JPS61194317A - Direct-heating type flow-rate sensor - Google Patents

Direct-heating type flow-rate sensor

Info

Publication number
JPS61194317A
JPS61194317A JP60034414A JP3441485A JPS61194317A JP S61194317 A JPS61194317 A JP S61194317A JP 60034414 A JP60034414 A JP 60034414A JP 3441485 A JP3441485 A JP 3441485A JP S61194317 A JPS61194317 A JP S61194317A
Authority
JP
Japan
Prior art keywords
thermal conductivity
resistor
holding member
substrate
heating type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60034414A
Other languages
Japanese (ja)
Other versions
JPH0476415B2 (en
Inventor
Minoru Oota
実 太田
Kazuhiko Miura
和彦 三浦
Seiji Fujino
藤野 誠二
Kenji Kanehara
賢治 金原
Tadashi Hattori
正 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP60034414A priority Critical patent/JPS61194317A/en
Priority to GB08603872A priority patent/GB2171800B/en
Priority to DE19863606057 priority patent/DE3606057A1/en
Publication of JPS61194317A publication Critical patent/JPS61194317A/en
Publication of JPH0476415B2 publication Critical patent/JPH0476415B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/688Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element
    • G01F1/69Structural arrangements; Mounting of elements, e.g. in relation to fluid flow using a particular type of heating, cooling or sensing element of resistive type
    • G01F1/692Thin-film arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/10Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables
    • G01P5/12Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring thermal variables using variation of resistance of a heated conductor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To improve response property of a flow-rate sensor, by constructing a substrate with a material of poor thermal conductivity and a supporting member with that of excellent thermal conductivity and installing a heat- throttling member between a duct and the supporting member. CONSTITUTION:Both ends of a film-type resistance 7 are supported by a supporting member 13 of excellent thermal conductivity, heat transferred from the resistance 7 to the member 13 is radiated quickly to a liquid. Further, on the ends on both sides of the member 13 are provided with notches 13a, as namely, heat-throttling members and by this arrangements, thermal insulating effect of the members 13 is strengthened. The supporting member 13 is fixed to a duct through a member 12 of poor thermal conductivity and thus, thermal insulating effect of the member 13 is improved. Consequently, film-type resistance 7 and supporting member 13 become in a floating condition in the liquid and its heat mass is minimized and the responsivity of the flow-rate sensor is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は膜式抵抗を有する直熱型流量センサ、たとえば
内燃機関の吸入空気量を検出するための空気流量センサ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a directly heated flow rate sensor having a membrane resistor, for example, an air flow rate sensor for detecting the intake air amount of an internal combustion engine.

〔従来の技術〕[Conventional technology]

一般に、電子制御式内燃機関においては、基本燃料噴射
量、基本点火時期等の制御のために機関の吸入空気量は
重要な運転状態パラメータの1つである。従来、このよ
うな吸入空気量を検出するための空気流量センサ(エア
フロメーターとも言う)はベーン式のものが主流であっ
たが、最近、小型、応答性が良い等の利点を有する温度
依存抵抗を用いた熱式ものが実用化されている。
Generally, in an electronically controlled internal combustion engine, the intake air amount of the engine is one of the important operating state parameters for controlling the basic fuel injection amount, basic ignition timing, and the like. Conventionally, vane-type air flow sensors (also called airflow meters) for detecting the amount of intake air have been mainstream, but recently temperature-dependent resistance sensors, which have advantages such as small size and good response, have been introduced. A thermal type using

さらに、温度依存抵抗を有する空気流量センサとしては
、傍熱型と、直熱型とがある。傍熱型の空気流量センサ
においては、発熱抵抗、その下流に加熱された空気流の
温度を検知するための温度依存抵抗、および発熱抵抗の
上流に加熱前の空気流の温度を検知するための温度依存
抵抗を設け、2つの温度依存抵抗の温度差が一定になる
ように発熱抵抗の電流値をフィードバック制御し、発熱
抵抗に印加される電圧により空気流量を検出するもので
ある。他方、傍熱型に比べて応答速度が早い直熱型の空
気流量センサにおいては、発熱抵抗兼加熱された空気流
の温度検知用抵抗としての膜式抵抗を設け、この膜式抵
抗とイ椹加熱前の空気流の温度を検知するための温度依
存抵抗との温度差が一定値になるように膜式抵抗の電流
値をフィードバック制御し、膜式抵抗に印加される電圧
により空気流量を検出するものである。
Further, air flow rate sensors having temperature-dependent resistance include indirect heating type and direct heating type. Indirectly heated air flow sensors include a heating resistor, a temperature-dependent resistor downstream of the heating resistor for detecting the temperature of the heated airflow, and a temperature-dependent resistor upstream of the heating resistor for detecting the temperature of the airflow before heating. A temperature-dependent resistor is provided, the current value of the heating resistor is feedback-controlled so that the temperature difference between the two temperature-dependent resistors is constant, and the air flow rate is detected by the voltage applied to the heating resistor. On the other hand, in a directly heated type air flow sensor, which has a faster response speed than an indirectly heated type, a film resistor is provided as a heat generating resistor and a resistor for detecting the temperature of the heated air flow. The current value of the membrane resistor is feedback-controlled so that the temperature difference with the temperature-dependent resistor for detecting the temperature of the air flow before heating is a constant value, and the air flow rate is detected by the voltage applied to the membrane resistor. It is something to do.

通常、膜式抵抗の発熱温度と加熱前の吸入空気温度との
差を一定値にする空気流量センサの応答性、ダイナミッ
クレンジは膜式抵抗を含む発熱部の熱容量(ヒートマス
)と断熱効果の程度で決定される。すなわち、最も応答
性がよく、且つダイナミックレンジを最も大きくするた
めには、膜式抵抗を含む発熱部の質量をできる限り小さ
くし、また、その部分を理想的には完全に空気流中に浮
かんだ状態にすることである。
Normally, the responsiveness and dynamic range of an air flow sensor that keeps the difference between the heat generation temperature of the membrane resistor and the intake air temperature before heating to a constant value is determined by the heat capacity (heat mass) of the heat generating part including the membrane resistor and the degree of insulation effect. determined by In other words, in order to have the best response and the largest dynamic range, the mass of the heat generating part including the membrane resistor should be as small as possible, and ideally that part should be completely floating in the airflow. It is to bring the situation to a certain state.

上述の膜式抵抗の基板としては、樹脂フィルム等のフレ
シキブルタイプのもの、および、シリコン、ガラス、セ
ラミック等のソリッドタイプのものとがある。フレシキ
ブルタイプの基板は経時変化が大きく、また、その対策
も難かしい。また、ソリッドタイプの基板はフレシキブ
ルタイプに比して強度的にある程度の厚さを必要とし、
また、フレシキブルタイプに比して熱伝導率が良いため
に断熱効果が少ない、このため、ソリッドタイプの基板
を用いた場合には、断熱効果を上げるために、その保持
部材としては熱伝導率の悪いたとえばセラミックを用い
ている。
Substrates for the above-mentioned film resistors include flexible types such as resin films, and solid types such as silicon, glass, and ceramic. Flexible type circuit boards are subject to large changes over time, and countermeasures against this change are also difficult. In addition, solid type substrates require a certain degree of thickness compared to flexible types for strength.
In addition, since it has better thermal conductivity than the flexible type, it has less insulation effect.For this reason, when using a solid type board, in order to increase the insulation effect, the holding member must have a high thermal conductivity. For example, ceramic is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ソリッドタイプの基板のうち、ガラス、セラミックの熱
伝導率は、通常、0.01ca# /ca+ −sec
 −deg以下であってシリコンの熱伝導率に比して低
く、従って、断熱効果はや\期待できるために流量セン
サの基板として適用しようという要望がある。
Among solid type substrates, the thermal conductivity of glass and ceramic is usually 0.01ca#/ca+ -sec
-deg or less, which is lower than the thermal conductivity of silicon, and therefore, it can be expected to have a good heat insulating effect, so there is a desire to use it as a substrate for a flow rate sensor.

しかしながら、ガラス、セラミック等の熱伝導率が悪い
材料は熱損失((膜式抵抗の全発熱量)−(膜式抵抗か
ら流体への放熱量))が大きく、この結果、流量センサ
の応答性が悪化するという問題点がある。
However, materials with poor thermal conductivity such as glass and ceramics have a large heat loss ((total calorific value of the membrane resistor) - (amount of heat dissipated from the membrane resistor to the fluid)), and as a result, the responsiveness of the flow sensor The problem is that it gets worse.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の目的は、ソリッドタイプの基板を用いた応答性
の良い流量センサを提供することにあり、その手段は、
膜式抵抗が形成された基板を保持部材に支持することに
よりダクト内に収容した直熱型流量センサにおいて、前
記基板を熱伝導の悪い材料で構成し、前記保持部材を熱
伝導の良い材料で構成し、前記保持部材と前記ダクトと
の間に熱絞りを設けたことを特徴とする直熱型流量セン
サにある。
An object of the present invention is to provide a flow sensor with good responsiveness using a solid type substrate, and its means include:
In a directly heated flow sensor in which a substrate on which a membrane resistor is formed is housed in a duct by being supported by a holding member, the substrate is made of a material with poor thermal conductivity, and the holding member is made of a material with good thermal conductivity. The directly heated flow rate sensor is characterized in that a thermal throttle is provided between the holding member and the duct.

〔作 用〕[For production]

上述の手段によれば、膜式抵抗の基板自身から流体へ放
熱されない熱は熱伝導性の良い保持部材から流体へ積極
的に放熱される。このとき、保持部材とダクトとの間は
熱伝導性の悪い樹脂等により熱絞りが施されているので
、膜式抵抗および保持部材を含むセンサ本体が流体中に
浮かんだ状態となる。この結果、熱伝導率の良い基板た
とえばシリコン基板を用い、熱伝導率の悪い保持部材を
用いた場合に比較してヒートマスは小さくなり、流量セ
ンサの応答性は向上する。
According to the above-mentioned means, the heat that is not radiated from the substrate itself of the membrane resistor to the fluid is actively radiated from the holding member having good thermal conductivity to the fluid. At this time, since the space between the holding member and the duct is thermally throttled using a resin or the like having poor thermal conductivity, the sensor main body including the membrane resistor and the holding member floats in the fluid. As a result, the heat mass becomes smaller and the responsiveness of the flow sensor improves compared to when a substrate with good thermal conductivity, such as a silicon substrate, is used and a holding member with poor thermal conductivity is used.

〔実施例〕〔Example〕

以下、図面により本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to the drawings.

第3図は本発明に係る膜式抵抗を有する直熱型空気流量
センサが適用された内燃機関を示す全体概要図、第4図
、第5図は第3図のセンサ部分の拡大縦断面図および横
断面図である。第3図〜第5図において、内燃機関1の
吸気通路2にはエアクリーナ3および整流格子4を介し
て空気が吸入される。この吸気通路2内に計測管(ダク
ト)5がスティ6を介して固定されており、その内部に
は空気流量を計測するための電熱ヒータとしての膜式抵
抗7が設けられている。さらに、スティ6の外側には外
気温度補償を行う温度依存抵抗8が設けられている。膜
式抵抗7は、温度依存抵抗8と共に、ハイブリッド基板
に形成されたセンサ回路9に接続されている。
FIG. 3 is an overall schematic diagram showing an internal combustion engine to which a directly heated air flow sensor having a membrane resistor according to the present invention is applied, and FIGS. 4 and 5 are enlarged vertical cross-sectional views of the sensor portion of FIG. 3. and a cross-sectional view. 3 to 5, air is taken into an intake passage 2 of an internal combustion engine 1 via an air cleaner 3 and a rectifying grid 4. In FIGS. A measuring tube (duct) 5 is fixed in the intake passage 2 via a stay 6, and a membrane resistor 7 as an electric heater for measuring the air flow rate is provided inside the measuring tube 5. Further, a temperature dependent resistor 8 is provided outside the stay 6 to compensate for the outside temperature. The membrane resistor 7, together with a temperature-dependent resistor 8, is connected to a sensor circuit 9 formed on the hybrid substrate.

センサ回路9は膜式抵抗7の温度と温度依存抵抗8の温
度との差が一定になるように膜式抵抗7の発熱量をフィ
ードバック制御し、そのセンサ出力v0を制御回路10
に供給する。制御回路10はたとえばマイクロコンピュ
ータによって構成され、燃料噴射弁11の制御等を行う
ものである。
The sensor circuit 9 feedback-controls the amount of heat generated by the membrane resistor 7 so that the difference between the temperature of the membrane resistor 7 and the temperature of the temperature-dependent resistor 8 is constant, and the sensor output v0 is sent to the control circuit 10.
supply to. The control circuit 10 is composed of, for example, a microcomputer, and controls the fuel injection valve 11 and the like.

センサ回路9は、第6図に示すごとく、膜式抵抗7、温
度依存抵抗8とブリッジ回路を構成する抵抗91 、9
2、比較器93、比較器93の出力によって制御される
トランジスタ94、電圧バッファ95により構成される
。つまり、空気流量が増加して膜式抵抗7 (この場合
サーミスタ)の温度が低下し、この結果、膜式抵抗7の
抵抗値が下降してvIくv、Iとなると、比較器93の
出力によってトランジスタ94の導電率が増加する。従
って、膜式抵抗7の発熱量が増加し、同時に、トランジ
スタ94のコレクタ電位すなわち電圧バッファ95の出
力電圧V、は上昇する。逆に、空気流量が減少して膜式
抵抗7の温度が上昇すると、膜式抵抗7の抵抗値が増加
してV、>V、となり、比較器93の出力によってトラ
ンジスタ94の導電率が減少する。従って、膜式抵抗7
の発熱量が減少し、同時に、トランジスタ94のコレク
タ電位すなわち電圧バッファ95の出力電圧v0は下降
する。このようにして膜式抵抗7の温度は外気温度によ
って定まる値になるようにフィードバック制御され、出
力電圧v0は空気流量を示すことになる。
As shown in FIG. 6, the sensor circuit 9 includes a membrane resistor 7, a temperature-dependent resistor 8, and resistors 91 and 9 forming a bridge circuit.
2, a comparator 93, a transistor 94 controlled by the output of the comparator 93, and a voltage buffer 95. In other words, the air flow rate increases and the temperature of the membrane resistor 7 (thermistor in this case) decreases, and as a result, the resistance value of the membrane resistor 7 decreases to vI - v, I, and the output of the comparator 93 The conductivity of transistor 94 increases. Therefore, the amount of heat generated by the film resistor 7 increases, and at the same time, the collector potential of the transistor 94, that is, the output voltage V of the voltage buffer 95 increases. Conversely, when the air flow rate decreases and the temperature of the membrane resistor 7 increases, the resistance value of the membrane resistor 7 increases to V,>V, and the conductivity of the transistor 94 decreases due to the output of the comparator 93. do. Therefore, the membrane resistor 7
The amount of heat generated by the transistor 94 decreases, and at the same time, the collector potential of the transistor 94, that is, the output voltage v0 of the voltage buffer 95 decreases. In this way, the temperature of the membrane resistor 7 is feedback-controlled to a value determined by the outside air temperature, and the output voltage v0 indicates the air flow rate.

なお、第5図における12は耐バツクファイヤ用プロテ
クタである。
Note that 12 in FIG. 5 is a backfire resistant protector.

第1図は本発明に係る膜式抵抗の保持部分を示す平面図
であり、第5図において矢印■方向から見た図である。
FIG. 1 is a plan view showing the holding portion of the membrane resistor according to the present invention, and is a view seen from the direction of the arrow (■) in FIG.

第1図において、膜式抵抗7は後述のごとく熱伝導率の
比較的悪い材料たとえばガラス、セラミックを基板とし
て具備している。膜式抵抗7の両端は熱伝導性の良いア
ルミニウム、銅等よりなる保持部材13によって支持さ
れ、これにより、膜式抵抗7から保持部材13に伝達さ
れた熱は保持部材13から流体へ速かに放熱される。ま
た、保持部材13の各側端には切欠き13aを形成して
あり、つまり、熱絞りが施されており、これにより、保
持部材13の断熱効果を大きくせしめている。さらに、
保持部材13は熱伝導性の悪い部材1またとえばポリイ
ミド樹脂を介してダクト5に固定されており、これによ
り、保持部材13の断熱効果をより大きくせしめている
。なお、部材12は上述のごとく耐バツクファイヤ用プ
ロテクタをも構成している。
In FIG. 1, the membrane resistor 7 has a substrate made of a material with relatively poor thermal conductivity, such as glass or ceramic, as will be described later. Both ends of the membrane resistor 7 are supported by a holding member 13 made of aluminum, copper, etc. with good thermal conductivity, so that the heat transferred from the membrane resistor 7 to the holding member 13 is quickly transferred from the holding member 13 to the fluid. Heat is radiated to Further, each side end of the holding member 13 is formed with a notch 13a, that is, thermally drawn, thereby increasing the heat insulating effect of the holding member 13. moreover,
The holding member 13 is fixed to the duct 5 via a member 1 having poor thermal conductivity, such as polyimide resin, thereby increasing the heat insulating effect of the holding member 13. Note that the member 12 also constitutes a backfire resistant protector as described above.

従って、膜式抵抗7および保持部材13は流体中に浮か
んだ状態となり、膜式抵抗7が発生する熱の大部分は膜
式抵抗7もしくは保持部材13により流体中に放熱され
ることになる。
Therefore, the membrane resistor 7 and the holding member 13 are in a state of floating in the fluid, and most of the heat generated by the membrane resistor 7 is radiated into the fluid by the membrane resistor 7 or the retaining member 13.

なお、熱絞りは保持部材13の側端の熱通路を縮小すれ
ばよく、切欠き以外の手段にもなし得る。
Note that the thermal aperture can be achieved by reducing the thermal passage at the side end of the holding member 13, and may be achieved by means other than notches.

第2図は第1図の膜式抵抗7の拡大図である。FIG. 2 is an enlarged view of the membrane resistor 7 shown in FIG.

第2図に示すように、たとえば100μm厚のガラス基
板71上に蒸着およびエツチングにより白金(Pt)、
ニー/ケル(Ni)、ニクロム(Ni−Cr)等からな
る膜式抵抗パターン72を形成し、そのうち、点線枠内
で示す部分72aが発熱部として作用する。
As shown in FIG. 2, for example, platinum (Pt) is deposited on a glass substrate 71 with a thickness of 100 μm by vapor deposition and etching.
A film resistance pattern 72 made of Ni/Kel (Ni), Nichrome (Ni-Cr), etc. is formed, and a portion 72a shown within the dotted line frame acts as a heat generating portion.

この場合、保持部材13としては金属を用いているので
、膜式抵抗7の信号取出部?2bは直接保持部材13に
直接接続される。また、ガラス基板71の画面に膜式抵
抗パターン72を形成することもできる。
In this case, since metal is used as the holding member 13, the signal extraction portion of the membrane resistor 7? 2b is directly connected to the holding member 13. Further, a film resistance pattern 72 can also be formed on the screen of the glass substrate 71.

なお、基板71としては、アルミナ(AttO,)、ム
ライト(3Alz03@2SiOt)等のセラミックも
用いることができる。また、本発明は空気流量センサ以
外の流量センサ、たとえば液体流量センサにも適用し得
る。
Note that as the substrate 71, ceramics such as alumina (AttO) and mullite (3Alz03@2SiOt) can also be used. Furthermore, the present invention can be applied to flow sensors other than air flow sensors, such as liquid flow sensors.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、応答性の良い流量
センサを得ることができる。
As explained above, according to the present invention, a flow rate sensor with good responsiveness can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る膜式抵抗の保持部分を示す平面図
、第2図は第1図の膜式抵抗の拡大図、第3図は本発明
に係る膜式抵抗を有する直熱型空気流量センサが適用さ
れた内燃機関を示す全体概要図、第4図、第5図は第3
図の膜式抵抗6の拡大平面図および断面図、第6図は第
3図のセンサ回路の回路図である。 1・・・内燃機関、     2・・・吸気通路、5・
・・計測管(ダクト)、 7・・・膜式抵抗、8・・・
温度依存抵抗、   9・・・センサ回路、10−・・
制御回路、     13・・・保持部材。 7 :膜式抵抗 12:熱伝導率の悪い部材 13:保持部材 13q:切欠き 第2図 7 : 膜式抵抗 7】:基板 72:  膜式抵抗パターン 720:発熱部 13:  保持部材 1:内燃機関 2:吸気通路 6:ダクト 7:膜式抵抗 8:温度依存抵抗 9:センサ回路 第4図 8:温度依存抵抗 8:温度依存抵抗
FIG. 1 is a plan view showing the holding part of the membrane resistor according to the present invention, FIG. 2 is an enlarged view of the membrane resistor in FIG. 1, and FIG. 3 is a direct heating type having the membrane resistor according to the present invention. An overall schematic diagram showing an internal combustion engine to which an air flow rate sensor is applied, Figures 4 and 5 are shown in Figure 3.
FIG. 6 is an enlarged plan view and cross-sectional view of the membrane resistor 6 shown in the figure, and FIG. 6 is a circuit diagram of the sensor circuit shown in FIG. 3. 1... Internal combustion engine, 2... Intake passage, 5...
...Measurement tube (duct), 7...Membrane resistor, 8...
Temperature-dependent resistance, 9...Sensor circuit, 10-...
Control circuit, 13... Holding member. 7: Film resistance 12: Member with poor thermal conductivity 13: Holding member 13q: Notch Fig. 2 7: Film resistance 7]: Substrate 72: Film resistance pattern 720: Heat generating part 13: Holding member 1: Internal combustion Engine 2: Intake passage 6: Duct 7: Membrane resistance 8: Temperature dependent resistance 9: Sensor circuit Figure 4 8: Temperature dependent resistance 8: Temperature dependent resistance

Claims (1)

【特許請求の範囲】 1、膜式抵抗が形成された基板を保持部材に支持するこ
とによりダクト内に収容した直熱型流量センサにおいて
、前記基板を熱伝導の悪い材料で構成し、前記保持部材
を熱伝導の良い材料で構成し、前記保持部材と前記ダク
トとの間に熱絞りを設けたことを特徴とする直熱型流量
センサ。 2、前記基板がガラスよりなる特許請求の範囲第1項に
記載の直熱型流量センサ。 3、前記基板がセラミックよりなる特許請求の範囲第1
項に記載の直熱型流量センサ。 4、前記保持部材がアルミニウム、銅等の金属よりなる
特許請求の範囲第1項に記載の直熱型流量センサ。 5、前記熱絞りが前記保持部材と前記ダクトとの間に設
けられた熱伝導性の悪い樹脂により行われる特許請求の
範囲第1項に記載の直熱型流量センサ。 6、前記熱絞りが前記保持部材の側端の熱通路を縮小す
ることにより行われる特許請求の範囲第1項に記載の直
熱型流量センサ。 7、前記基板の画面に前記膜式抵抗を形成した特許請求
の範囲第1項に記載の直熱型流量センサ。
[Scope of Claims] 1. A directly heated flow sensor in which a substrate on which a membrane resistor is formed is housed in a duct by being supported by a holding member, wherein the substrate is made of a material with poor thermal conductivity; A directly heated flow rate sensor, characterized in that the member is made of a material with good thermal conductivity, and a thermal throttle is provided between the holding member and the duct. 2. The direct heating type flow sensor according to claim 1, wherein the substrate is made of glass. 3. Claim 1 in which the substrate is made of ceramic
The direct heating type flow sensor described in section. 4. The direct heating type flow sensor according to claim 1, wherein the holding member is made of metal such as aluminum or copper. 5. The direct heating type flow sensor according to claim 1, wherein the thermal throttling is performed by a resin with poor thermal conductivity provided between the holding member and the duct. 6. The direct heating type flow sensor according to claim 1, wherein the thermal throttling is performed by reducing a thermal passage at a side end of the holding member. 7. The direct heating type flow sensor according to claim 1, wherein the film resistor is formed on the screen of the substrate.
JP60034414A 1985-02-25 1985-02-25 Direct-heating type flow-rate sensor Granted JPS61194317A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60034414A JPS61194317A (en) 1985-02-25 1985-02-25 Direct-heating type flow-rate sensor
GB08603872A GB2171800B (en) 1985-02-25 1986-02-17 Direct-heated flow measuring apparatus having improved response characteristics
DE19863606057 DE3606057A1 (en) 1985-02-25 1986-02-25 DIRECTLY HEATED FLOW MEASURING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60034414A JPS61194317A (en) 1985-02-25 1985-02-25 Direct-heating type flow-rate sensor

Publications (2)

Publication Number Publication Date
JPS61194317A true JPS61194317A (en) 1986-08-28
JPH0476415B2 JPH0476415B2 (en) 1992-12-03

Family

ID=12413533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60034414A Granted JPS61194317A (en) 1985-02-25 1985-02-25 Direct-heating type flow-rate sensor

Country Status (3)

Country Link
JP (1) JPS61194317A (en)
DE (1) DE3606057A1 (en)
GB (1) GB2171800B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912974A (en) * 1987-12-08 1990-04-03 Mitsubishi Denki Kabushiki Kaisha Thermal flow sensor
US5404753A (en) * 1992-06-13 1995-04-11 Robert Bosch Gmbh Mass flow sensor

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3604202C2 (en) * 1985-02-14 1997-01-09 Nippon Denso Co Directly heated flow measuring device
GB2179748B (en) * 1985-08-20 1989-09-06 Sharp Kk Thermal flow sensor
GB2195449B (en) * 1986-09-26 1991-02-13 Thorn Emi Protech Limited Heat detecting unit
GB2196433B (en) * 1986-10-08 1990-10-24 Hitachi Ltd Hot element air flow meter
JPH0810231B2 (en) * 1987-03-31 1996-01-31 シャープ株式会社 Flow sensor
DE3843746C1 (en) * 1988-12-24 1990-07-12 Degussa Ag, 6000 Frankfurt, De
US5094105A (en) * 1990-08-20 1992-03-10 General Motors Corporation Optimized convection based mass airflow sensor
KR100442181B1 (en) 1995-12-15 2005-01-13 지멘스 악티엔게젤샤프트 Air mass meter
US6631638B2 (en) 2001-01-30 2003-10-14 Rosemount Aerospace Inc. Fluid flow sensor
DE102007023824B4 (en) * 2007-05-21 2010-01-07 Abb Ag Thermal mass flow meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912974A (en) * 1987-12-08 1990-04-03 Mitsubishi Denki Kabushiki Kaisha Thermal flow sensor
US5404753A (en) * 1992-06-13 1995-04-11 Robert Bosch Gmbh Mass flow sensor

Also Published As

Publication number Publication date
DE3606057A1 (en) 1986-08-28
GB2171800B (en) 1988-12-07
GB2171800A (en) 1986-09-03
GB8603872D0 (en) 1986-03-26
JPH0476415B2 (en) 1992-12-03

Similar Documents

Publication Publication Date Title
US4912975A (en) Direct-heated flow measuring apparatus having improved response characteristics
US4783996A (en) Direct-heated flow measuring apparatus
US4785662A (en) Direct-heated gas-flow measuring apparatus
US4735099A (en) Direct-heated gas-flow measuring apparatus
JPS61194317A (en) Direct-heating type flow-rate sensor
JPS62123318A (en) Direct heat type flow rate sensor
JP3133608B2 (en) Thermal air flow detector
JPH11201793A (en) Flow rate sensor
US4761995A (en) Direct-heated flow measuring apparatus having improved sensitivity and response speed
JPS6298219A (en) Thermal type flow rate sensor
JPH04147016A (en) Thermal-type flow sensor
JPH0476414B2 (en)
JPS6239722A (en) Membrane type resistor for flow sensor
JPS61186819A (en) Directly heated flow rate sensor
JP3184402B2 (en) Thermal air flow detector
JPH07286876A (en) Thermal type air flow rate detector
JPS61189416A (en) Direct heat type flow rate sensor
JPS62147319A (en) Direct heating type flow sensor
JPH0441765B2 (en)
JPH0351715A (en) Apparatus for detecting amount of intake air
JPS6239721A (en) Direct heating type flow sensor
JPH05248909A (en) Flow rate and flow velocity sensor
JPH0441930B2 (en)
JPH0441932B2 (en)
JPH04313027A (en) Thermal type flow sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term