JPS6119254A - Restoration detecting system of transmission fault in duplicated ring network - Google Patents

Restoration detecting system of transmission fault in duplicated ring network

Info

Publication number
JPS6119254A
JPS6119254A JP59139044A JP13904484A JPS6119254A JP S6119254 A JPS6119254 A JP S6119254A JP 59139044 A JP59139044 A JP 59139044A JP 13904484 A JP13904484 A JP 13904484A JP S6119254 A JPS6119254 A JP S6119254A
Authority
JP
Japan
Prior art keywords
transmission
network
station
fault
priority
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59139044A
Other languages
Japanese (ja)
Inventor
Takushi Hamada
浜田 卓志
Masahiro Takahashi
正弘 高橋
Masakazu Okada
政和 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59139044A priority Critical patent/JPS6119254A/en
Publication of JPS6119254A publication Critical patent/JPS6119254A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the safety of the titled system by confirming the restoration of a fault between adjacent degenerated networks and confirmation of fault restoration of a one system cable so as to control the network accordingly. CONSTITUTION:Transmission stations 21-26 are connected to computers arranged dividedly and various terminal devices 11-16, and the transmission stations 21-26 are connected to duplicated transmission lines 1, 2. Then the transmission stations 21-26 consist each of control sections 31-36, receives 411-416, 412-426 and transmitters 511-516, 521-526. An internal bus 90 is connected to a CPE50 of the control section 24 of the transmission stations 21-26, and a transmission control section 60, a network constitution control section 70 and a supervisory control section 100 are connected to the bus 90. Then the transmission stations 21-26 transited in the form reflecting transmission lines 1, 2 transmit respectively the priority information assigned to the own station and a fault recovery supervisory signal added to set the presence of reception confirmation to the outside of the network. When the reception of the supervisory signal confirms the loop circulation of the priority of the supervisory signal transmitted by itself, the reconstitution control of the network is attained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は伝送方向の異なる二組の伝送路、に持つ二重化
されたループ伝送システムに係り、特に本システムが伝
送障害の発生で複数の縮退網に分化された際に正確かつ
速やかに障害の回復を認知して原綿構成に戻るに好適な
制御方式に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a duplex loop transmission system having two sets of transmission lines with different transmission directions, and in particular, this system is capable of disabling multiple degenerate networks due to the occurrence of a transmission failure. The present invention relates to a control method suitable for accurately and promptly recognizing recovery from a disorder and returning to the raw cotton composition when the cotton is differentiated into a raw cotton composition.

〔発明の背景〕[Background of the invention]

従来の伝送障害回復検出方式には以下のものが知られて
いる。すなわち (1)縮退網形態に移行後定期的に本形態を解き、再構
成動作を試行する。
The following methods are known as conventional transmission failure recovery detection methods. That is, (1) after transitioning to the degenerate network configuration, this configuration is periodically released and a reconfiguration operation is attempted.

(2)伝送路折返し局から網外に情報を送出し、該情報
の巡回を検出したら障害回復と認識する。(%開昭59
−50639号公報) これら従来方法には各々次の様な欠点があった。
(2) Information is sent to the outside of the network from the transmission path return station, and when the circulation of the information is detected, it is recognized as failure recovery. (%Opened in 1983
(No. 50639) Each of these conventional methods has the following drawbacks.

上記(1)の方法では障害未口復時の無駄な試行により
伝送が中断される。また複数の縮退網が発生した場合そ
れらの網間で回復試行の同期が必要で、これがない場合
障害が回復しているにもかかわらず原形態に移行できな
いケースが発生し得る。
In method (1) above, transmission is interrupted due to useless attempts to recover from failures. Furthermore, when multiple degenerate networks occur, it is necessary to synchronize recovery attempts between these networks, and if this is not done, there may occur cases where the system cannot return to its original form even though the fault has been recovered.

また上記(2)の方法では障害の回復状況によっては無
駄な再構成動作に移行するケースが発生する。
Furthermore, in the method (2) above, depending on the failure recovery status, there may be a case where the process shifts to a wasteful reconfiguration operation.

これは例えば2つの縮退網に分化した後で外側あるいは
内側のどちらか一方の系の障害が回復した様な場合であ
る。
This is the case, for example, when a disorder in either the outer or inner system is recovered after differentiation into two degenerate networks.

以上の様に1つの網が伝送障害の発生によって複数の縮
退網に分化した場合従来の障害回復検知法では不十分で
あった。
As described above, when one network is divided into a plurality of degraded networks due to the occurrence of a transmission failure, conventional failure recovery detection methods are insufficient.

〔発明の目的〕[Purpose of the invention]

本発明の目的はループノくツク形態を採っている縮退網
において再結合あるいは拡張が可能な伝送障害の回復を
検出する簡易な方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a simple method for detecting recovery from a transmission failure that can be recombined or extended in a degenerate network that has a loop-blocking configuration.

〔発明の概要〕[Summary of the invention]

本発明、は縮退網から網外へ送出する情報が、隣接網で
受信されている事を確認するか、あるいはループを一巡
している事を確認できれば障害の回復を検知できる事に
着目して、該情報に優先度と隣接網への受信確認の項目
を設ける様にしたものである。
The present invention focuses on the fact that recovery from a failure can be detected if it is confirmed that the information sent from the degenerate network to the outside of the network is received by an adjacent network, or if it is confirmed that the information has gone around the loop. , the information is provided with items for priority and reception confirmation to adjacent networks.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明してゆく。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明を適用する環状伝送システムの全体構成
である。図示する様”に工場・ピル・大学内等に分散設
置されている計算機や各種端末11〜16は各々伝送局
21〜26を介して1つの伝送システムに加入する。図
では説明の為に伝送局数を6としているが特に制限はな
い。伝送路はシステムアベイラビリティを向上させる為
通常、伝送方向の異なる2組の伝送路を二重化し、伝送
路1.2と送受信機411〜416,421〜426,
511〜516,521〜526より成る。制御部31
〜36では伝送制御、網の構成制御、障害回復検知、計
$を機や端末等とのインク−フェース制御等を実行する
。伝送路に障害がない場合どちらか一方の伝送路(図で
は太線で示した側)を使用して伝送をおこなう。伝送障
害の要因には線路の切断(コネクタ接触不良等も含む)
や短絡、伝送局電源断、リピータ故障等種々あるが、情
報受信は信号レベル、帯域、変復調規則他      
 1種々の項目でチェックされるので障害の発生はその
下流の伝送局で有効信号受信所として認識される。通常
現在使用中の伝送路に障害が発生するともう一方の待機
側に切換える。また両系の伝送路にまたがって障害が発
生した場合、障害に隣接する伝送局で該個所をシステム
から切離す様に伝送路を折返すいわゆるループバック構
成が採られる。
FIG. 1 shows the overall configuration of a ring transmission system to which the present invention is applied. As shown in the figure, computers and various terminals 11 to 16 distributed in factories, pill centers, universities, etc. join one transmission system via transmission stations 21 to 26. Although the number of stations is set to 6, there is no particular limit.In order to improve system availability, the transmission path is usually made redundant with two sets of transmission paths with different transmission directions, and the transmission path 1.2 and the transceivers 411-416, 421- 426,
Consists of 511-516, 521-526. Control unit 31
36 executes transmission control, network configuration control, failure recovery detection, ink-face control with machines, terminals, etc. If there is no fault in the transmission path, transmission is performed using one of the transmission paths (the side indicated by the thick line in the figure). Causes of transmission failure include disconnected lines (including poor connector contact, etc.)
There are various reasons such as short circuit, transmission station power outage, repeater failure, etc., but information reception depends on signal level, band, modulation/demodulation rules, etc.
1. Since various items are checked, the occurrence of a failure is recognized as a valid signal receiving station at the downstream transmission station. Normally, when a failure occurs in the transmission line currently in use, it switches to the other standby side. Furthermore, when a fault occurs across the transmission lines of both systems, a so-called loopback configuration is adopted in which the transmission line is looped back at a transmission station adjacent to the fault so as to disconnect that location from the system.

第2図はこの様な両系障害が複数個所で発生して複数の
独立した小ループが形成された例を示す。
FIG. 2 shows an example in which such double-system failures occur at multiple locations and multiple independent small loops are formed.

図示する通り本構成では自網外の装置との伝送はできず
縮退網と呼ぶ事にする。この為システムアベイラビリテ
ィをさらに向上するには障害の回復で直ちに縮退線同士
が結合できる事が必要である。
As shown in the figure, in this configuration, transmission with devices outside the own network is not possible, so it is called a degenerate network. Therefore, to further improve system availability, it is necessary to be able to connect degenerate lines immediately after failure recovery.

しかし回復の状況によっては網の再構成に移行しない方
が良いケースもある。例えば第2図において障害個所a
1 + bI ! C2が回復しても縮退線同士が結合
できないが、al、a2が回復すると伝送局21,22
,23.26が1つの網に移行できる。これらの例から
再結合が可能となる様な障害の回復状況とは次の通りで
ある事がわかる。
However, depending on the recovery situation, there may be cases where it is better not to proceed with network reconfiguration. For example, in Figure 2, the fault location a
1 + bI! Even if C2 recovers, the degenerate lines cannot be connected to each other, but when al and a2 recover, transmission stations 21 and 22
, 23.26 can be migrated to one network. From these examples, it can be seen that failure recovery situations in which recombination is possible are as follows.

(1)網間の2回線とも回復した場合。(1) When both lines between networks are restored.

(2)lあるいは2系のどちらかで全ての障害が回復し
た場合。
(2) When all failures are recovered in either system 1 or system 2.

上記項目を実現する為にはまず縮退網の端局から網外へ
何らかの情報を送出する事が必要でこれを以後障害回復
監視信号と呼ぶ。上記(1)の確認には相手系よりの監
視信号受信状況を自網からの送出辛送蕃監視信号に含ま
せる様にする。また上記(2)の確認には相手系より受
信した監視信号を自網内を経由して他方の端局に伝えて
再度送信させる事が必要であるがそのままでは転送量が
多くなるのでこれを減らす以下の工夫が必要である。
In order to achieve the above items, it is first necessary to send some information from the terminal station of the degenerate network to the outside of the network, and this is hereinafter referred to as a failure recovery monitoring signal. In order to confirm the above (1), the monitoring signal reception status from the partner system is included in the monitoring signal sent from the own network. In addition, to confirm (2) above, it is necessary to transmit the monitoring signal received from the other party's system to the other terminal station via its own network and have it retransmitted, but this will increase the amount of data to be transferred, so this is not recommended. The following measures are required to reduce this.

(a)  各伝送局にユニークな監視信号の優先度を付
は初期時にはこれを送出する。
(a) A unique supervisory signal priority is given to each transmission station and sent at the initial stage.

(b)  網外より自局送出より優先度の高い監視信号
を受信すると以後の送慴はこれに変える。
(b) When receiving a supervisory signal from outside the network that has a higher priority than that transmitted by the local station, subsequent transmissions will be changed to this signal.

また網内の他端間に通知する。It also sends notifications to other ends within the network.

(C)  網内の他端間より監視信号送出の指令を受け
ると現在自局が送出している監視信号の優先度と比較し
、指令の方が高い時のみ以後この優先度に変更して監視
信号を送出する。
(C) When a command to send a supervisory signal is received from the other end of the network, it compares the priority of the supervisory signal currently being sent by its own station, and changes to this priority only if the command is higher. Sends a monitoring signal.

第3図に網外へ送出する監視信号のフォーマツトを示す
。本例では網内での伝送制御手順としてIEEE  p
roject 802.5委員会で勧告さレテイルトー
クンリング方式を採用した。監視信号は通常のフレーム
フォーマットと区別が容易な方が良いので同図(a)に
示した様なアボートシーケンスである開始デリミタDS
と終了デリミタDEの連続シーケンスで表現する事とし
、その後に1ビツトの監視信号検出(受信確認)情報S
Rと7ビツト以上の優先度コード情報PRが付与される
形式を採った。良く知られている様にデリミタDS、D
Bは変復調レベルで一意に検出されるパターンをしてお
り、同図(b)にシンボルの符号比例を示す。監視信号
検出ピッ)SRや優先度コードPR等のディジタル情報
は差動マンチェスター符号化され、いずれもビット中央
で信号変化がある。0”か′1”かの区別は前ビットと
のレベル変化でおこなわれ本例では変化有を前者、変化
無を後者に割当てている。これに対してデリミタに含ま
れるJ。
FIG. 3 shows the format of the monitoring signal sent outside the network. In this example, IEEE p is used as the transmission control procedure within the network.
project adopted the retail token ring system recommended by the 802.5 committee. Since it is better for the supervisory signal to be easily distinguished from the normal frame format, the start delimiter DS is an abort sequence as shown in Figure (a).
and end delimiter DE, followed by 1-bit supervisory signal detection (receipt confirmation) information S.
A format is adopted in which R and priority code information PR of 7 bits or more are given. As is well known, delimiter DS, D
B has a pattern that is uniquely detected at the modulation/demodulation level, and the sign proportionality of the symbol is shown in FIG. Digital information such as supervisory signal detection signal (SR) and priority code PR is differentially Manchester encoded, and there is a signal change at the center of each bit. The distinction between 0'' and '1' is made by the level change from the previous bit, and in this example, the presence of change is assigned to the former bit, and the absence of change is assigned to the latter. On the other hand, J included in the delimiter.

Kビットはこの符号化規則からはずれておりビット中央
で変化がなく両者の区別はやはり前ビットとのレベル変
化による。
The K bit deviates from this encoding rule; there is no change at the center of the bit, and the distinction between the two is based on the level change from the previous bit.

第4図は本発明実施例による伝送局のハードウェア構成
を示す。伝送局はすべ〔同一構成でよい為ここでは伝送
局24の例で示す。伝送局には2組の伝送線路1.2に
対応して2組の送信機514と524および2組の受信
@414,424を持つ。制御部34は回線への送出情
報を選択する送信マルチプレクサ41.42と2回線の
どちらを受信に使用するかを選択する受信マルチプレク
サ43および伝送制御機能を実行する伝送制御部(TC
)60、前記マルチプレクサを選択指令する組構付制御
部(RC)70、本局がループバック構成を採った際網
外の障害状況を監視する監視制御部(SC)100、接
続機器14とのインクフェースを制御するインターフェ
ースm (I N T )80、そして通信管理等を実
行する中央処理部(CPE)50と上記各部を結合する
内部バス        ユ90で構成される。なお、
中央処理部(CI’E)50は図示していないマイクロ
プロセッサ、メモリ、タイマーコントローラ、割込コン
トローラ。
FIG. 4 shows the hardware configuration of a transmission station according to an embodiment of the present invention. Since all the transmission stations may have the same configuration, the transmission station 24 is shown as an example here. The transmission station has two sets of transmitters 514 and 524 and two sets of receivers 414 and 424 corresponding to the two sets of transmission lines 1.2. The control unit 34 includes transmission multiplexers 41 and 42 that select information to be sent to the line, a reception multiplexer 43 that selects which of the two lines will be used for reception, and a transmission control unit (TC) that executes a transmission control function.
) 60, an assembly control unit (RC) 70 that selects and commands the multiplexer, a supervisory control unit (SC) 100 that monitors failure conditions outside the network when the main station adopts a loopback configuration, and an ink with the connected equipment 14. The system is comprised of an interface m (I N T ) 80 that controls the interface, a central processing unit (CPE) 50 that performs communication management, etc., and an internal bus 90 that connects the above-mentioned units. In addition,
The central processing unit (CI'E) 50 includes a microprocessor, memory, timer controller, and interrupt controller (not shown).

DMAC(Direct−Memory Access
 Control 1er)等から成立つ。送信マルチ
プレクサ41では(イ)監視制御部(SC)Zooから
の監視信号出力SS。
DMAC (Direct-Memory Access
Control 1er) etc. In the transmission multiplexer 41, (a) a supervisory signal output SS from the supervisory control section (SC) Zoo;

0受信機414あるいは4,24からの受信データR,
D、(C)伝送制御部(TC)60からの送信データS
Dの3人力より1つを選択して回線に送出する。1系の
伝送路を使用する場合受信マルチプレクサ43はRD 
l側を選択し、送信マルチプレクサ41はC942はB
を各々選択する保線構成制御部70より指令される。同
様に2系の伝送路を使用すると受信マルチプレクサ43
はRD Z側を選択し、送信マルチプレクサ41はB、
42はCを各々選択する。また本局で1系の伝送路を2
系に折返す様にループバックした場合、受信マルチプレ
クサ43はRD l側、送信マルチプレクサ41はA、
42はCを各々選択する保線構成制御部70より指令さ
れる。同様に2系の伝送路を1系に折返す様にループバ
ックした場合、受信マルチプレクサ43はRD x側、
送信マルチプレクサ41はC942はAを各々選択する
。現用系で伝送障害の発生を検出した網構成制御部70
では自局が障害に隣接しているか否かを調べ、そうであ
ればループバック構成を採る様各マルチプレクサを制御
する。同時に監視制御部(SC)100に対して障害回
復の検出動作の開始を指示する。そして回復確認の返事
をもらう迄はループバック状態を継続する。
0 receiver 414 or 4,24 received data R,
D, (C) Transmission data S from the transmission control unit (TC) 60
Select one from the three D's and send it to the line. When using the transmission path of system 1, the reception multiplexer 43 is RD.
The transmission multiplexer 41 selects the L side, and the C942 selects the B side.
The track maintenance configuration control unit 70 selects each of the following. Similarly, if a 2-system transmission path is used, the reception multiplexer 43
selects the RD Z side, and the transmission multiplexer 41 selects B,
42 selects C, respectively. In addition, the main station connects the 1st transmission line to 2nd line.
When looping back to the system, the reception multiplexer 43 is on the RD l side, the transmission multiplexer 41 is on the A,
42 is commanded by the track maintenance configuration control unit 70 which selects C respectively. Similarly, when looping back the transmission line of system 2 to system 1, the reception multiplexer 43 is connected to the RD x side,
The transmission multiplexer 41 selects C942 and A, respectively. Network configuration control unit 70 that detected the occurrence of a transmission failure in the active system
Then, it is checked whether the local station is adjacent to the fault, and if so, each multiplexer is controlled to adopt a loopback configuration. At the same time, it instructs the supervisory control unit (SC) 100 to start a failure recovery detection operation. The loopback state continues until a response confirming recovery is received.

第5図は本発明に直接関係のある監視制御部100のハ
ードウェア構成で以下これを詳説する。
FIG. 5 shows the hardware configuration of the supervisory control section 100, which is directly related to the present invention, and will be explained in detail below.

本局がループバック構成をとると網構成側[有]部70
より内部バス90を介して入力制呻レジスタ(IcR)
tt4へ監視起動の旨が書込まれる。
When the main station adopts a loopback configuration, the network configuration side unit 70
Input control register (IcR) via internal bus 90
A notification to the effect that monitoring has been activated is written to tt4.

これによって送信起動タイマ102を起動し、以後−短
周期で監視信号を送出する。なおこの時同時にマルチプ
レクサ101へ選択信号(SECT)を供給して網外回
線からの1g号受信に備える。
This starts the transmission start timer 102, and thereafter sends out a monitoring signal at short intervals. At the same time, a selection signal (SECT) is supplied to the multiplexer 101 in preparation for reception of the 1g signal from the outside network line.

優先度レジスタ(MPR)l 15は網外からの受信監
視信号に応じて送出する優先度を格納しておくもので初
期的は自局にあらかじめ割当てられた固有の優先度がセ
ットされる。なお固有の優先度は自局アドレス情報で代
用する事も可能である。
The priority register (MPR) 15 stores the priority sent out in response to a reception monitoring signal from outside the network, and is initially set to a unique priority assigned in advance to the own station. Note that the unique priority can also be substituted with own station address information.

これに対して一巡用優先度レジスタ116は網内の他端
局から連絡された監視信号の優先度を格納するもので初
期時には0がセットされる。−送信起動タイマ102よ
シ監視信号の送出を指令されるとまずデリミタ発生器1
03より第3図で説明したデリミタが信号線SSへ送出
される。これが完了すると監視情報送信レジスタ(SS
SR)l 04の内容が続いて送出される。本内容は監
視信号検出回路105の出力(受信確認の有無を示す)
とマルチプレクサ(MPXz )107によって選ばれ
た優先度である。初期時には優先度レジスタ115の内
容の方が優先度が高いのでコンパレータ110によって
該内容が監視情報送信レジスタ104に書込まnている
。網外から受信する監視信号はマルチプレクサ101を
経由して取込まれ、デリミタ検出回路105で検知され
、その内容が監視情報受信レジスタ106に格納される
。その結果監視信号検出ピッ)SRが1#になっていれ
ばアンドゲート108;オアゲート111を社内して障
害回復の旨が出力制御レジスタ113に書込まれ、内部
バス?0を介して網構成制御部70へ通知される。これ
により網の再構成制御が実行される。監視信号検出ビッ
トSRが′0#ならば受信した優先度コードPR,とマ
ルチプレクサ107によって選択された優先度レジスタ
115,116の一方とがコンパレータ109によって
大小比奴される。ア・ンドゲート112によって出力制
御レジスタ113にその旨を書込み内部バス90を介し
て伝送制御部60に通知する。伝送制御部60は受信し
た優先度をデータとして網内の他端局へ伝送する。なお
レジスタ115の内容は受信した優先度が高い場合のみ
受信優先度に書換えられる。
On the other hand, the one-round priority register 116 stores the priority of the monitoring signal communicated from the other end station in the network, and is initially set to 0. - When the transmission start timer 102 is instructed to send out a monitoring signal, the delimiter generator 1
03, the delimiter explained in FIG. 3 is sent to the signal line SS. When this is completed, the monitoring information transmission register (SS
The contents of SR) l 04 are subsequently sent. This content is the output of the supervisory signal detection circuit 105 (indicating the presence or absence of reception confirmation)
and the priority selected by the multiplexer (MPXz) 107. At the initial stage, the contents of the priority register 115 have a higher priority, so the contents are written to the monitoring information transmission register 104 by the comparator 110. A monitoring signal received from outside the network is taken in via a multiplexer 101, detected by a delimiter detection circuit 105, and its contents are stored in a monitoring information reception register 106. As a result, if the supervisory signal detection pin) SR is 1#, the AND gate 108; OR gate 111 is activated internally, a failure recovery notification is written to the output control register 113, and the internal bus? The network configuration control unit 70 is notified via 0. As a result, network reconfiguration control is executed. If the supervisory signal detection bit SR is '0#', the received priority code PR and one of the priority registers 115, 116 selected by the multiplexer 107 are compared in magnitude by the comparator 109. This fact is written to the output control register 113 by the AND gate 112 and is notified to the transmission control section 60 via the internal bus 90. The transmission control unit 60 transmits the received priority as data to other terminal stations in the network. Note that the contents of the register 115 are rewritten to receive priority only when the received priority is high.

網内他端局からの監視信号受信連絡は伝送制御部60か
ら内部バス90を介して入力制御レジスタ114に書込
まれる。その結果一連用優先度レジスタ116にこの時
受信した優先度が書込まれる。
A supervisory signal reception notification from another terminal station in the network is written from the transmission control section 60 to the input control register 114 via the internal bus 90. As a result, the priority level received at this time is written into the series priority register 116.

この優先度はコンパレータ110によって優先度   
    8レジスタ115の内容と常に比較されてお9
、優先度の高い方が監視情報送信レジスタ104にセッ
トされて送出される構成となっている。この時両者が等
しい事を検出するとこれがオアゲート111経由で出力
制御レジスタ113に書込まれ、内部バス90を介して
網構成制御部70に知らされる。これにより網構成制御
部70では監視信号がループを一巡してきたものと判断
し、少なくとも片系伝送路は正常に復帰したものとして
現在の形態を解くとともに網の再構成動作に移る。
This priority is determined by the comparator 110.
8 is constantly compared with the contents of register 115.
, the one with higher priority is set in the monitoring information transmission register 104 and transmitted. At this time, if it is detected that the two are equal, this is written into the output control register 113 via the OR gate 111 and notified to the network configuration control section 70 via the internal bus 90. As a result, the network configuration control unit 70 determines that the supervisory signal has completed the loop, and assumes that at least one transmission path has returned to normal, resolves the current configuration and moves on to network reconfiguration operations.

〔発明の効果〕〔Effect of the invention〕

本発明によれば隣接する縮退網間の障害回復確認と片系
ループの障害回復確認が可能になるのでこれに応じた網
の再構成制御が可能となり、システムのアベイラビリテ
ィ向上という効果がある。
According to the present invention, it is possible to confirm failure recovery between adjacent degenerate networks and to confirm failure recovery of a single loop, so network reconfiguration control can be performed accordingly, resulting in improved system availability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が適用される二重化された伝送路を有す
る二重環状網の全体構成図、第2図は複数の伝送障害が
発生した場合の縮退網移行形態を示す図、第3図は障害
回復監視信号フォーマットの一例を示す図、第4図は伝
送局のハードウェア構成を示す図、第5図は監視制御部
のハードウェア構成の一例を示す図である。 1.2・・・伝送線路、−11〜16・・・計算機・各
種端末、21〜26・・・伝送局、31〜36・・・制
御部、411〜416,421〜426・・・受信機、
511〜516,521〜526・・・送信機、41.
42・・・送信マルチプレクサ、43・・・受信マルチ
プレクサ、50・・・中央処理部、60・・・伝送制御
部、70・・・網構成制御部、80・・・インターフェ
ース部、90・・・内部バス、100・・・監視制御部
、101゜107・・・マルチプレクサ、102・・・
送信起動タイマ、103・・・デリミタ発生器、104
・・・監視情報送信レジスタ、105・・・デリミタ検
出器、106・・・監視情報受信レジスタ、108,1
12・・・アンドゲート、109,110・・・コンパ
レータ、111・・・オアゲー)、113・・・出力制
御レジスタ、114≠2図 第3図 (^) 監才tL祷号 7オーマツト 、S″R: 監才1Sう4イラピΔシ E、7トeR:
 イ+先潰 コ −ト′
Fig. 1 is an overall configuration diagram of a dual ring network having duplexed transmission lines to which the present invention is applied, Fig. 2 is a diagram showing a form of degenerate network transition when multiple transmission failures occur, and Fig. 3 4 is a diagram showing an example of a fault recovery monitoring signal format, FIG. 4 is a diagram showing a hardware configuration of a transmission station, and FIG. 5 is a diagram showing an example of a hardware configuration of a monitoring control section. 1.2...Transmission line, -11-16...Computer/various terminals, 21-26...Transmission station, 31-36...Control unit, 411-416, 421-426...Reception machine,
511-516, 521-526... transmitter, 41.
42... Transmission multiplexer, 43... Reception multiplexer, 50... Central processing unit, 60... Transmission control unit, 70... Network configuration control unit, 80... Interface unit, 90... Internal bus, 100... Monitoring control unit, 101° 107... Multiplexer, 102...
Transmission start timer, 103...delimiter generator, 104
... Monitoring information transmitting register, 105... Delimiter detector, 106... Monitoring information receiving register, 108,1
12...AND gate, 109, 110...Comparator, 111...Or game), 113...Output control register, 114≠2Figure 3 (^) Kanzai tL prayer number 7 Ohmatsu, S'' R: Supervisor 1S U4 IRAPIΔshi E, 7toeR:
I + tip crushed coat'

Claims (1)

【特許請求の範囲】[Claims] 1、複数の伝送局が伝送方向の異なる二組の伝送路によ
りループ状に直列接続され、障害に隣接する伝送局では
障害個所を切離す様に伝送路を折返す構成をとって、複
数の縮退ループバック形態をとり、データ伝送を継続さ
せる二重環状網において、伝送路を折返す形態に移行し
た端局では、それぞれ自局に割当てられた優先度情報と
受信確認の有無を設定するビットを付加した障害回復監
視信号を網外へ送出し、網外から受信確認付の障害回復
監視信号を受信するか、自身が送出した障害回復監視信
号の優先度のループ一巡を確認することにより障害回復
を認識することを特徴とする二重環状網における伝送障
害の回復検知方法。
1. Multiple transmission stations are connected in series in a loop through two sets of transmission lines with different transmission directions, and at the transmission station adjacent to the fault, the transmission line is folded back to isolate the fault location. In a double ring network that uses a degenerate loopback mode to continue data transmission, each terminal station that has transitioned to a mode where the transmission path is looped back uses a bit to set the priority information assigned to its own station and the presence or absence of reception confirmation. The problem can be detected by sending a failure recovery monitoring signal with a A method for detecting recovery from a transmission failure in a dual ring network, characterized by recognizing recovery.
JP59139044A 1984-07-06 1984-07-06 Restoration detecting system of transmission fault in duplicated ring network Pending JPS6119254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59139044A JPS6119254A (en) 1984-07-06 1984-07-06 Restoration detecting system of transmission fault in duplicated ring network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139044A JPS6119254A (en) 1984-07-06 1984-07-06 Restoration detecting system of transmission fault in duplicated ring network

Publications (1)

Publication Number Publication Date
JPS6119254A true JPS6119254A (en) 1986-01-28

Family

ID=15236148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139044A Pending JPS6119254A (en) 1984-07-06 1984-07-06 Restoration detecting system of transmission fault in duplicated ring network

Country Status (1)

Country Link
JP (1) JPS6119254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7421479B2 (en) 1999-04-06 2008-09-02 Sony Corporation Network system, network control method, and signal sender/receiver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752249A (en) * 1980-09-12 1982-03-27 Hitachi Ltd Information transmitting method of loop transmission system
JPS5980043A (en) * 1982-10-29 1984-05-09 Toshiba Corp Loop transmitter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5752249A (en) * 1980-09-12 1982-03-27 Hitachi Ltd Information transmitting method of loop transmission system
JPS5980043A (en) * 1982-10-29 1984-05-09 Toshiba Corp Loop transmitter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7421479B2 (en) 1999-04-06 2008-09-02 Sony Corporation Network system, network control method, and signal sender/receiver
US7428589B2 (en) 1999-04-06 2008-09-23 Sony Corporation Network system, network control method, and signal sender/receiver
US7433927B2 (en) 1999-04-06 2008-10-07 Sony Corporation Network system, network control method, and signal sender/receiver

Similar Documents

Publication Publication Date Title
US4745597A (en) Reconfigurable local area network
EP0091129B1 (en) Reconfiguration control method for a loop-type data network
JPH0351142B2 (en)
JPS6119254A (en) Restoration detecting system of transmission fault in duplicated ring network
JP4237101B2 (en) Double loop network system
JP3120910B2 (en) Network synchronization setting method in loop type LAN
JPH041543B2 (en)
JPS60169255A (en) Duplicated loop communication system
JP3149047B2 (en) Redundant data processor
JPH0430218B2 (en)
JPS60136444A (en) Loop back control method of loop transmission system
JPS6113661B2 (en)
JP3082425B2 (en) Transmission line control method for data communication system
JPH03143050A (en) Loop communication system
JPH03104446A (en) Duplicate system for bus type network
JP3351881B2 (en) Data communication method and data communication device
JPH03107241A (en) Lan ring reconstitution system
CN115001898A (en) Network equipment redundant communication system and method
JPS63276341A (en) Fault restoring method for loop type transmission system
JPH069355B2 (en) Loop network
JPH0340618A (en) Duplexing system for bus type network
JPS61283254A (en) Transmission control system
JPH01264334A (en) Transmission path controller
JPS59151552A (en) Loop communication system
JPS61292438A (en) Loopback control system