JPS61187364A - Ohmic electrode - Google Patents

Ohmic electrode

Info

Publication number
JPS61187364A
JPS61187364A JP2623185A JP2623185A JPS61187364A JP S61187364 A JPS61187364 A JP S61187364A JP 2623185 A JP2623185 A JP 2623185A JP 2623185 A JP2623185 A JP 2623185A JP S61187364 A JPS61187364 A JP S61187364A
Authority
JP
Japan
Prior art keywords
layer
ohmic electrode
electrode
width
oxided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2623185A
Other languages
Japanese (ja)
Inventor
Katsutoshi Saito
斉藤 勝利
Mitsuhiro Mori
森 光廣
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2623185A priority Critical patent/JPS61187364A/en
Publication of JPS61187364A publication Critical patent/JPS61187364A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain an electrode having a good heat resistance properties, by a method wherein when an ohmic electrode is formed on a GaAs substrate, at first the first layer such as Cr, Mo, Ta and Hf which is not almost oxided, the second layer of the same metal which is adequately oxided, and the third layer of the same metal which is not oxided are cladded by laminating on a substrate, and a layer of Au or the like is provided on the upper most layer. CONSTITUTION:The P-type GaAs substrate 1 is heated to the 200-300 deg.C, and the first Mo layer 4 of the width about 500Angstrom is vacuum deposited on this keeping the degree of vacuum about 5X10<-7>Torr and the depositing rate 5-15Angstrom /sec. Next, the second Mo barrier layer 5 of the width of 2,000Angstrom is formed making the deposition rate 0.1-1.0Angstrom /sec putting oxigen gas in a vacuum chamber, and subsequently the introduction of oxigen gas is stopped, and the third Mo layer 6 of the width of 500Angstrom is cladded at the same condition with the layer 4, and a Mo layer 2 is formed with layers 4, 5, 6. After that, a layer 3 of such as Au, Ag, Al and the like of the width of 500Angstrom is vacuum deposited on the layer 6 by the resister wire heating deposition method, and it is made an ohmic electrode.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体に対するオーム性電極、特にm−V族化
合物半導体に対するオーム性電極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to ohmic electrodes for semiconductors, particularly ohmic electrodes for m-V compound semiconductors.

〔発明の背景〕[Background of the invention]

従来、高キャリア濃度を煙畜P型G a A s 、半
導体のオーム性電極にはCr −A u 、 M o 
−A u tT x −A uなどで構成された。高融
点金属とAuまたはAgからなる2層構造の電極が広く
用いられている。たとえば、町野等のr電極技術J東芝
レビュー、vo124&6pp727−730昭44等
に報告がある。
Conventionally, high carrier concentration has been achieved using P-type GaAs, and Cr-Au, Mo for semiconductor ohmic electrodes.
-A u tT x -A u etc. Electrodes with a two-layer structure consisting of a high melting point metal and Au or Ag are widely used. For example, there is a report in Machino et al.'s R Electrode Technology J Toshiba Review, vol. 124 & 6 pp. 727-730, 1973, etc.

しかし、これらの電極は、電極形成後に200〜400
℃の熱処理を行うと、電極層相互の拡散や、G a A
 sから分解したGaやAsの外方拡散により、電極層
の産資や、合金化が生じることが知られている。このた
め、電極金属の半導体基板への過度の侵入や、電極層へ
のワイヤボンディングが不能となるなどの欠点をもって
いる。
However, these electrodes are 200 to 400
When heat treatment is performed at ℃, mutual diffusion between electrode layers and G a A
It is known that the outdiffusion of Ga and As decomposed from s causes the formation of metals and alloys in the electrode layer. For this reason, there are drawbacks such as excessive penetration of the electrode metal into the semiconductor substrate and the impossibility of wire bonding to the electrode layer.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記の欠点を解消した。耐熱性に優れ
たオーム性電極を提供することにある。
The object of the invention is to overcome the above-mentioned drawbacks. The object of the present invention is to provide an ohmic electrode with excellent heat resistance.

〔発明の概要〕[Summary of the invention]

先に挙げた電極が劣化するのは、金属層間の相互拡散や
、GaAsから分解したGaやAsの外方拡散によるも
のである。そこで、上記の従来電極の第一層目の高融点
金属層の拡散バリヤとしての性能を向上させるべく検討
を行った結果、若干酸化された状態の高融点金属層を、
第一層目の中間層として設ける方法が、最も簡便であり
、かつ効果的なことがわかった。
The deterioration of the above-mentioned electrodes is due to interdiffusion between metal layers and outdiffusion of Ga and As decomposed from GaAs. Therefore, we conducted studies to improve the performance of the first refractory metal layer of the conventional electrode as a diffusion barrier, and found that the refractory metal layer in a slightly oxidized state was
It has been found that the method of providing it as an intermediate layer of the first layer is the simplest and most effective method.

第一層(高融点金属層)目の中間に、若干酸化した状態
の高融点金属層を設けるには、高融点金属の蒸着途中で
、蒸着チャンバ内に、制御された微量の酸素ガスを導入
するか、あるいは、蒸着レートを著しく低下させればよ
い。
To provide a slightly oxidized refractory metal layer in the middle of the first layer (refractory metal layer), a controlled trace amount of oxygen gas is introduced into the deposition chamber during the deposition of the refractory metal. Alternatively, the deposition rate may be significantly reduced.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の実施例を第1図、第2図を用いて詳細に
説明する。
An embodiment of the present invention will be described in detail below with reference to FIGS. 1 and 2.

実施例1 第1図は、M o −A uからなるP型G a A 
sに対するオーミック電極に本発明を適用した場合の電
極構造を示す断面図である。以下その製造方法を説明す
る。
Example 1 FIG. 1 shows a P-type Ga A consisting of M o -A u.
FIG. 3 is a cross-sectional view showing an electrode structure when the present invention is applied to an ohmic electrode for s. The manufacturing method will be explained below.

表面キャリア濃度が大略I X 10”am−’のP型
G a A s基板1上に、Mo層2とAu層3が真空
蒸着法により形成されている。まず、p−GaAs基板
1を200〜300℃に加熱したのち、真空度約5 X
 10−’Torr、蒸着レート5〜15人/seeに
おいて、電子ビーム蒸着法により、膜厚約500人の第
1 M o層4を形成する0次に、バリアプルリークバ
ルブを介して、真空チャンバ内に酸素ガスを導入したの
ち、蒸着レート0.1〜1.0人/8eCにおいて、膜
厚2000人の第2 M o層5を形成する。ついで、
酸素ガスの導入を停止したのち、第1 M o jfl
ち同一の条件で第3 M o層6(膜厚約500人)を
形成する。最後に、抵抗線加熱蒸着法によりAu層7を
厚さ約5000人形成してオーム性電極を完成する。
A Mo layer 2 and an Au layer 3 are formed by vacuum evaporation on a P-type GaAs substrate 1 with a surface carrier concentration of approximately I x 10"am-'. First, the p-GaAs substrate 1 is After heating to ~300℃, vacuum degree is approximately 5X
A first Mo layer 4 having a film thickness of about 500 mm is formed by electron beam evaporation at a deposition rate of 5 to 15 mm/see at 10 Torr and a deposition rate of 5 to 15 mm/see. After introducing oxygen gas into the chamber, a second Mo layer 5 having a film thickness of 2000 layers is formed at a deposition rate of 0.1 to 1.0 layers/8 eC. Then,
After stopping the introduction of oxygen gas, the first M o jfl
A third Mo layer 6 (film thickness of about 500 layers) is then formed under the same conditions. Finally, an ohmic electrode is completed by forming an Au layer 7 with a thickness of about 5,000 layers using a resistance wire heating vapor deposition method.

通常の方法で製作したM o −A uの構造の電極が
400’C51時間程度の熱処理で劣化が始まるのに対
し、本実施例によるM o −A uの構造の電極では
450℃、1時間の熱処理にも充分耐えることができた
While the electrode with the M o -A u structure manufactured by the usual method begins to deteriorate after heat treatment at 400'C for about 51 hours, the electrode with the M o -A u structure according to this example was heated at 450C for 1 hour. It was able to sufficiently withstand heat treatment.

実施例2 第2図は、n型GaAsに対するオーム性電極層上に1
本発明によるMo  Au電極を設けた場合の電極構造
を示す断面図である。
Example 2 FIG. 2 shows the ohmic electrode layer for n-type GaAs
FIG. 3 is a cross-sectional view showing an electrode structure when a MoAu electrode according to the present invention is provided.

表面キャリア濃度が大略I X I O”as−’のn
型G a A s基板21上にAuGeNi (Au 
: Ge:N1=88 :12 : 4wt、)層22
(膜厚1000人)を室温蒸着し、ついで、真空チャン
バ内で400℃、5分間の淵処理を施してオーム性の接
触を得る0次に、基板温度を200℃に冷却したのち。
The surface carrier concentration is approximately I
AuGeNi (Au
: Ge:N1=88 :12 :4wt, ) layer 22
(film thickness: 1000) was deposited at room temperature, and then subjected to edge treatment at 400°C for 5 minutes in a vacuum chamber to obtain ohmic contact.Then, the substrate temperature was cooled to 200°C.

実施例1を全く同一の条件により、MO層23を形成す
る。すなわち、ほとんど酸化されていない第1 M o
層25(膜厚500人)、やつ酸化されている第2 M
 o層26(膜厚2000人)、ほとんど酸化されてい
ない第3 M o層27(膜厚500人)を順次形成す
る。最後に、A u @ 224を被着してオーム性電
極を完成する。
The MO layer 23 is formed under exactly the same conditions as in Example 1. That is, the first Mo that is hardly oxidized
Layer 25 (thickness: 500), the second layer is oxidized
A layer 26 (thickness: 2,000 layers) and a third Mo layer 27 (thickness: 500 layers), which is hardly oxidized, are sequentially formed. Finally, A u@224 is deposited to complete the ohmic electrode.

通常の方法で製作した従来のA u G e N 1−
Au構造のn型オーム性電極では、200℃。
Conventional A u G e N 1- manufactured by normal method
For an n-type ohmic electrode with an Au structure, the temperature is 200°C.

30分間の熱処理を経ると劣化が生じ、Au層上へのA
u線のワイヤボンドが極めて困難であったが1本実施例
によれば、350℃、1時間の熱処理後も電極の劣化は
起きず、Au層24上へのワイヤボンドも極めて容易に
行うことができた。
After 30 minutes of heat treatment, deterioration occurs and A
Wire bonding of U-line was extremely difficult, but according to this example, the electrode did not deteriorate even after heat treatment at 350° C. for 1 hour, and wire bonding onto the Au layer 24 was extremely easy. was completed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、バリヤ層を含む電極構造に何らの変更
を加えることなく、単に、バリヤ層となる高融点金属の
被着時の真空度と被着レートを制御するのみで、バリヤ
層の性能を大幅に向上することができる。
According to the present invention, without making any changes to the electrode structure including the barrier layer, the barrier layer can be formed simply by controlling the degree of vacuum and deposition rate during deposition of the high melting point metal that will become the barrier layer. Performance can be significantly improved.

本発明の適用により、電極の低熱性は50〜150℃以
上向上し、ワイヤボンディングの作業遇デバイスの信頼
性の向上にも寄与するところが大きい。
By applying the present invention, the low thermal properties of the electrode are improved by 50 to 150° C. or more, which greatly contributes to improving the reliability of devices during wire bonding operations.

なお、実施例では、高融点金属としてMoを用いた例を
示したが、MOのみならず、Cr r T l 1Ta
n Hf、Wなどの他の高融点金属でバリヤを構成する
場合にも本発明が適用できる。
In addition, in the example, an example was shown in which Mo was used as the high melting point metal, but not only MO but also Cr r T l 1Ta
The present invention can also be applied when the barrier is composed of other high melting point metals such as n Hf and W.

また、本発明によるバリヤ層の被着方法とじては、電子
ビーム蒸着法に限るものではなく、スパッタ蒸着法や、
クラスタイオンビーム蒸着法なども適用できる。
Furthermore, the method of depositing the barrier layer according to the present invention is not limited to electron beam evaporation, but may include sputter evaporation,
Cluster ion beam evaporation method can also be applied.

さらに、本発明の適用対象となる半導体材料は、G a
 A sのみならず、GaAl2As、GaP。
Furthermore, the semiconductor material to which the present invention is applied is Ga
Not only As, but also GaAl2As, GaP.

InGaAsP、InPなどのm−v糖化合物半導体に
適用可能である。
It is applicable to m-v sugar compound semiconductors such as InGaAsP and InP.

また1本発明の適用できる下地のオーム電極層は、Au
GaNi層のみならず、A u G e −N i 。
Furthermore, the underlying ohmic electrode layer to which the present invention can be applied is Au.
Not only the GaNi layer but also A u G e -N i .

A u −Z n 、 A u −S n 、 A u
 −S iなどで構成されるオーム性電極層に対しても
適覆可能である。
A u -Z n , A u -S n , A u
- It is also possible to suitably coat an ohmic electrode layer composed of Si or the like.

さらに1本発明は、オーム性電極の他の、ショットキバ
リヤ電極や、集積回路中の配線金属層に対しても適用で
きる。
Furthermore, the present invention can be applied to Schottky barrier electrodes and wiring metal layers in integrated circuits in addition to ohmic electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す断面図、第2図は1
本発明の他の実施例を示す断面図である。 2.23−Mo層、4.25・・・第1 M o層、5
゜代理人 弁理士 小用勝−1′5.・7第 1 図 第20
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG.
FIG. 3 is a sectional view showing another embodiment of the present invention. 2.23-Mo layer, 4.25... first Mo layer, 5
゜Representative Patent Attorney Masaru Koyo-1'5.・7 Figure 1 Figure 20

Claims (2)

【特許請求の範囲】[Claims] 1.高融点金属とAuまたはAgまたはAlの2層から
なる、III−V族化合物半導体用のオーム性電極におい
て、上記半導体基板に接して被着した高融点金属層を、
ほとんど酸化されていない第1層領域と、拡散バリヤと
しての性能を向上させるために適度に酸化された第2層
領域と、ほとんど酸化されていない第3層領域とを連続
的に堆積させて構成したことを特徴とするオーム性電極
1. In an ohmic electrode for a III-V compound semiconductor consisting of two layers of a high melting point metal and Au, Ag or Al, the high melting point metal layer is deposited in contact with the semiconductor substrate,
Consisting of successive deposits of a first layer region that is hardly oxidized, a second layer region that is moderately oxidized to improve its performance as a diffusion barrier, and a third layer region that is hardly oxidized. An ohmic electrode characterized by:
2.前記高融点金属が、Cr、Mo、Ta、Hf、Wの
いずれか1つ、またはこれらの組合せからなることを特
徴とする特許請求範囲第1項記載のオーム性電極。
2. The ohmic electrode according to claim 1, wherein the high melting point metal is made of any one of Cr, Mo, Ta, Hf, W, or a combination thereof.
JP2623185A 1985-02-15 1985-02-15 Ohmic electrode Pending JPS61187364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2623185A JPS61187364A (en) 1985-02-15 1985-02-15 Ohmic electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2623185A JPS61187364A (en) 1985-02-15 1985-02-15 Ohmic electrode

Publications (1)

Publication Number Publication Date
JPS61187364A true JPS61187364A (en) 1986-08-21

Family

ID=12187561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2623185A Pending JPS61187364A (en) 1985-02-15 1985-02-15 Ohmic electrode

Country Status (1)

Country Link
JP (1) JPS61187364A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124270A (en) * 1987-09-18 1992-06-23 Kabushiki Kaisha Toshiba Bipolar transistor having external base region
US5273937A (en) * 1988-01-08 1993-12-28 Kabushiki Kaisha Toshiba Metal semiconductor device and method for producing the same
JPH0766391A (en) * 1993-08-31 1995-03-10 Nec Corp Ohmic electrode
WO1998025310A1 (en) * 1996-12-06 1998-06-11 Raytheon Ti Systems, Inc. GATE ELECTRODE FOR GaAs FET

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5124270A (en) * 1987-09-18 1992-06-23 Kabushiki Kaisha Toshiba Bipolar transistor having external base region
US5273937A (en) * 1988-01-08 1993-12-28 Kabushiki Kaisha Toshiba Metal semiconductor device and method for producing the same
JPH0766391A (en) * 1993-08-31 1995-03-10 Nec Corp Ohmic electrode
WO1998025310A1 (en) * 1996-12-06 1998-06-11 Raytheon Ti Systems, Inc. GATE ELECTRODE FOR GaAs FET

Similar Documents

Publication Publication Date Title
US4283439A (en) Method of manufacturing a semiconductor device by forming a tungsten silicide or molybdenum silicide electrode
US4673593A (en) Process for forming an ohmic electrode on a p-type III-V compound semiconductor
JP2907452B2 (en) Electrodes for compound semiconductors
JP3304541B2 (en) Method of forming ohmic electrode
JPS61187364A (en) Ohmic electrode
JP3654037B2 (en) Ohmic electrode, manufacturing method thereof, and semiconductor device
JPH10335259A (en) Semiconductor device and manufacture thereof
JP3128165B2 (en) Method for forming electrode of compound semiconductor device
JPH0472764A (en) Rear electrode of semiconductor device
JPH05335267A (en) Ohmic electrode and its formation
JPH06104424A (en) Schottky barrier type diode and its manufacture
US6037663A (en) Ohmic electrode structure for Inx Ga1-x As layer
JP2569032B2 (en) Semiconductor device
JPS62136018A (en) Manufacture of semiconductor device
JP3171677B2 (en) Ohmic electrode
JPH0224030B2 (en)
JP2977378B2 (en) Ohmic electrode
JPS6217391B2 (en)
JPH0226790B2 (en)
JPS6050334B2 (en) semiconductor equipment
JPH029119A (en) Forming method for ohmic electrode
JPS6258555B2 (en)
JPS59101868A (en) Semiconductor device having schottky barrier and low resistance contact, and manufacture thereof
JPH0423821B2 (en)
JPS60218858A (en) Semiconductor device