3707585 A JP3707585 A JP 3707585A JP S61196565 A JPS61196565 A JP S61196565A
Authority
JP
Japan
Prior art keywords
oxide film
integrated circuit
type
stage
metal electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3707585A
Other languages
Japanese (ja)
Inventor
Shigenori Iwakuma
岩隈 茂則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP3707585A priority Critical patent/JPS61196565A/en
Publication of JPS61196565A publication Critical patent/JPS61196565A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To increase the number of circuits constituted in a chip, by overlapping a plural of integrated circuit steps each comprising of N-type layers, P-type layers and electrodes on the surface of a semiconductor layer. CONSTITUTION:After metal electrodes 5a-5c, 6a, 6b are evaporated, an oxide film 2 is grown in order to cover the entire of the metal electrodes 5a-5c, 6a, 6b and then an N-type layer 7 of N-type silicon single crystal is formed thereon. After an oxide film 10 is grown on the surface of the N-type layer 7, portions of the oxide film 10 are removed with masking. By diffusing acceptors through the oxide film removed portions, P-type layers 8a, 8b, 8c and N-type layers 9a, 9b are formed. Next, the N-type layer and oxide film 2 over the metal electrode 5a are removed to form an opening 11. On the side wall of the opening 11, an oxide film 12 is grown, being connected to the oxide film 10 to be united. Thereafter, metal electrodes 13a, 13b, 13c and metal electrodes 14a, 14b are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路に係り、半導体層上にn形層、
 p形層を形成し、かつ電極を設けることにより構成さ
れる半導体集積回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor integrated circuit, and includes an n-type layer on a semiconductor layer,
The present invention relates to a semiconductor integrated circuit formed by forming a p-type layer and providing electrodes.

従来の技術 第1図は従来の半導体集積回路の断面を示す図である。Conventional technology FIG. 1 is a diagram showing a cross section of a conventional semiconductor integrated circuit.

同図中、1はn形のシリコン単結晶棒より切り出したウ
ェーハであり、ウェーハ1の表面部分にはp形P3a 
、3b 、3cが形成され、更にp形層3a内にn形層
4a 、4bが形成されている1、上記のウェーハ1上
には酸化膜(SiO2)2が成長形成され、ドレイン、
ソースとなるp形1i13b 、3c及ヒn形F)4a
 、4bには直接アルミ等の金属電極5a、5b、5c
が蒸着され、また酸化膜2上にゲートとなる金属電極6
a 、 6bが蒸着形成される。上記の電極5aを接地
し、電極5c1.:電源−VDDを供給して、電極6a
及び6bを入力端子、電極5bを出力端子とするコンプ
リメンタ!JMO8(C−MOS)lil路がm成され
る。このようなC−MO8I造のFET、  トランジ
スタ、拡散抵抗等による抵抗素子、PN接合容j19に
よる各階素子を組合せることにより半導体集積回路が構
成されている。
In the figure, 1 is a wafer cut from an n-type silicon single crystal rod, and the surface portion of wafer 1 has p-type P3a.
, 3b, 3c are formed, and n-type layers 4a, 4b are further formed in the p-type layer 3a. 1. An oxide film (SiO2) 2 is grown on the wafer 1, and the drain,
Source p type 1i13b, 3c and h type F) 4a
, 4b are directly connected to metal electrodes 5a, 5b, 5c such as aluminum.
is deposited on the oxide film 2, and a metal electrode 6 serving as a gate is formed on the oxide film 2.
a, 6b are formed by vapor deposition. The above electrode 5a is grounded, and the electrode 5c1. : Supplying the power source -VDD, the electrode 6a
And a complementer with 6b as an input terminal and electrode 5b as an output terminal! JMO8 (C-MOS) lil path is formed. A semiconductor integrated circuit is constructed by combining such a C-MO8I FET, a transistor, a resistance element such as a diffused resistor, and each level element such as a PN junction capacitor j19.

発明が解決しようとする問題点 従来の半導体集積回路はウェーハ1の一方の表面上に平
面的に構成されており、その回路集積密度も限界に近付
いている。このような半導体装置回路の一つとしてマイ
クロプロセッサがあるが、従来においては1チツプに1
個のマイクロプロセッサが構成されているだけであり、
例えば1ワード32ビツトのデータを32個のマイクロ
プロセッサで並列処理して超高速演算を行なうような場
合、マイクロプロセッサの集積回路チップが32個必要
となり、配線基板上の占有面積が大となる等の問題点が
あった。
Problems to be Solved by the Invention Conventional semiconductor integrated circuits are constructed in a planar manner on one surface of a wafer 1, and their circuit integration density is approaching its limit. A microprocessor is one of these semiconductor device circuits, but conventionally, one chip has one
It consists of just one microprocessor,
For example, if one word of 32 bits of data is processed in parallel by 32 microprocessors to perform ultra-high-speed calculations, 32 microprocessor integrated circuit chips are required, which increases the area occupied on the wiring board. There was a problem.

また、互いに基準電圧が異なる(2”−1)個(ただし
、mは正の整数)のコンパレータによりA/D変換を行
なう並列型のA/D変換器の如き回路では、出力ディジ
タル信号のビット数(i )が大となるにつれてコンパ
レータの数が指数関数的に増大し、従来の平面的な半導
体集積回路では1チツプ上に構成できないことがある等
の問題点があった。
In addition, in a circuit such as a parallel A/D converter that performs A/D conversion using (2"-1) comparators with different reference voltages (where m is a positive integer), the bits of the output digital signal As the number (i) increases, the number of comparators increases exponentially, and there are problems in that conventional planar semiconductor integrated circuits may not be able to be constructed on one chip.

そこで、本発明は集積回路を複数段構成にすることによ
り、上記の問題点を解決した半導体集積回路を提供する
ことを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a semiconductor integrated circuit that solves the above problems by configuring the integrated circuit in multiple stages.

問題点を解決するための手段 本発明においては、半導体層の一面上のn形層n形層及
び電極により構成される一の段の集積回路を複数段重畳
している。
Means for Solving the Problems In the present invention, a plurality of stages of integrated circuits constituted by an n-type layer and an electrode on one surface of a semiconductor layer are stacked.

作用 本発明においては、半導体層の一面上に構成される一の
段の集積回路が複数段重畳されている。
Operation In the present invention, a plurality of stages of one stage of integrated circuits configured on one surface of a semiconductor layer are stacked.

これによって単位面積当りの回路集積度が複数倍となる
This increases the degree of circuit integration per unit area by several times.

実施例 第3図は本発明回路の製造過程の一実施例の断面を示す
図である。同図中、第2図と同一部分には同一符号を付
し、その説明を省略する。
Embodiment FIG. 3 is a cross-sectional view of an embodiment of the manufacturing process of the circuit of the present invention. In this figure, the same parts as in FIG. 2 are designated by the same reference numerals, and their explanations will be omitted.

第3図において、金属電極5a〜5c 、 5a 。In FIG. 3, metal electrodes 5a to 5c, 5a.

6bの蒸着形成後、酸化膜(Si 02 )2を再度成
長させ、酸化膜2により金属電極5a〜5c。
After the vapor deposition of 6b, the oxide film (Si 02 ) 2 is grown again, and the oxide film 2 forms the metal electrodes 5a to 5c.

6a 、6b全体を被膜、する。この後、例えばエピタ
キシャル成長により0形シリコン単結晶のn形層7が形
成される。ここで、ウェーハ1をシリコン単結晶棒より
切り出す際に、第4図に示す如くウェーハ1の一部に凸
部1aを設けておき、つ工−ハ1上に金属電極を被覆す
る酸化膜2を形成した後、更に例えば化学気相沈積(C
VD)法によってn形の多結晶シリコン層7aを形成す
る。次に多結晶シリコン層7aの凸部1aに接触する部
分から凸部1aより一面する方向に順次レーザ光を移動
しつつ照射し、多結晶シリコンを溶解することによって
凸部1aを種としたn彫型結晶シリコンか7を形成する
ことが可能である。
6a and 6b are entirely coated. Thereafter, an n-type layer 7 of 0-type silicon single crystal is formed, for example, by epitaxial growth. Here, when the wafer 1 is cut out from a silicon single crystal rod, a convex portion 1a is provided in a part of the wafer 1 as shown in FIG. After forming, further chemical vapor deposition (C
An n-type polycrystalline silicon layer 7a is formed by the VD method. Next, the polycrystalline silicon layer 7a is irradiated with laser light while moving sequentially from the part that contacts the convex part 1a in a direction facing the convex part 1a, melting the polycrystalline silicon and using the convex part 1a as a seed. It is possible to form a sculpted crystal silicon layer 7.

上記の如くして形成されたn形層7の表面に酸化膜10
を成長させ、この酸化膜10をマスキングにより一部の
み除去する。この酸化膜除去部分より7クセプタの拡散
を行なってドレイン、ソースとなるp形層8a、8b、
8cが形成される。
An oxide film 10 is formed on the surface of the n-type layer 7 formed as described above.
is grown, and only a portion of this oxide film 10 is removed by masking. From this oxide film removed part, seven receptors are diffused to form p-type layers 8a, 8b, which become drains and sources.
8c is formed.

この後、同様のマスキング及び拡散によりp形層8a内
にn形1fi9a 、9bが形成される。次に、金属電
極5a上部のみを開口したマスクを使用して、金属電極
5a上部のn形層及び酸化膜2を除去し、これによって
孔11が形成される。孔10の側壁には酸化11!12
が成長形成されて酸化膜10に連続し一体化する。更に
p形層8b 、 8a間、n形層9a 、9b間のゲー
ト部分の酸化膜がマスキングにより除去されて、ここに
清浄で絶縁性の良いゲート酸化膜が成長形成される。こ
の後金属電極5a及びp形層3b、8c、n形層9a9
b上の酸化膜が除去されてアルミ等の金属が蒸着され、
金属電極13a、13b、13c及び金属電極14a、
14bが形成される。この後電極配線部以外の不要部分
の金属膜が除去される。上記の金属蒸着時に孔11の酸
化膜12上にも金属が蒸着されるため、金属電極5aと
13aとは導通接続される。
Thereafter, n-type layers 1fi9a and 9b are formed in p-type layer 8a by similar masking and diffusion. Next, using a mask with an opening only above the metal electrode 5a, the n-type layer and oxide film 2 above the metal electrode 5a are removed, thereby forming the hole 11. Oxidation 11!12 on the side wall of hole 10
is grown to continue and be integrated with the oxide film 10. Further, the oxide film in the gate portion between the p-type layers 8b and 8a and between the n-type layers 9a and 9b is removed by masking, and a clean gate oxide film with good insulation is grown there. After that, the metal electrode 5a, the p-type layers 3b, 8c, and the n-type layer 9a9
The oxide film on b is removed and metal such as aluminum is deposited,
Metal electrodes 13a, 13b, 13c and metal electrode 14a,
14b is formed. Thereafter, unnecessary portions of the metal film other than the electrode wiring portion are removed. During the metal deposition described above, metal is also deposited on the oxide film 12 in the hole 11, so that the metal electrodes 5a and 13a are electrically connected.

上記と同様にして金属電極13a〜13C214a、1
4b全体を成長させた酸化膜10で彼覆し、その上にシ
リコン単結晶のn形層を形成して第3段の回路が構成さ
れ、以下1i1様にしてn(nは正の整数)段の回路が
構成される。
Metal electrodes 13a to 13C214a, 1 in the same manner as above
The third stage circuit is constructed by covering the entire oxide film 10 with a grown oxide film 10 and forming an n-type silicon single crystal layer thereon. A circuit is constructed.

ここで、ウェーハ1上には複数個の集積回路が構成され
るが、各集積回路の周縁部は第5図(A)に示す如く、
第1段20に比して第2段22の面積が小となるよう加
工され、同様に第n段24に比して第n−1段の面が小
とされる。ただし、第5図(△)に示すものは第1図示
と同様2段構成のものである。第1段20上の電極21
a〜21n夫々は金属電極5b、5c、6a等の配線を
引き出したものであり、第2段22上の電極23a〜2
3n夫々は金属電極13a、13b、13c。
Here, a plurality of integrated circuits are formed on the wafer 1, and the peripheral portion of each integrated circuit is as shown in FIG. 5(A).
The area of the second stage 22 is processed to be smaller than that of the first stage 20, and similarly, the surface of the (n-1)th stage is made smaller than that of the nth stage 24. However, the one shown in FIG. 5 (△) has a two-stage configuration similar to that shown in the first drawing. Electrode 21 on the first stage 20
a to 21n are wirings of metal electrodes 5b, 5c, 6a, etc., respectively, and electrodes 23a to 2 on the second stage 22.
3n are metal electrodes 13a, 13b, and 13c, respectively.

148等の配線を引き出したものである。なお、金属電
極6a 、6b間は酸化膜2内で配線接続されている。
148 etc. wiring is drawn out. Note that the metal electrodes 6a and 6b are interconnected within the oxide film 2.

勿論、n形層7内に孔11を設けて金属型i5a、13
a間を接続する代りに、金属電極5a、138夫々に接
続された電極21a〜21n、23a〜23nのうちの
各電極を集積回路の外部で接続しても良い。
Of course, a hole 11 is provided in the n-type layer 7 to form a metal type i5a, 13.
Instead of connecting the metal electrodes 5a and 138, each of the electrodes 21a to 21n and 23a to 23n connected to the metal electrodes 5a and 138 may be connected outside the integrated circuit.

ここで、例えばn=32としても第5図(B)に示す如
く第1段20〜第32段24夫々に各1個のマイクロプ
ロセッサを構成する。各マイクロプロセッサは第6図に
示す如く、レジスタブロック30.タイミング制御ブロ
ック31.命令デコーダブロック32.演算ブロック3
3及びパスライン34より大略構成されている。パスラ
イン34より供給される命令コードは命令デコーダブロ
ック32で解読され、タイミング制御ブロック31はこ
の命令デコーダブロック32よりの信号に応じて制御信
号を生成しレジスタブロック30゜命令デコーダブロッ
ク32.演算ブロック33夫々に供給する。これによっ
てレジスタブロック30に格納されているデータが演算
ブロック33に供給されて命令に応じた演算処理が行な
われ、レジスタブロック30に転送されて格納される。
Here, for example, even if n=32, one microprocessor is configured in each of the first stage 20 to the 32nd stage 24 as shown in FIG. 5(B). Each microprocessor has a register block 30. Timing control block 31. Instruction decoder block 32. Arithmetic block 3
3 and a pass line 34. The instruction code supplied from the pass line 34 is decoded by the instruction decoder block 32, and the timing control block 31 generates a control signal according to the signal from the instruction decoder block 32, and the register block 30.degree. instruction decoder block 32. It is supplied to each calculation block 33. As a result, the data stored in the register block 30 is supplied to the arithmetic block 33, where arithmetic processing according to the instruction is performed, and the data is transferred to the register block 30 and stored.

このように第1段20〜第32段24夫々にマイクロプ
ロセッサが構成されるため、この半導体集積回路の大き
さは、従来の単一のマイクロプロセッサを構成したもの
と略同等の大きさで済む。
Since a microprocessor is configured in each of the first stage 20 to the 32nd stage 24 in this way, the size of this semiconductor integrated circuit is approximately the same as that of a conventional single microprocessor. .

これによって本発明の半導体集積回路を1チツプ用いる
だけで1ワード32ピツトのデータを32個のマイクロ
プロセッサにより並列処理して超高速演算を行なうこと
が可能である。この場合、各マイクロプロセッサ間の配
線距離も、第1図示の孔11内の金属蒸着によって、又
は例えば電極218.23a等の金属蒸着を行なうこと
によって、従来より極めて短かくなり、演算速度が更に
速くなる。
As a result, by using only one chip of the semiconductor integrated circuit of the present invention, data of 1 word and 32 pits can be processed in parallel by 32 microprocessors to perform extremely high-speed calculations. In this case, the wiring distance between each microprocessor is also much shorter than before by metal vapor deposition in the hole 11 shown in the first diagram or by metal vapor deposition on the electrodes 218, 23a, etc., and the calculation speed is further increased. It gets faster.

また、並列型のA/D変換器の如く、多くのコンパレー
タを必要とする回路であっても、本発明の多段構成とす
ることによって単一の半導体集積回路上にA/D変換器
の全回路及びその他の付随回路を構成することが可能と
なる。
Furthermore, even in circuits that require many comparators, such as parallel type A/D converters, by using the multi-stage configuration of the present invention, all A/D converters can be integrated on a single semiconductor integrated circuit. It becomes possible to configure circuits and other ancillary circuits.

なJ3、第5図(B)に示す第1段20にマイクロプロ
セッサを構成し、第2段22にインターフェース回路を
構成し、第3段にメモリを構成して、1チツプ上にマイ
クロコンピュータシスデムを構成しても良く、また、第
1段20に32ビツトのマイクロプロセッサ、第2段2
2に16ビツトのマイクロプロセッサ、第3段に8ビツ
トのマイク[lプロセッサ夫々を構成して多機能プロセ
ッサシステムを構成しても良く、各段の回路を同一構成
とする必要はなく、上記実施例に限定されない。
In the J3, a microprocessor is configured in the first stage 20 shown in FIG. A 32-bit microprocessor may be used in the first stage 20 and a 32-bit microprocessor in the second stage 20.
A 16-bit microprocessor is installed in the second stage, and an 8-bit microphone is installed in the third stage.A multi-function processor system may be constructed by configuring each of the processors, and it is not necessary that the circuits in each stage have the same configuration. Not limited to examples.

発明の効果 上述の如く、本発明になる半導体集積回路は、半導体層
の一面上に構成される集積回路を複数段重骨してなるた
め、単位面積当りの回路集積度が複数18となって、1
チツプ内に構成される回路数が増大し、また、各段の集
積回路夫々にマイクロプロセッサを構成した場合各段の
マイクロプロセッサにより並列処理を行ない超高速演算
が可能となると共に、各段のマイクロプロセッサ間の配
線距離が短縮され演算の高速化が進み、配線基板上にお
けるチップの占有面積が小となる等の特長を有している
Effects of the Invention As described above, the semiconductor integrated circuit according to the present invention has multiple stages of integrated circuits constructed on one surface of a semiconductor layer, so that the degree of circuit integration per unit area is 18. ,1
The number of circuits configured within a chip increases, and if a microprocessor is configured for each integrated circuit in each stage, the microprocessor in each stage performs parallel processing, making it possible to perform ultra-high-speed calculations. It has the advantage of shortening the wiring distance between processors, increasing the speed of computation, and reducing the area occupied by the chip on the wiring board.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる半導体集積回路の一実施例の断面
を示す図、第2図は従来の集積回路の一例の断面を示す
図、第3図は第1図示の集積回路のWJJ造過程の断面
を示す図、第4図は第3図示のn形層の形成過程を説明
するための図、第5図は本発明集積回路の多段構造を説
明するための図、第6図はマイクロプロセッサの全体構
成を示す図である。 1・・・ウェーハ、2.10.12・・・酸化膜、3a
〜3c 、 8a 〜8cmp形層、4a、4b、7゜
9a 、9b−n形層、5a 〜5c、6a、6b。 13a 〜13c、14a、 14b−・・金属電極、
7a・・・多結晶シリコン層、20・・・第1段、22
・・・第2段、24・・・第n段、30・・・レジスタ
ブロック、31・・・タイミング制御ブロック、32・
・・命令デコーダブロック、33・・・演算ブロック、
34・・・パスライン。
FIG. 1 is a diagram showing a cross section of an embodiment of a semiconductor integrated circuit according to the present invention, FIG. 2 is a diagram showing a cross section of an example of a conventional integrated circuit, and FIG. 3 is a WJJ structure of the integrated circuit shown in FIG. FIG. 4 is a diagram for explaining the formation process of the n-type layer shown in FIG. 3, FIG. 5 is a diagram for explaining the multi-stage structure of the integrated circuit of the present invention, and FIG. 1 is a diagram showing the overall configuration of a microprocessor. 1... Wafer, 2.10.12... Oxide film, 3a
-3c, 8a -8cm p-type layer, 4a, 4b, 7°9a, 9b-n-type layer, 5a -5c, 6a, 6b. 13a to 13c, 14a, 14b--metal electrode,
7a... Polycrystalline silicon layer, 20... First stage, 22
... second stage, 24... nth stage, 30... register block, 31... timing control block, 32...
...Instruction decoder block, 33...Arithmetic block,
34...Pass line.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体層の一面上にn形層及び/又はp形層を形
成し、かつ電極を設けることにより構成される集積回路
を一の段とし、該集積回路の段を該半導体層の面に垂直
方向に複数段重畳してなることを特徴とする半導体集積
回路。
(1) An integrated circuit formed by forming an n-type layer and/or a p-type layer on one surface of a semiconductor layer and providing an electrode is defined as one stage, and the stage of the integrated circuit is formed on one surface of the semiconductor layer. A semiconductor integrated circuit characterized by having multiple stages stacked vertically.
(2)該複数段夫々に構成される集積回路夫々はマイク
ロプロセッサであることを特徴とする特許請求の範囲第
1項記載の半導体集積回路。
(2) The semiconductor integrated circuit according to claim 1, wherein each of the integrated circuits configured in each of the plurality of stages is a microprocessor.
JP3707585A 1985-02-26 1985-02-26 Semiconductor integrated circuit Pending JPS61196565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3707585A JPS61196565A (en) 1985-02-26 1985-02-26 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3707585A JPS61196565A (en) 1985-02-26 1985-02-26 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS61196565A true JPS61196565A (en) 1986-08-30

Family

ID=12487431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3707585A Pending JPS61196565A (en) 1985-02-26 1985-02-26 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS61196565A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512598A (en) * 2008-02-19 2011-04-21 マイクロン テクノロジー, インク. Method, apparatus and system for a memory device having a network on a chip
US9047991B2 (en) 2008-09-11 2015-06-02 Micron Technology, Inc. Methods, apparatus, and systems to repair memory
US9123552B2 (en) 2010-03-30 2015-09-01 Micron Technology, Inc. Apparatuses enabling concurrent communication between an interface die and a plurality of dice stacks, interleaved conductive paths in stacked devices, and methods for forming and operating the same
US9524254B2 (en) 2008-07-02 2016-12-20 Micron Technology, Inc. Multi-serial interface stacked-die memory architecture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011512598A (en) * 2008-02-19 2011-04-21 マイクロン テクノロジー, インク. Method, apparatus and system for a memory device having a network on a chip
US9229887B2 (en) 2008-02-19 2016-01-05 Micron Technology, Inc. Memory device with network on chip methods, apparatus, and systems
US9524254B2 (en) 2008-07-02 2016-12-20 Micron Technology, Inc. Multi-serial interface stacked-die memory architecture
US9047991B2 (en) 2008-09-11 2015-06-02 Micron Technology, Inc. Methods, apparatus, and systems to repair memory
US9852813B2 (en) 2008-09-11 2017-12-26 Micron Technology, Inc. Methods, apparatus, and systems to repair memory
US10332614B2 (en) 2008-09-11 2019-06-25 Micron Technology, Inc. Methods, apparatus, and systems to repair memory
US9123552B2 (en) 2010-03-30 2015-09-01 Micron Technology, Inc. Apparatuses enabling concurrent communication between an interface die and a plurality of dice stacks, interleaved conductive paths in stacked devices, and methods for forming and operating the same
US9484326B2 (en) 2010-03-30 2016-11-01 Micron Technology, Inc. Apparatuses having stacked devices and methods of connecting dice stacks

Similar Documents

Publication Publication Date Title
US4041518A (en) MIS semiconductor device and method of manufacturing the same
US3699646A (en) Integrated circuit structure and method for making integrated circuit structure
US4467520A (en) Method of manufacturing mask type read only memory
EP0086372A2 (en) Tunneling gate semiconductor device
US4478679A (en) Self-aligning process for placing a barrier metal over the source and drain regions of MOS semiconductors
US5138437A (en) Semiconductor integrated circuit device in which integrated circuit units having different functions are stacked in three dimensional manner
KR970077744A (en) Thin film transistor and manufacturing method thereof
JPH0658947B2 (en) Manufacturing method of semiconductor memory device
US4207585A (en) Silicon gate MOS ROM
US4271421A (en) High density N-channel silicon gate read only memory
US4326329A (en) Method of making a contact programmable double level polysilicon MOS read only memory
US4385432A (en) Closely-spaced double level conductors for MOS read only
JPS61196565A (en) Semiconductor integrated circuit
JP2952887B2 (en) Semiconductor device and manufacturing method thereof
US4342100A (en) Implant programmable metal gate MOS read only memory
JPS5851536A (en) Master slice chip
JPS58139446A (en) Semiconductor integrated circuit device
US4208726A (en) Programming of semiconductor read only memory
KR940004609B1 (en) Mask read only memory
JPH01257366A (en) Semiconductor device and its manufacture
JPS5951143B2 (en) MIS type semiconductor device
JPS608636B2 (en) Manufacturing method of semiconductor device
US4457066A (en) Method of making single-level polysilicon dynamic memory array
JPS59194472A (en) Forming method of gate oxidized film
JPS6370617A (en) Signal processor