JPS61193999A - Measuring system of quantity of combusion of missile - Google Patents

Measuring system of quantity of combusion of missile

Info

Publication number
JPS61193999A
JPS61193999A JP60033465A JP3346585A JPS61193999A JP S61193999 A JPS61193999 A JP S61193999A JP 60033465 A JP60033465 A JP 60033465A JP 3346585 A JP3346585 A JP 3346585A JP S61193999 A JPS61193999 A JP S61193999A
Authority
JP
Japan
Prior art keywords
fuel
aircraft
liquid level
accelerometer
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60033465A
Other languages
Japanese (ja)
Other versions
JPH042480B2 (en
Inventor
鳥居 誠
栗原 洋一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP60033465A priority Critical patent/JPS61193999A/en
Publication of JPS61193999A publication Critical patent/JPS61193999A/en
Publication of JPH042480B2 publication Critical patent/JPH042480B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、姿勢変動がある飛行体に取付けられた燃料タ
ンク内の燃料を測定するに際して、特に燃料レベルと液
面傾斜補正とに基づいて燃料重量残量を演算して、演算
出力の高精度化を図った飛行体の燃料測定システムに関
する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a method for measuring fuel in a fuel tank attached to an aircraft with attitude fluctuations, particularly based on fuel level and liquid level slope correction. The present invention relates to a fuel measurement system for an aircraft that calculates remaining fuel weight and achieves high accuracy of calculation output.

〈従来の技術〉 従来の技術を飛行体の代表である航空機に取付けられた
燃料型ffi 175Mを測定する飛行体の燃料測定シ
ステムを例にとって説明する。尚、前記燃料を測定する
燃料レベルセンサは航空機に用いられる場合は静電容量
式のタンクユニットが一般に゛広く用いられるので、最
下「T/U」 (タンクユニットの略称)と表現する。
<Prior Art> The conventional technology will be explained by taking as an example a fuel measurement system for an aircraft that measures fuel type FFI 175M attached to an aircraft, which is a representative aircraft. Incidentally, when the fuel level sensor for measuring the fuel is used in an aircraft, a capacitance type tank unit is generally widely used, so it is expressed as "T/U" (abbreviation for tank unit).

尚このシステムでは変化がリニ゛アなものを使用する。Note that this system uses a system with linear changes.

        □第3図は、従来の航空機の燃料測定
システム構成因である。
□Figure 3 shows the components of a conventional aircraft fuel measurement system.

このために燃料タンク内の燃料レベルはT/Uで測定し
、燃料液面は加速度に対して垂直になることを利用して
燃料の液面傾斜角は加速度計を用いて測定し、これら燃
料レベルと液面傾斜角に基づいて燃料重量残量を演算す
る必要がある。
For this purpose, the fuel level in the fuel tank is measured by T/U, and the angle of inclination of the fuel level is measured using an accelerometer, taking advantage of the fact that the fuel level is perpendicular to acceleration. It is necessary to calculate the remaining fuel weight based on the level and the liquid level inclination angle.

以下、従来の技術を第3図で説明する。The conventional technique will be explained below with reference to FIG.

第3図において、T/LJ1  (図では(T/Ll)
a、・・・(T/U)cから成る)は燃料タンクT内の
燃料Qの燃料レベル(図ではZ+、・・・Z3)を測定
し、航空機のX方向、Y方向、2方向の加速度を加速度
計3で測定し、燃料演算部2で加速度に基づいて液面傾
斜角を演算した上でこの液面傾斜角と燃料レベルに基づ
いて燃料!!量残量Wを演算し出力するものである。
In Figure 3, T/LJ1 ((T/Ll in the figure)
a,...(T/U)c) measures the fuel level of fuel Q in the fuel tank T (Z+,...Z3 in the figure), and measures the fuel level in the X direction, Y direction, and two directions of the aircraft. The acceleration is measured by the accelerometer 3, the fuel calculation unit 2 calculates the liquid level inclination angle based on the acceleration, and then the fuel is calculated based on the liquid level inclination angle and the fuel level. ! It calculates and outputs the remaining amount W.

尚、燃料演算部2は、T/Ulが接続される燃料入力イ
ンターフェイス(以下r T/FJと略称する)21と
、液面傾斜角を演算し、この液面傾斜角と燃料レベルに
基づいて燃料重量残量Wを演算する演算機能22と、各
設定箇所に応じた重み係数を配憶する記憶要素(ROM
>23と、適宜必要な情報をアクセスするランダムアク
セスメモリ(RAM>24と、この燃料演算結果を外部
に出力する出力1/F25と、加速度信号が入力する加
速度人力1 / F 26とから成る。
The fuel calculation unit 2 calculates a liquid level inclination angle with a fuel input interface (hereinafter referred to as rT/FJ) 21 to which T/Ul is connected, and based on this liquid level inclination angle and fuel level. A calculation function 22 that calculates the remaining fuel weight W and a storage element (ROM
23, a random access memory (RAM) 24 for accessing necessary information as needed, an output 1/F 25 for outputting this fuel calculation result to the outside, and an acceleration human power 1/F 26 for inputting acceleration signals.

〈発明が解決しようとする問題点〉 ところで、このような燃料測定システムは、航空機の翼
の取付は角の変化等に対して加速度計3の信号から傾斜
補正値を1qるのでは充分のフォローができない。大型
航空機の場合、燃料タンクは翼内に有り、地上・空中の
諸条件により上反角(機体に対する取付角度)が変化し
たり加速度が加わったりして正確な液面傾斜(燃料タン
クに対する燃料の液面の傾き)を検出することが難しく
、結果的に燃料残量出力の誤差を生じる原因となってい
る。液面傾斜角を測定する加速度計3は飛行体の胴体内
にiQIされるのが普通である。しかるに燃料タンクT
が設置される黄は一般に取付は角が変動することが考え
られるので、この点を考えた場合は加速度計3は翼内に
設置されなければ正確な傾斜角は測定ができず誤差とな
る。翼の取付1ノ角が変動する場合として、地上と空中
とでは上反角が大きく変ること、地上にあって燃料供給
に際して燃料Qが増加するに従って翼の撓みが増大する
こと等が考えられる。加速度計3の加速度信号で液面傾
斜補正を行なう場合、全体が変化しない場合はよいが、
上記したように翼が撓む状態にあっては撓みの誤差が発
生する。従って、正確な燃料重量類MWの値を把握する
ことができない。
<Problems to be Solved by the Invention> By the way, with such a fuel measurement system, it is not sufficient to follow up the installation of an aircraft wing by calculating a tilt correction value of 1q from the signal of the accelerometer 3 in response to changes in angle, etc. I can't. In the case of large aircraft, the fuel tanks are located inside the wings, and depending on conditions on the ground and in the air, the dihedral angle (mounting angle with respect to the aircraft) changes and acceleration is applied, resulting in accurate liquid level inclination (fuel relative to the fuel tank). It is difficult to detect the slope of the liquid level, which results in an error in the remaining fuel output. The accelerometer 3 for measuring the liquid level inclination angle is typically installed iQI in the fuselage of the aircraft. However, fuel tank T
It is generally considered that the angle at which the yellow is installed will fluctuate, so if you take this into consideration, unless the accelerometer 3 is installed inside the wing, it will not be possible to measure the accurate inclination angle, resulting in an error. Possible cases where the attachment angle of the wing changes include that the dihedral angle changes greatly between on the ground and in the air, and that the deflection of the wing increases as the fuel Q increases during fuel supply on the ground. When correcting the liquid level inclination using the acceleration signal from accelerometer 3, it is fine if the whole does not change, but
As described above, when the blade is in a deflected state, a deflection error occurs. Therefore, it is not possible to accurately determine the value of the fuel weight class MW.

ところで、液面傾斜補正を最低3本のT/Uで°燃料レ
ベルと共に得ることも当然考えられるが、3本では傾斜
角に対するダイナミックレンジが狭く、ダイナミックレ
ンジを広げようとすると必然的にT/Uの数が沢山必要
となる。このようにすると全体の重量が増加し、保守や
燃費や等の面で好ましくない。という問題点がある。
By the way, it is naturally possible to obtain liquid level slope correction along with °fuel level with at least three T/Us, but with three T/Us, the dynamic range for the slope angle is narrow, and if you try to widen the dynamic range, you will inevitably have to adjust the T/U. A large number of U's are required. This increases the overall weight, which is unfavorable in terms of maintenance, fuel consumption, etc. There is a problem.

本発明はこのような従来の技術の問題点に鑑みて成され
たものであって、姿勢変動がある飛行体に設けられた燃
料タンク内の燃料の燃料重量残量を81j算する飛行体
の燃料測定システムにおいて、従来は飛行体が地上や空
中にあるか否かに拘らず、燃料レベルはT/Uで測定し
液面傾斜演算は加速度計で測定した値を利用する技術、
又は全てをT/Llで測定し演算していたちのを、本発
明にあっては燃料レベルはT/Uで測定し、液面傾斜演
算は、地上においては3本のT/Uで行ない、空中では
加311m計によって行なうことにより、全体の液面傾
斜演算精度を向上して、この各液面傾斜演n値とT /
 Uによる燃料レベルとに基づいて飛行体の翼の変形に
左右されることなく正確かつ高精度に燃料重量残量を得
る飛行体の燃料測定システムを提供することを目的とす
る。
The present invention has been made in view of the problems of the conventional technology, and is a method for calculating the remaining amount of fuel weight in the fuel tank of a flying vehicle that undergoes attitude fluctuations. Conventionally, in fuel measurement systems, regardless of whether the aircraft is on the ground or in the air, the fuel level is measured by T/U, and the liquid level slope calculation uses the value measured by an accelerometer.
Alternatively, everything is measured and calculated by T/Ll, but in the present invention, the fuel level is measured by T/U, and the liquid level slope calculation is performed by three T/Us on the ground. By using a 311m meter in the air, the accuracy of the overall liquid level slope calculation is improved, and each liquid level slope calculation n value and T /
It is an object of the present invention to provide a fuel measurement system for an aircraft that accurately and highly accurately measures the remaining fuel weight based on the fuel level determined by U and is not affected by the deformation of the wing of the aircraft.

く問題点を解決するための手段〉 上述の目的を達成するための本発明の飛行体の燃料測定
システムは、飛行体の燃料の状態であるレベルや傾斜を
測定する燃料レベルセンサと、飛行体のl1lII′I
I陸に共なって0N10FFする離着陸確認スイッチと
、飛行一体の加速度を測定する加速度針とが接続され燃
料ff1ffi残量を演算する燃料演鋒部とを具備した
構成からなっている。
Means for Solving the Problems〉 To achieve the above-mentioned object, the fuel measuring system for an aircraft of the present invention includes a fuel level sensor that measures the level and slope of the fuel of the aircraft, and a fuel level sensor that measures the state of the fuel of the aircraft. l1lII'I
It consists of a takeoff and landing confirmation switch that turns 0N10FF along with the ground, and a fuel control unit that is connected to an acceleration needle that measures the acceleration of the whole flight and calculates the remaining amount of fuel ff1ffi.

ぞして前記演算装置は。Therefore, the arithmetic device is.

■:m着陸確認スイッチの信号により飛行体が空中にい
ることを認識して加速度計の信号に基づいて燃料の液面
傾斜補正演算値を演算し、■二11着陸確認スイッチの
信号により飛行体が地上にいることを確認して燃料レベ
ルセンサの信号である液面レベルに基づいて燃料の液面
傾斜演算値を演算し、 ■:これら液面傾斜補正演算値及び液面傾斜演算値と燃
料レベルセンサで測定した燃料レベルとに基づいて燃料
重量残量を演算をする機能を有する。
■: Recognizes that the aircraft is in the air by the signal of the m landing confirmation switch, calculates the fuel level slope correction calculation value based on the signal of the accelerometer, and is on the ground, calculates the fuel level slope calculation value based on the liquid level that is the signal of the fuel level sensor, and calculates the liquid level slope correction calculation value and liquid level slope calculation value and the fuel It has a function to calculate the remaining fuel weight based on the fuel level measured by the level sensor.

構成とした。The structure is as follows.

〈実施例〉 以下本発明の実施例を図面に基づき詳細に説明する。尚
、以下に示す図面と第3図おいて重複する部分は同一番
号を付してその説明は省略する。
<Example> Hereinafter, an example of the present invention will be described in detail based on the drawings. It should be noted that overlapping parts in the drawings shown below and FIG.

第1図は本発明の飛行体の燃料測定システムのブロック
線図である。
FIG. 1 is a block diagram of a fuel measuring system for an aircraft according to the present invention.

第1図において、4は航空機の例えば着陸足の部分に設
けられてこの航空機の離着陸に共なって0N10FFす
るfIB着陸確認スイッチ(以下「GAS  SWJと
略称する)、20はT/U1とGAS  SW4と加速
度計3とが接続され燃料重量残ff1Wヲ2Witlf
fi13演算1 (26ハGAs  SW1/Fである
)である。この燃料演算部20は、GAs  SW4の
信号により航空機が空中にいる時を認識して加速度計3
の信号から燃料Qの液面傾斜補正演算値を演算し、GA
S  SW4の信号により航空機が地上にいる時を認識
してT/Lllの信号から燃料Qの液面傾斜演算値を演
算し、これら液面傾斜補正演算値と液面傾斜演算値と更
にT/U1で測定された燃料Qの燃料レベルの値に基づ
いて燃料重量列mWを演算する構成となっている。
In FIG. 1, 4 is an fIB landing confirmation switch (hereinafter abbreviated as "GAS SWJ") which is provided on the landing leg of the aircraft and turns 0N10FF when the aircraft takes off and lands, and 20 is T/U1 and GAS SW4. and accelerometer 3 are connected, and the remaining fuel weight is ff1W2Witlf.
fi13 operation 1 (26 GAs SW1/F). This fuel calculation unit 20 recognizes when the aircraft is in the air based on the signal from the GAs SW 4 and uses the accelerometer 3.
The liquid level slope correction calculation value of fuel Q is calculated from the signal of GA.
S Recognizes when the aircraft is on the ground by the signal of SW4, calculates the liquid level slope calculation value of fuel Q from the T/Lll signal, and calculates the liquid level slope correction calculation value and the liquid level slope calculation value and further T/Lll. The fuel weight series mW is calculated based on the value of the fuel level of the fuel Q measured at U1.

以下、このように構成された飛行体の燃料測定システム
の内、特に加速度計3で液面傾斜補正演算値を演算する
場合と、T/U1で液面傾斜演算値を演算する場合を詳
細に説明する。
Below, in the fuel measurement system for an aircraft configured as described above, the case where the liquid level slope correction calculation value is calculated with the accelerometer 3 and the case where the liquid level slope calculation value is calculated with the T/U 1 will be explained in detail below. explain.

燃料演算部20はGAS  SW4の接点情報を入力し
て航空機が地上にあるか空中にいるかを判断する。
The fuel calculation unit 20 inputs the contact information of the GAS SW 4 and determines whether the aircraft is on the ground or in the air.

(航空機が地上にある場合) この時の夫々(7)(T/U)a、(T/U)b。(if the aircraft is on the ground) At this time, (7) (T/U) a, (T/U) b, respectively.

(T/U)cの液面レベルをZl 、Z2 、Zsとす
る。又、これらのχ座標、V座標が夫々(χ1゜M+)
、(χ2.!/2>、(χ3+y3>であれば、機体の
ピッチ方向、ロール方向の液面傾斜角θe + P e
を燃料演算部20で演算する。
Let the liquid level of (T/U)c be Zl, Z2, and Zs. Also, these χ coordinates and V coordinates are respectively (χ1゜M+)
, (χ2.!/2>, (χ3+y3>), the liquid level inclination angle θe + P e in the pitch direction and roll direction of the aircraft
is calculated by the fuel calculation unit 20.

ここで、χ座標、y座標の点(0,O,Zo )を通り
、ピッチ角θe、ロール角5’eなる平面は、2、−χ
−tanθ6 +y−tan5’e +Zo ・−(3
)で表わされる。この平面上に点(Zl * !’ I
 * 21)、(χa + yx * 22 )l  
(χ3*yx*Z3)があるので、夫々、 Z、amχ1  atanθ0+ ’!l+  ・tanv)e +Zo  ・”(4)z
2−χ2・tanθe十 y2−tarB>、+Z、  ・(S)z3−χ3・t
anθe+ ’/3・tan9’e +Zo  ”(6)を満す。従
って、これらの式を連立方程式としてθ、Pについて解
けば、 θ@−jan−’ ・ ((Z)−Zl )(y3−yq )−(Zl −22
)(y3  ’l+ ))/((χ3−χ+)(Vs 
 2/2)−(χコ −χz)(ys  −4/1 )
) ・・・(1〕ψe■t a n ’ ・ [(23−22)(I3−χI )− (Zl  Zl )  (χ3−χ2))/((χ3−
χ+ )(Ma  ’!12)−(χ3−χ2 )(y
3−y+ ))・・・(2)が得られる。即ち、T/L
itを用いて液面傾斜演算値を得ることができる。
Here, a plane passing through the point (0, O, Zo) of the χ and y coordinates and having a pitch angle θe and a roll angle 5'e is 2, -χ
-tanθ6 +y-tan5'e +Zo ・-(3
). On this plane, there is a point (Zl * !' I
*21), (χa + yx *22)l
(χ3*yx*Z3), so Z, amχ1 atanθ0+ '! l+ ・tanv)e +Zo ・”(4)z
2-χ2・tanθe y2-tarB>, +Z, ・(S)z3-χ3・t
anθe+ '/3・tan9'e +Zo'' (6) is satisfied. Therefore, if these equations are solved for θ and P as simultaneous equations, θ@-jan-' ・ ((Z)-Zl ) (y3- yq )-(Zl-22
)(y3 'l+))/((χ3-χ+)(Vs
2/2) - (χ co - χz) (ys -4/1)
) ...(1]ψe■tan' ・[(23-22)(I3-χI )- (Zl Zl ) (χ3-χ2))/((χ3-
χ+ )(Ma'!12)-(χ3-χ2)(y
3-y+))...(2) is obtained. That is, T/L
It is possible to obtain the liquid level slope calculation value using it.

(航空機が地上にある場合) 第2図は加速度と液面の関係図である。(if the aircraft is on the ground) FIG. 2 is a diagram showing the relationship between acceleration and liquid level.

加速度計3から、χ、y、z方向の加速度A X +A
y、Azを入力し、液面傾斜補正を求める。燃料が加速
度に対し平衡した場合、航空機のピッチ方向、ロール方
向の液面傾斜角θs * 9’ sは次式に基づいて燃
料演算部20で演算される。
From accelerometer 3, acceleration in χ, y, and z directions A
Input y and Az to find the liquid level slope correction. When the fuel is balanced against acceleration, the liquid level inclination angle θs*9's in the pitch direction and roll direction of the aircraft is calculated by the fuel calculation unit 20 based on the following equation.

液面Q1は加速度αの方向に対し直角な平面で平衡する
。この時、液面傾斜角θは第2図から、θs = j 
a n−’  (Ax/Az )      −(7)
となる。ロール方向についても同様にして、ψs = 
t a n−’  (Ay /Az >  −−(8)
となる。従って、燃料演算部20は、各加速度A x 
+Ay、Azを入力して(7)、 (8)式から、液面
傾斜角を求めることができる。これら液面傾斜演算値と
液面傾斜補正演算値とを基にこれに燃料レベルの直を用
いて現在の飛行体の燃料重量残量Wが燃料演算部20で
演算される。その演算式の一例である近似演算式は、 W−Zt+KC+ θ+に25’+に3θP  ・・・
(9)となる。但し、K+ * K2 * K3は燃料
レベルZJ及び液面傾斜角演算値θψの区間に対応して
定まる定数であり、折線近似式で求めたものである。
The liquid level Q1 is balanced on a plane perpendicular to the direction of the acceleration α. At this time, the liquid level inclination angle θ is from Fig. 2, θs = j
a n-' (Ax/Az) -(7)
becomes. Similarly for the roll direction, ψs =
tan-' (Ay /Az > --(8)
becomes. Therefore, the fuel calculation unit 20 calculates each acceleration A x
By inputting +Ay and Az, the liquid level inclination angle can be determined from equations (7) and (8). Based on these liquid level slope calculation values and liquid level slope correction calculation values, the current fuel weight remaining amount W of the aircraft is calculated in the fuel calculation unit 20 using the fuel level directly. The approximate calculation formula, which is an example of the calculation formula, is: W-Zt+KC+θ+, 25'+, 3θP...
(9) becomes. However, K+*K2*K3 is a constant determined corresponding to the interval of the fuel level ZJ and the liquid level inclination angle calculation value θψ, and is determined by a broken line approximation formula.

上述した説明は、T/Uを3個yl装置した場合で説明
したが、必ずしもこれに限定されるものではなく、例え
ば4個以上T/UをiiQ置するようにしてら本発明を
実現することは可能である。
Although the above description has been made for the case where three T/Us are installed in the yl device, the present invention is not necessarily limited to this, and the present invention can be realized by, for example, installing four or more T/Us in iiQ. is possible.

又、本発明の飛行体の燃料測定システムは、上述の航空
機に用いられることに限定されることなく、同様の機能
、構成を有するものであれば広く利用できることはいう
までもない。
Further, it goes without saying that the fuel measuring system for an aircraft according to the present invention is not limited to being used in the above-mentioned aircraft, but can be widely used as long as it has similar functions and configurations.

〈発明の効果〉 以上、実施例と共に具体的に本発明を説明したように、
飛行体の燃料を測定する燃料レベルセン9と、飛行体の
l1lii陸に共なって0N10FFIる離着陸確認ス
イッチと、飛行体の加速度を測定する加′Ua計とが接
続され燃料重量残量を演算する燃料演算部から成る本発
明の飛行体の燃料測定システムによれば、 ■:地上と空中で傾斜検出方法を変えることにより、各
々の方法の利点が生かされる。以下、燃料タンクが翼の
内にある民間機の場合について見ると、 a:地上においては、航空機の機体は傾いた姿勢をとる
ことはなく、むしろ買が下方向に撓むことが問題となる
ので、T/Uによる液面傾斜検出方式はこの翼の撓みを
含めた傾斜検出ができるので、翼の撓みが誤差とならず
、翼が撓むことにより、燃料に浸るT/Uの数が増える
ので、この方式の欠点である「最低3本のT/Uが燃料
に浸る必要があるので、T/LJの数を増やす必要があ
る」という心配がない。
<Effects of the Invention> As described above, the present invention has been specifically explained along with the examples.
The fuel level sensor 9 that measures the fuel of the aircraft, the takeoff and landing confirmation switch that corresponds to the ground of the aircraft, and the acceleration meter that measures the acceleration of the aircraft are connected to calculate the remaining fuel weight. According to the fuel measuring system for an aircraft according to the present invention, which includes a fuel calculation unit that performs the following steps: (1) By changing the inclination detection method on the ground and in the air, the advantages of each method can be utilized. Below, we look at the case of a commercial aircraft with fuel tanks inside the wings: a: On the ground, the aircraft body does not take a tilted attitude, but rather the problem is that the plane bends downward. Therefore, the liquid level slope detection method using T/U can detect the slope including this blade deflection, so the blade deflection does not cause an error, and the number of T/Us immersed in fuel is reduced by the blade deflection. Since the number of T/LJs increases, there is no need to worry about the drawback of this method: ``At least three T/Us need to be immersed in fuel, so it is necessary to increase the number of T/LJs.''

b=中空中おいては、航空機は上昇・下降・旋回等をす
るため大きく傾(ので、傾斜角のダイナミックレンジの
広い加速度による液面検出方式が有利となる。
b = When in mid-air, the aircraft tilts significantly as it ascends, descends, turns, etc. (Therefore, a liquid level detection method using acceleration with a wide dynamic range of tilt angle is advantageous.

C:このように、機体のその時の状態に応じて適切なセ
ンサを用いて液面傾斜函を正確に得ることにより、この
液面傾斜値とT/Uで得られた燃料レベルとに基づいて
高精度で燃料残MWが得られる。
C: In this way, by accurately obtaining the liquid level slope box using an appropriate sensor depending on the aircraft's current state, the fuel level can be calculated based on this liquid level slope value and the fuel level obtained by T/U. Remaining fuel MW can be obtained with high accuracy.

■:このような構成(最低3個のT/Uと加速度計とG
AS  SW)なので、どのような形状の燃料タンクに
もvQ置することができる。
■: Such a configuration (at least 3 T/Us, accelerometers and G
AS SW), so vQ can be placed in any shape of fuel tank.

■:液面傾斜補正演算を行うようにしたので、測定精度
の向上が図れた。
(2): Since the liquid level slope correction calculation was performed, the measurement accuracy was improved.

■: T/Uを少なくとも3個で構成している構造なの
で、従来技術に比較して故障等に対しても強くなり、高
信頼性を得ることが出来ると共に、全体としてのT/U
の数は、従来技術で得られる精度と対応させた場合少な
くてよい。
■: Since the structure consists of at least three T/Us, it is more resistant to failures than conventional technology, achieving high reliability, and the T/U as a whole
The number of times may be small when compared to the accuracy obtained with the prior art.

等の効果がある。There are other effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の飛行体の燃料測定システム構成図、第
2図は加速度と液面の関係図、第3図は従来の飛行体の
燃料測定システムの構成図である。 1・・・燃料レベルセンサ(T/U) 、2 、20・
・・燃料演算部、3・・・加速度計、4・・・GAS 
 sW。
FIG. 1 is a configuration diagram of a fuel measurement system for an aircraft according to the present invention, FIG. 2 is a diagram showing the relationship between acceleration and liquid level, and FIG. 3 is a configuration diagram of a conventional fuel measurement system for an aircraft. 1... Fuel level sensor (T/U), 2, 20.
...Fuel calculation unit, 3...Accelerometer, 4...GAS
sW.

Claims (1)

【特許請求の範囲】[Claims] 飛行体に設けられた燃料タンク内の燃料の状態を燃料レ
ベルセンサで測定し、前記飛行体の加速度を加速度計で
測定し、これら各測定値に基づいて燃料重量残量を演算
する飛行体の燃料測定システムにおいて、前記飛行体に
設けられてこの飛行体の離着陸に共なってON/OFF
する離着陸確認スイッチと、前記燃料レベルセンサと前
記離着陸確認スイッチと前記加速度計とが接続され前記
燃料重量残量を演算する燃料演算部とを具備し、前記燃
料演算部は、前記離着陸確認スイッチの信号により前記
飛行体が空中にいる時を認識して前記加速度計の信号か
ら前記燃料の液面傾斜補正演算値を演算し、前記離着陸
確認スイッチの信号により前記飛行体が地上にいる時を
認識して前記燃料レベルセンサの信号から前記燃料の液
面傾斜演算値を演算し、これら液面傾斜補正演算値及び
液面傾斜演算値と前記燃料レベルセンサで測定された前
記燃料レベルとから前記燃料重量残量を演算することを
特徴とする飛行体の燃料測定システム。
The state of the fuel in the fuel tank provided on the aircraft is measured by a fuel level sensor, the acceleration of the aircraft is measured by an accelerometer, and the remaining fuel weight is calculated based on these measured values. In the fuel measurement system, the system is installed on the aircraft and turns ON/OFF as the aircraft takes off and lands.
the fuel level sensor, the takeoff and landing confirmation switch, and the accelerometer are connected to calculate the remaining fuel weight; Recognizing when the flying object is in the air based on the signal, calculating a liquid level slope correction value for the fuel from the signal from the accelerometer, and recognizing when the flying object is on the ground based on the signal from the takeoff and landing confirmation switch. A liquid level slope calculation value of the fuel is calculated from the signal of the fuel level sensor, and a liquid level slope calculation value of the fuel is calculated from the liquid level slope correction calculation value and the liquid level slope calculation value and the fuel level measured by the fuel level sensor. A fuel measurement system for an aircraft, characterized by calculating the remaining weight.
JP60033465A 1985-02-21 1985-02-21 Measuring system of quantity of combusion of missile Granted JPS61193999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60033465A JPS61193999A (en) 1985-02-21 1985-02-21 Measuring system of quantity of combusion of missile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60033465A JPS61193999A (en) 1985-02-21 1985-02-21 Measuring system of quantity of combusion of missile

Publications (2)

Publication Number Publication Date
JPS61193999A true JPS61193999A (en) 1986-08-28
JPH042480B2 JPH042480B2 (en) 1992-01-17

Family

ID=12387292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60033465A Granted JPS61193999A (en) 1985-02-21 1985-02-21 Measuring system of quantity of combusion of missile

Country Status (1)

Country Link
JP (1) JPS61193999A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350861A (en) * 1986-08-21 1988-03-03 Canon Inc Developer
JPH04131715A (en) * 1990-09-25 1992-05-06 Yazaki Corp Level detecting system for automobile fuel
WO1999063215A1 (en) * 1998-05-29 1999-12-09 Mitsubishi Denki Kabushiki Kaisha Method and device for calculating cruising range
US6467337B2 (en) 1998-05-29 2002-10-22 Mitsubishi Denki Kabushiki Kaisha Device for calculating cruising range and method therefor
JP2005345373A (en) * 2004-06-04 2005-12-15 Aloka Co Ltd Interface detecting method, and interface detector
JP2014193711A (en) * 2013-02-12 2014-10-09 Ge Aviation Systems Ltd Methods of monitoring hydraulic fluid levels in aircraft

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350861A (en) * 1986-08-21 1988-03-03 Canon Inc Developer
JPH04131715A (en) * 1990-09-25 1992-05-06 Yazaki Corp Level detecting system for automobile fuel
WO1999063215A1 (en) * 1998-05-29 1999-12-09 Mitsubishi Denki Kabushiki Kaisha Method and device for calculating cruising range
US6467337B2 (en) 1998-05-29 2002-10-22 Mitsubishi Denki Kabushiki Kaisha Device for calculating cruising range and method therefor
JP2005345373A (en) * 2004-06-04 2005-12-15 Aloka Co Ltd Interface detecting method, and interface detector
JP2014193711A (en) * 2013-02-12 2014-10-09 Ge Aviation Systems Ltd Methods of monitoring hydraulic fluid levels in aircraft

Also Published As

Publication number Publication date
JPH042480B2 (en) 1992-01-17

Similar Documents

Publication Publication Date Title
US6273370B1 (en) Method and system for estimation and correction of angle-of-attack and sideslip angle from acceleration measurements
US6285298B1 (en) Safety critical system with a common sensor detector
US4914598A (en) Integrated redundant reference system for the flight control and for generating heading and attitude informations
US6561020B2 (en) Method to calculate sideslip angle and correct static pressure for sideslip effects using inertial information
US6604029B2 (en) Multi-function air data probes using neural network for sideslip compensation
US20060212182A1 (en) Low cost flight instrumentation system
CA1171530A (en) Angle of attack based pitch generator and head up display
US6452542B1 (en) Integrated flight management system
US4949269A (en) Process and system for determining the longitudinal position of the center of gravity of an aircraft provided with an adjustable horizontal stabilizer
US7757993B1 (en) Method for reducing the turbulence and gust influences on the flying characteristics of aircraft, and a control device for this purpose
GB2428922A (en) Altitude measurement system for a ground effect vehicle
JP2002527730A (en) Combined spare instrument for aircraft
US3868074A (en) Method and apparatus for attitude detection and stabilization of an airborne vehicle using the electrostatic field in the earth{3 s atmosphere
JPH0467143B2 (en)
CA1258531A (en) Method for developing air data for use in flight control systems
US3948096A (en) Apparatus for computing the acceleration of an aircraft along its flight path
JPH06103190B2 (en) Wind shear detector
JPS61193999A (en) Measuring system of quantity of combusion of missile
RU2341775C1 (en) Method of determining aircraft aerodynamic angle
CN104748734B (en) A kind of vehicle electronics height above sea level compass of compensation with angle
JPH07507144A (en) Aerodynamic pressure sensor system
US4199715A (en) Method and apparatus for defining an equipotential line or _surface in the earth&#39;s atmosphere and measuring the misalignment of a _selected line or plane relative to an equipotential line or surface
US3873050A (en) Attitude sensing method and apparatus
Kaletka Evaluation of the helicopter low airspeed system lassie
GB2182518A (en) Doppler-inertial data loop for navigation system