JPS61188927A - Compound semiconductor device - Google Patents

Compound semiconductor device

Info

Publication number
JPS61188927A
JPS61188927A JP2914085A JP2914085A JPS61188927A JP S61188927 A JPS61188927 A JP S61188927A JP 2914085 A JP2914085 A JP 2914085A JP 2914085 A JP2914085 A JP 2914085A JP S61188927 A JPS61188927 A JP S61188927A
Authority
JP
Japan
Prior art keywords
layer
pattern
substrate
compound semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2914085A
Other languages
Japanese (ja)
Inventor
Tadashi Hisamatsu
久松 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2914085A priority Critical patent/JPS61188927A/en
Publication of JPS61188927A publication Critical patent/JPS61188927A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium

Abstract

PURPOSE:To release thermal stress resulting from thermal expansion coefficient difference and obtain a high quality compound semiconductor device by forming an intermediate layer which alleviates mismatching of lattice constant between a Si substrate and III-V group compound semiconductor layer on said Si substrate. CONSTITUTION:A Ge layer 3 is laminated on a Si substrate where a SiO2 pattern 2 is formed and a GaAs layer 6 on which a GeO2 pattern 5 is formed is stacked on such Ge layer 3. A polycrystalline region is formed at the upper part 2a and periphery 2b of the SiO2 pattern 2. The polycrystalline region is also formed at the upper part 5a and periphery 5b of the GeO2 pattern 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Si基板上にGaAs等のm−v族化合物半
導体層をエピタキシャル成長させた化合物半導体装置に
関し、化合物半導体デバイス作成の基幹技術として利用
される。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a compound semiconductor device in which an m-v group compound semiconductor layer such as GaAs is epitaxially grown on a Si substrate, and is used as a core technology for manufacturing compound semiconductor devices. be done.

(従来の技術) Si基板上へのm−v族化合物半導体層をエピタキシャ
ル成長することは、三次元集積回路°、光電子新機能素
子、波長分割型高効率太陽電池等のデバイス開発に重要
な技術である。
(Conventional technology) Epitaxial growth of an m-v group compound semiconductor layer on a Si substrate is an important technology for the development of devices such as three-dimensional integrated circuits, optoelectronic new functional devices, and wavelength-splitting high-efficiency solar cells. be.

しかるに8例えばGaAsはStと格子定数で約4%の
不整合を有し、熱膨張係数でも約2倍の開きがある。そ
のため、従来、Si基板上にGaAs層を形成するため
に、ハロゲン輸送CVD法。
However, 8, for example, GaAs has a mismatch of about 4% with St in lattice constant, and also has a difference of about twice in thermal expansion coefficient. Therefore, conventionally, a halogen transport CVD method has been used to form a GaAs layer on a Si substrate.

MOCVD法、MBE法等の結晶成長法を用いて。Using crystal growth methods such as MOCVD and MBE.

エピタキシャル成長させていたが、上述した不整合が起
因して高品質な単結晶エピタキシャル成長層を得ること
は不可能であった。
Although epitaxial growth was performed, it was impossible to obtain a high-quality single-crystal epitaxial growth layer due to the above-mentioned mismatch.

従来、Si基板とGaAs層との間の不整合を緩和する
ために適当な単一の中間層を介在させたり、超格子構造
の中間層を介在させたり、さらには、Si基板上にあら
かじめSiO□等のパンシベーション膜を形成し、Ga
As層をグラフオエピタキシャル成長させる方法等が提
案されている。
Conventionally, in order to alleviate the mismatch between the Si substrate and the GaAs layer, a single intermediate layer has been interposed, an intermediate layer having a superlattice structure has been interposed, or SiO2 has been formed on the Si substrate in advance. A pansivation film such as □ is formed, and Ga
A method of growing an As layer by graphite epitaxial growth has been proposed.

(発明の目的) しかるに、このような解決手段を講じても、格子定数と
熱膨張係数の不整合を同時に解決してSi基板上に高品
質なGaAs単結晶層を得るまでには到1ていない。
(Objective of the Invention) However, even if such a solution is taken, it is still difficult to obtain a high quality GaAs single crystal layer on a Si substrate by simultaneously solving the mismatch between the lattice constant and the coefficient of thermal expansion. do not have.

本発明はかかる点に鑑み、Si基板上に高品質なIII
−V族化合物半導体エピタキシャル層の成長をなした化
合物半導体装置を提供することを目的とする。
In view of this point, the present invention provides a high-quality III film on a Si substrate.
- It is an object of the present invention to provide a compound semiconductor device in which a Group V compound semiconductor epitaxial layer is grown.

(発明の構成) 本発明は、Si基板上にこのSi基板とm−v族化合物
半導体層の格子定数の不整合を緩和させる中間層が形成
され、前記m−v族化合物半導体層及び中間層に局部的
な多結晶領域が形成された化合物半導体装置に係わり、
この中間層には例えばGe層が用いられている。
(Structure of the Invention) The present invention is characterized in that an intermediate layer is formed on a Si substrate to alleviate the mismatch in lattice constant between the Si substrate and the m-v group compound semiconductor layer, and the m-v group compound semiconductor layer and the intermediate layer Relating to a compound semiconductor device in which a localized polycrystalline region is formed,
For example, a Ge layer is used for this intermediate layer.

(実施例) 以下1本発明の実施例について図面を参照して説明する
(Example) An example of the present invention will be described below with reference to the drawings.

第4図において、Sin、パターン2が形成されたSi
基板1上にGe層3が積層され、このGe層層上上Ge
O2パターン5が形成されたGaAs層6が積層されて
いる。そして、Sin、パターン2の上方部2a及び周
辺部2bには多結晶領域が形成され、前記Ge0Zパタ
ーン5の上方部5a及び周辺部5bにも多結晶領域が形
成されている。
In FIG. 4, Sin, Si on which pattern 2 is formed
A Ge layer 3 is laminated on a substrate 1, and a Ge layer 3 is formed on the Ge layer.
A GaAs layer 6 on which an O2 pattern 5 is formed is laminated. Polycrystalline regions are formed in the upper part 2a and peripheral part 2b of the Sin pattern 2, and polycrystalline regions are also formed in the upper part 5a and peripheral part 5b of the Ge0Z pattern 5.

以下2本例の製造手順について第1図ないし第4図を参
照して説明する。
The manufacturing procedure of the two examples will be explained below with reference to FIGS. 1 to 4.

■ 単結晶Si基板lの表面を熱酸化し、 S i O
z膜を形成したのち、フォトリソグラフィ技術を用いて
所望のS i O,パターン2を形成する。
■ Thermal oxidation of the surface of a single-crystal Si substrate l results in S i O
After forming the Z film, a desired SiO pattern 2 is formed using photolithography.

このSin、パターン2を形成したのちSi基板上を高
真空中で加熱して成長面の清浄化を図る。
After forming the Si pattern 2, the Si substrate is heated in a high vacuum to clean the growth surface.

■ 次に、蒸着法、Get(4の熱分解によるCVD法
等によりGe層3の形成を行う。この場合。
(2) Next, the Ge layer 3 is formed by a vapor deposition method, a CVD method using thermal decomposition of Get(4), etc. In this case.

基板温度、真空度、成長速度等のパラメータおよびGe
層層形形成後アニール条件を適正化すると、前記SiO
□パターン2から隔ったGe層3aは容易に単結晶化し
、一方Singパターン2の上方部2aおよびその周辺
部2bに形成されたGe層3bは多数の多結晶核を含ん
だ多結晶領域となる。これはSi基板1とStowパタ
ーン2との段差部にStとGeの熱膨張係数の差に起因
した熱応力が集中し、多数のGe多結晶核が発生するた
めに生じるものである。
Parameters such as substrate temperature, degree of vacuum, growth rate, and Ge
By optimizing the annealing conditions after layer formation, the SiO
□The Ge layer 3a separated from the pattern 2 easily becomes a single crystal, while the Ge layer 3b formed in the upper part 2a of the Sing pattern 2 and its peripheral part 2b becomes a polycrystalline region containing many polycrystalline nuclei. Become. This occurs because thermal stress due to the difference in thermal expansion coefficients between St and Ge is concentrated at the stepped portion between the Si substrate 1 and the Stow pattern 2, and a large number of Ge polycrystalline nuclei are generated.

■ 上述のようにして得られた単結晶化したGe層3a
及び多結晶化したGe層3bの表面を熱酸化し、Gem
、膜を形成した後、フォトリソグラフィ技術を用いてG
e0zパターン5を形成する。このGem、パターン5
は、前記S i Otパターン2の上方部2aに形成さ
れているGe多結晶領域を被覆するように位置合わせさ
れている。
■ Single crystallized Ge layer 3a obtained as described above
The surface of the polycrystalline Ge layer 3b is then thermally oxidized to form a Ge
, after forming the film, G is applied using photolithography technology.
Form e0z pattern 5. This gem, pattern 5
are aligned so as to cover the Ge polycrystalline region formed in the upper part 2a of the SiOt pattern 2.

■ そして、前記Ge層3及びGe0Zパターン5上に
ハロゲン輸送気相成長法、有機金属を用いた気相成長(
MOCVD)法2分子線エピタキシー(MBE)法等の
化合物半導体層成長技術を用いてGaAs層6の成長を
行い、成長後。
(2) Then, on the Ge layer 3 and the Ge0Z pattern 5, halogen transport vapor phase epitaxy and organic metal vapor phase epitaxy (
After growth, the GaAs layer 6 is grown using a compound semiconductor layer growth technique such as MOCVD (bimolecular beam epitaxy (MBE)).

アニールを施す。このような成長を行うとGeO2パタ
ーン5とGe層3との段差部にGaAsの多結晶領域6
bが発生し、このため熱応力が解放されるので、パター
ン周辺部以外の領域6aでは高品質なGaAs単結晶エ
ピタキシャル成長層が実現されることになる。
Apply annealing. When such growth is performed, a polycrystalline region 6 of GaAs is formed at the step between the GeO2 pattern 5 and the Ge layer 3.
b is generated and thermal stress is thereby released, so that a high quality GaAs single crystal epitaxial growth layer is realized in the region 6a other than the peripheral portion of the pattern.

第5図は、上述した実施例の応用例を示し、3i基板l
上にイオン注入法にて形成されたSi活性領域10とG
aAs層6に形成されたGaAs活性領域11とを備え
た三次元回路素子である。この場合、前記S i O,
パターン2のかわりにイオン注入技術を用いたドープド
・ポリシリコン12を用いており、その他の構成は第4
図と同じである。図中、13はSi回路用電極、14は
GaAs回路用電極である。
FIG. 5 shows an example of application of the above-mentioned embodiment, in which a 3i substrate l
Si active region 10 and G formed by ion implantation
This is a three-dimensional circuit element comprising a GaAs active region 11 formed in an aAs layer 6. In this case, the S i O,
Doped polysilicon 12 using ion implantation technology is used instead of pattern 2, and the other configuration is the fourth pattern.
Same as the figure. In the figure, 13 is an electrode for a Si circuit, and 14 is an electrode for a GaAs circuit.

(発明の効果) 以上述べたように9本発明によれば熱膨張係数差に起因
する熱応力を解放して高品質な化合物半導体装置を得る
ことができ、さらに格子定数の不整合をも解消すること
ができる。
(Effects of the Invention) As described above, according to the present invention, a high-quality compound semiconductor device can be obtained by releasing thermal stress caused by a difference in thermal expansion coefficients, and also eliminates mismatching of lattice constants. can do.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係わる化合物半導体装置の実施例を示し
、第1図ないし第4図は製造手順の工程を順次水した断
面図、第5図は本発明の応用例を示す三次元回路デバイ
スの断面図である。 1・・・Si基板    2・・・SiO□パターン3
・・・Ge層    6・・・GaAs層第7図 第2図 第3図 第4図 第5図
The drawings show an embodiment of a compound semiconductor device according to the present invention, and FIGS. 1 to 4 are cross-sectional views showing steps of the manufacturing procedure in sequence, and FIG. 5 is a cross-sectional view of a three-dimensional circuit device showing an application example of the present invention. FIG. 1...Si substrate 2...SiO□ pattern 3
...Ge layer 6...GaAs layer Fig. 7 Fig. 2 Fig. 3 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】[Claims] 1)Si基板上にこのSi基板とIII−V族化合物半導
体層の格子定数の不整合を緩和させる中間層が形成され
、前記III−V族化合物半導体層及び中間層に局部的な
多結晶領域が形成されたことを特徴とする化合物半導体
装置。
1) An intermediate layer is formed on the Si substrate to alleviate the lattice constant mismatch between the Si substrate and the III-V compound semiconductor layer, and local polycrystalline regions are formed in the III-V compound semiconductor layer and the intermediate layer. What is claimed is: 1. A compound semiconductor device comprising:
JP2914085A 1985-02-15 1985-02-15 Compound semiconductor device Pending JPS61188927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2914085A JPS61188927A (en) 1985-02-15 1985-02-15 Compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2914085A JPS61188927A (en) 1985-02-15 1985-02-15 Compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS61188927A true JPS61188927A (en) 1986-08-22

Family

ID=12267971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2914085A Pending JPS61188927A (en) 1985-02-15 1985-02-15 Compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS61188927A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4845044A (en) * 1987-07-29 1989-07-04 Murata Manufacturing Co., Ltd. Producing a compound semiconductor device on an oxygen implanted silicon substrate
US4925810A (en) * 1986-10-25 1990-05-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Compound semiconductor device and a method of manufacturing the same
EP1231648A3 (en) * 1995-06-05 2004-12-08 Sharp Kabushiki Kaisha Solar cell and manufacturing method thereof
US8633496B2 (en) 2009-06-05 2014-01-21 Sumitomo Chemical Company, Limited Optical device and semiconductor wafer
US8686472B2 (en) 2008-10-02 2014-04-01 Sumitomo Chemical Company, Limited Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate
US8823141B2 (en) 2009-03-11 2014-09-02 Sumitomo Chemical Company, Limited Semiconductor wafer, method of producing semiconductor wafer, electronic device, and method of producing electronic device
US8835906B2 (en) 2009-06-05 2014-09-16 National Institute Of Advanced Industrial Science And Technology Sensor, semiconductor wafer, and method of producing semiconductor wafer
US8835980B2 (en) 2009-06-05 2014-09-16 National Institute Of Advanced Industrial Science And Technology Semiconductor wafer, photoelectric conversion device, method of producing semiconductor wafer, and method of producing photoelectric conversion device
US8890213B2 (en) 2009-05-22 2014-11-18 Sumitomo Chemical Company, Limited Semiconductor wafer, electronic device, a method of producing semiconductor wafer, and method of producing electronic device
US8901605B2 (en) 2011-03-07 2014-12-02 National Institute Of Advanced Industrial Science And Technology Semiconductor wafer, semiconductor device, and method of producing semiconductor wafer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925810A (en) * 1986-10-25 1990-05-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Compound semiconductor device and a method of manufacturing the same
US4845044A (en) * 1987-07-29 1989-07-04 Murata Manufacturing Co., Ltd. Producing a compound semiconductor device on an oxygen implanted silicon substrate
EP1231648A3 (en) * 1995-06-05 2004-12-08 Sharp Kabushiki Kaisha Solar cell and manufacturing method thereof
US8686472B2 (en) 2008-10-02 2014-04-01 Sumitomo Chemical Company, Limited Semiconductor substrate, electronic device and method for manufacturing semiconductor substrate
US8823141B2 (en) 2009-03-11 2014-09-02 Sumitomo Chemical Company, Limited Semiconductor wafer, method of producing semiconductor wafer, electronic device, and method of producing electronic device
US8890213B2 (en) 2009-05-22 2014-11-18 Sumitomo Chemical Company, Limited Semiconductor wafer, electronic device, a method of producing semiconductor wafer, and method of producing electronic device
US8633496B2 (en) 2009-06-05 2014-01-21 Sumitomo Chemical Company, Limited Optical device and semiconductor wafer
US8835906B2 (en) 2009-06-05 2014-09-16 National Institute Of Advanced Industrial Science And Technology Sensor, semiconductor wafer, and method of producing semiconductor wafer
US8835980B2 (en) 2009-06-05 2014-09-16 National Institute Of Advanced Industrial Science And Technology Semiconductor wafer, photoelectric conversion device, method of producing semiconductor wafer, and method of producing photoelectric conversion device
US8901605B2 (en) 2011-03-07 2014-12-02 National Institute Of Advanced Industrial Science And Technology Semiconductor wafer, semiconductor device, and method of producing semiconductor wafer

Similar Documents

Publication Publication Date Title
JP3027473B2 (en) Semiconductor components
US4997787A (en) Method for fabricating a semiconductor film which is electrically isolated from a substrate
JPH01289108A (en) Heteroepitaxy
US5360754A (en) Method for the making heteroepitaxial thin layers and electronic devices
JPS61188927A (en) Compound semiconductor device
JPH01270593A (en) Method for forming compound semiconductor layer
JPH0294663A (en) Semiconductor device and manufacture thereof
JPS60140813A (en) Manufacture of semiconductor device
JPS61241911A (en) Compound semiconductor device
KR100359739B1 (en) Method of fusion for heteroepitaxial layers and overgrowth thereon
JPS61189619A (en) Compound semiconductor device
JP2565908B2 (en) Compound semiconductor device
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JP2650770B2 (en) Manufacturing method of vertical superlattice element
JPS6066811A (en) Manufacture of compound semiconductor device
JPH04199507A (en) Solid phase diffusion of n-type impurity to iii-v compound semiconductor
JP2981777B2 (en) Semiconductor substrate manufacturing method
JPH01266716A (en) Gaas/si multilayer and gaas growth method
JPS6398120A (en) Crystal growth method
JP2959767B2 (en) Semiconductor substrate, semiconductor device and method of manufacturing the same
JPH0425135A (en) Semiconductor substrate
EP1619714A1 (en) Method for fabricating a compound semiconductor epitaxial wafer
JPS61198713A (en) Manufacture of semiconductor device
JP2508456B2 (en) Method for forming semiconductor single crystal thin film
JPH03171617A (en) Epitaxial growth method of iii-v compound semiconductor on silicon substrate