JPS61186257A - Ceramic structure - Google Patents

Ceramic structure

Info

Publication number
JPS61186257A
JPS61186257A JP60026279A JP2627985A JPS61186257A JP S61186257 A JPS61186257 A JP S61186257A JP 60026279 A JP60026279 A JP 60026279A JP 2627985 A JP2627985 A JP 2627985A JP S61186257 A JPS61186257 A JP S61186257A
Authority
JP
Japan
Prior art keywords
surface layer
strength
ceramic
particle size
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60026279A
Other languages
Japanese (ja)
Inventor
忠彦 三吉
明弘 後藤
広志 坂本
弘則 児玉
坂元 耕三
成沢 敏明
孝明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60026279A priority Critical patent/JPS61186257A/en
Publication of JPS61186257A publication Critical patent/JPS61186257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高強度で信頼性の高いセラミックス構造物に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a ceramic structure with high strength and reliability.

〔発明の背景〕[Background of the invention]

近年、酸化アルミニウムや酸化ジルコニウムなどのよう
な酸化物系セラミックスや、炭化ケイ素。
In recent years, oxide ceramics such as aluminum oxide and zirconium oxide, and silicon carbide.

窒化ケイ素、サイアロンなどのケイ化物系セラミックス
を用いたセラミックス構造物が実用化され始めている。
Ceramic structures using silicide ceramics such as silicon nitride and sialon are beginning to be put into practical use.

特にケイ化物系セラミックスには、高温強度が大きいこ
と、高温での耐酸化性がすぐれていること、の利点があ
り、高温ガスタービン部品や自動車エンジン部品などの
高温雰囲気でも使用できる構造物としての、幅広い応用
が期待されている。
In particular, silicide-based ceramics have the advantages of high high-temperature strength and excellent oxidation resistance at high temperatures, making them ideal for structures that can be used in high-temperature environments such as high-temperature gas turbine parts and automobile engine parts. , a wide range of applications are expected.

しかしながら、これら従来のセラミックス構造物には、
加工上及び取扱上不可避な表面傷を生ずると、外部応力
が集中してこわれやすく、信頼性に欠ける点があった。
However, these conventional ceramic structures have
When surface scratches are generated that are unavoidable during processing and handling, external stress is concentrated and the product tends to break, resulting in a lack of reliability.

この表面傷の大きさとしては、普通焼結体の粒径の1〜
3倍程度と考えられる。この欠点を克服するため、これ
らのセラミックスの表面に、例えば石英ガラスのような
熱膨張係数の小さな層を設け、常温でこの層に圧縮応力
が加わることを利用して、表面傷の影響を軽減し、高強
度化、高信頼化を図ることも提案されている(例えば、
Evans他、 J、 Mater、 Sci、 5 
、314(1970)及びKirchner他、 J、
 AvIl、 Cer、 Soc、 49t330 (
1966)など)。
The size of these surface scratches is usually 1 to 10% of the grain size of the sintered body.
It is thought to be about 3 times as large. To overcome this drawback, we created a layer with a small coefficient of thermal expansion, such as quartz glass, on the surface of these ceramics, and took advantage of the fact that compressive stress is applied to this layer at room temperature to reduce the effects of surface scratches. However, it has also been proposed to improve strength and reliability (for example,
Evans et al., J. Mater, Sci. 5
, 314 (1970) and Kirchner et al., J.
AvIl, Cer, Soc, 49t330 (
1966) etc.).

しかしながら、この熱膨張係数の差を利用する方法には
、高温では上記圧縮応力が小さくなり、セラミックス構
造物の使用が最も強く期待されている高温での信頼性向
上にあまり有効でないこと、表面の層が熱膨張差で割れ
て強度低下する恐れがあるという問題があった。
However, methods that utilize this difference in thermal expansion coefficients have two drawbacks: the above compressive stress decreases at high temperatures, and it is not very effective in improving reliability at high temperatures, where the use of ceramic structures is most strongly expected. There was a problem in that the layers could crack due to the difference in thermal expansion, resulting in a decrease in strength.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、」1記従来技術の欠点を除き、室温か
ら高温までの幅広い温度範囲にわたって、高強度で高信
頼性のセラミックス構造物を提供するにある。
The object of the present invention is to provide a ceramic structure which has high strength and high reliability over a wide temperature range from room temperature to high temperature, while eliminating the drawbacks of the prior art described in 1.

〔発明の概要〕[Summary of the invention]

本発明のセラミックス構造物は、使用時に外部・ 応力
を受ける構造物の表面に、構造物の内部を構成するセラ
ミックスの粒径よりも大きい粒径の表面層を設けること
を特徴とするものである。
The ceramic structure of the present invention is characterized in that a surface layer having a grain size larger than the grain size of the ceramic constituting the inside of the structure is provided on the surface of the structure which is subjected to external stress during use. .

〔発明の実施例〕[Embodiments of the invention]

第1図および第2図は本発明のセラミックス構造物の構
造を示している。図において、■は表面層、2は内部で
ある。
1 and 2 show the structure of the ceramic structure of the present invention. In the figure, ■ is the surface layer, and 2 is the inside.

この表面層は1表面層に粒成長促進剤を加えて、焼結時
に表面層のみ選択的に粒成長させる方法や、一度焼結し
、最終形状に加工した構造物の表面層のみを加熱して、
表面層のみを粒成長させる方法により、形成できる。い
ずれの方法においても、構造物の内部と表面層との粒成
長の違いの結果として、表面層に圧縮応力が発生する。
This surface layer can be formed by adding a grain growth promoter to one surface layer and selectively growing grains only in the surface layer during sintering, or by heating only the surface layer of the structure that has been sintered and processed into the final shape. hand,
It can be formed by a method in which only the surface layer grows grains. In either method, compressive stress is generated in the surface layer as a result of differences in grain growth between the interior of the structure and the surface layer.

この圧縮応力は粒成長の程度の違いに基づくもので、熱
膨張係数の違いによるものではないため、構造物の使用
温度範囲で、この圧縮応力は室温でも高温でも表面層に
働く。また、この圧縮応力によって表面傷に働く外部応
力の効果が打消され、本発明のセラミックスは高強度で
高信頼性のものとなる。
This compressive stress is based on the difference in the degree of grain growth and is not due to the difference in the coefficient of thermal expansion, so this compressive stress acts on the surface layer at both room temperature and high temperature within the operating temperature range of the structure. Moreover, this compressive stress cancels out the effect of external stress acting on surface scratches, making the ceramic of the present invention high in strength and reliability.

表面層を構成するセラミックスの平均粒径は内部のセラ
ミックスの平均粒径の3倍以」二であることが望ましい
。表面層の粒径が内部の粒径に比べて充分大きくない場
合、表面層に働く圧縮応力が小さくなり、強度や信頼性
が充分なものとはならない。一方、表面層の粒径が大き
くなりすぎると、表面傷が深くなりやすく、構造物の信
頼性が低下しやすい。構造物として用いられるセラミッ
クスの粒径は普通0.5〜20μm程度であるが、この
時、表面層の粒径はこれの1−00倍以下であることが
望まれる。
It is desirable that the average grain size of the ceramics constituting the surface layer is at least three times the average grain size of the internal ceramics. If the particle size of the surface layer is not sufficiently larger than the internal particle size, the compressive stress acting on the surface layer will be small, and the strength and reliability will not be sufficient. On the other hand, if the particle size of the surface layer becomes too large, surface scratches tend to become deep and the reliability of the structure tends to decrease. The grain size of ceramics used as a structure is usually about 0.5 to 20 μm, but it is desirable that the grain size of the surface layer is 1-00 times or less than this.

また、表面層の厚さとしては、表面傷の深さよりも大き
いことが必要であり、具体的には表面層を構成する粒子
の粒径の5倍以上であることが必要である。また、表面
層の厚さが厚すぎると、圧縮応力が表面層全体に及ばな
くなり、強度が低下する。この結果、表面層の厚さは構
造物の厚さの115以下であることが必要である。なお
、内部と表面層の粒径は内部から表面に向って連続的に
増加するように変化しても良い。この特、表面層の厚さ
としては、その粒径が中心部の平均粒径の3倍以」二の
領域の幅を意味する。
Further, the thickness of the surface layer needs to be larger than the depth of the surface scratches, and specifically, it needs to be five times or more the particle size of the particles constituting the surface layer. Moreover, if the thickness of the surface layer is too thick, the compressive stress will not reach the entire surface layer, resulting in a decrease in strength. As a result, the thickness of the surface layer needs to be 115 times smaller than the thickness of the structure. Note that the particle diameters of the inside and surface layers may change so as to continuously increase from the inside toward the surface. In particular, the thickness of the surface layer means the width of the region where the grain size is at least 3 times the average grain size of the central part.

表面層を構成するセラミックス粒子としては、使用時に
表面が受ける最大外部応力の方向に伸びた異方性の形状
を持つことが特に望ましい。このようにすれば、表面層
の平均粒径を必要以上に大′\きくすることなく、外部
応力に対して有効な圧縮・応力を生じさせることができ
るため、セラミックスン ス構造物が特に高信頼性のものとなる。この場合、表面
層のセラミックス粒子の長軸が短軸の3倍以上の伸びた
形状を持ち、かつ、その長軸の長さが、内部のセラミッ
クスの平均粒径の3倍以上である場合に特に有効である
It is particularly desirable that the ceramic particles constituting the surface layer have an anisotropic shape that extends in the direction of the maximum external stress that the surface receives during use. In this way, it is possible to generate compression and stress that is effective against external stress without making the average grain size of the surface layer larger than necessary, making the ceramic structure particularly reliable. It becomes sexual. In this case, if the long axis of the ceramic particles in the surface layer is elongated three times or more than the short axis, and the length of the long axis is three times or more the average particle diameter of the internal ceramic particles, Particularly effective.

このような構造のセラミックス構造物の製法としては、
焼結時又は焼結後の構造物表面をレーザ光のような熱源
で局部的に加熱し、加熱部を最大外部応力の方向に移動
すればよい。このためには、レーザ光のような熱源をス
キャンしても良いし、熱源を止めて、試料を動かしても
良い。このような方法を用いれば、表面層の粒成長時に
粒成長部が最大外部応力の方向に移動するため、結果と
して、表面層の粒子が最大応力方向にそろって伸びた構
造の構造物が得られる。なお、この方法は液相成長によ
って粒成長がおこる系において特に有効である。
The manufacturing method for ceramic structures with this type of structure is as follows:
The surface of the structure during or after sintering may be locally heated with a heat source such as a laser beam, and the heated portion may be moved in the direction of maximum external stress. For this purpose, a heat source such as a laser beam may be scanned, or the heat source may be stopped and the sample moved. If such a method is used, the grain growth part moves in the direction of the maximum external stress during grain growth in the surface layer, resulting in a structure in which the grains in the surface layer are aligned and elongated in the direction of maximum stress. It will be done. Note that this method is particularly effective in systems where grain growth occurs by liquid phase growth.

本発明の適用されるセラミックスとしては、酸化アルミ
ニウム、酸化ジルコニウム、酸化マグネシウムなどのよ
うな酸化物系セラミックスや、炭化ケイ素、窒化ケイ素
やサイアロンなどのようなケイ化物系セラミックスなど
がある。これらのうちで、ケイ化物系セラミックスには
高温まで高強度である利点があり、本発明の特徴であり
高温まで表面層の圧縮応力がなくならないことと相伴っ
て、1000℃以上の高温まで高強度で高信頼性のセラ
ミックス構造物が得られる長所がある。
Ceramics to which the present invention is applied include oxide ceramics such as aluminum oxide, zirconium oxide, and magnesium oxide, and silicide ceramics such as silicon carbide, silicon nitride, and sialon. Among these, silicide-based ceramics have the advantage of high strength even at high temperatures, which is a feature of the present invention, and the compressive stress of the surface layer does not disappear even at high temperatures. It has the advantage of producing a strong and highly reliable ceramic structure.

以下、本発明を実施例に従って説明する。Hereinafter, the present invention will be explained according to examples.

実施例1 粒径0.5μmのSjC粉末に、粒径1〜2μmのへ〇
N粉末3 w t%及びバインダとしてポリビニールア
ルコール2 w t%を加え、60φ×20tの円板状
に成形した。次に成形体を黒鉛製の型に入れ、加圧力3
00kg/cJ、温度2000℃で1hホツトプレス焼
結した。得られた焼結体の平均粒径は約2μmであった
Example 1 To SjC powder with a particle size of 0.5 μm, 3 wt% of He〇N powder with a particle size of 1 to 2 μm and 2 wt% of polyvinyl alcohol as a binder were added, and the mixture was molded into a disk shape of 60φ×20t. . Next, the molded body was placed in a graphite mold, and a pressure of 3
Hot press sintering was carried out at 00 kg/cJ and a temperature of 2000° C. for 1 hour. The average grain size of the obtained sintered body was about 2 μm.

この円板の両面を研削し、中心部に穴を、周辺部に切り
込みを入れて、第3図に示す形状の羽根車を作製した。
Both sides of this disk were ground, and a hole was made in the center and notches were made in the periphery to produce an impeller having the shape shown in FIG. 3.

次にこの羽根車を赤外線イメージ炉に入れ、2200℃
で1分間加熱して、第1図に模式的に示すように、厚さ
約200μmの表面層1の平均粒径を10μmに成長さ
せた。
Next, this impeller was placed in an infrared image furnace and heated to 2200℃.
As schematically shown in FIG. 1, the surface layer 1 having a thickness of about 200 μm was grown to have an average grain size of 10 μm.

この羽根車を回転試験により調べた結果、羽根の部分の
引張り強度は赤外線イメージ炉で熱処理する前は約40
 kg/ rrtn”であったが、熱処理後の引張り強
度は55 kg / mn” に向上した。また、この
強度は室温から1400℃の範囲でほとんど変化しなか
った。
As a result of examining this impeller through a rotation test, the tensile strength of the blade part was approximately 40% before being heat treated in an infrared image furnace.
kg/rrtn", but the tensile strength after heat treatment improved to 55 kg/mn". Moreover, this strength hardly changed in the range from room temperature to 1400°C.

さらに、熱処理温度を変えて実験した結果、表面層の平
均粒径が中心部の粒径の3倍以上の時、強度向上に顕著
な効果が認められた。
Furthermore, as a result of experiments with different heat treatment temperatures, it was found that when the average grain size in the surface layer was three times or more the grain size in the center, a remarkable effect on strength improvement was observed.

実施例2 平均粒径0.5μmのSi3N4粉末に平均粒径0.1
pm のAQ2032wt%と同じ粒径のY2O33w
t%及び、Cr (No3) 3の水溶液をCrに換算
して5wt%加え、良く混合した。
Example 2 Si3N4 powder with an average particle size of 0.5 μm has an average particle size of 0.1
Y2O33w with the same particle size as AQ2032wt% of pm
t% and an aqueous solution of Cr (No3) 3 in an amount of 5 wt% in terms of Cr were added and mixed well.

次に、この混合物をN2 中1350℃で熱処理して、
Cr (NO3) a をCpに還元した。これにバイ
ンダとしてポリビニールアルコール2wt%髪加え、1
0X10X10X100に成形し、2気圧のN2中18
00℃で1h焼結した。得られた焼結体の形状は約8×
8×8011I113、粒径は約1μmであった。
This mixture was then heat treated at 1350°C in N2,
Cr (NO3) a was reduced to Cp. Add 2 wt% hair of polyvinyl alcohol as a binder to this,
Molded to 0x10x10x100 and heated in 2 atmospheres of N2
Sintering was carried out at 00°C for 1 hour. The shape of the obtained sintered body is approximately 8×
8×8011I113, particle size was approximately 1 μm.

次に、この焼結体を第4図に示す容器にセットし、N2
5気圧中で焼結体表面にレーザ光を照射して、約20μ
、7.x2oμmの表面領域のみを1800〜1900
℃に加熱し、レーザ光を上下にスキャンすることによっ
て、この加熱部を焼結体の長手方向に約10〜1000
μm / minの速度で移動させた。回転軸のまわり
に試料を逐次回転させながら、この操作をくり返した。
Next, this sintered body was set in the container shown in Fig. 4, and N2
The surface of the sintered body is irradiated with laser light under 5 atmospheres, and the surface of the sintered body is approximately 20μ
,7. Only the surface area of x2oμm is 1800-1900
By heating the sintered body to a temperature of
It was moved at a speed of μm/min. This operation was repeated while sequentially rotating the sample around the rotation axis.

この結果、第2図に模式的に示すように、表面層1の粒
子が焼結体の長手方向に伸びた構造の焼結体が得られた
。なお、レーザのパワー、スキャン速度、照射部の温度
を種々変えて実験した結果、■照射部の温度が高く、レ
ーザのスキャン速度が遅いほど、表面層の厚さと表面層
の平均粒径は大きくなること、0表面層の粒子のアスペ
クト比(長軸の長さと短軸の長さの比)はレーザのスキ
ャン速度が大きいほど大きくなることがわかった。
As a result, as schematically shown in FIG. 2, a sintered body was obtained in which the particles of the surface layer 1 extended in the longitudinal direction of the sintered body. In addition, as a result of experiments with various laser power, scanning speed, and temperature of the irradiated part, it was found that: ■ The higher the temperature of the irradiated part and the slower the laser scanning speed, the larger the thickness of the surface layer and the average particle size of the surface layer. It was found that the aspect ratio (ratio of the length of the major axis to the length of the minor axis) of the particles in the zero surface layer increases as the laser scanning speed increases.

得られた焼結体の1000℃における強度と、表面層の
厚さ、表面層粒子の長軸の長さ、アスペクト比との関係
を第5〜6図に示す。
The relationship between the strength of the obtained sintered body at 1000° C., the thickness of the surface layer, the length of the long axis of the surface layer particles, and the aspect ratio is shown in FIGS. 5 and 6.

また、上記実施例と同じ原料を1800℃でi hホッ
トプレス焼結し、60φX5tの円板を作製し、両面を
研削した後、中心部に10φの穴をあけた。
Further, the same raw material as in the above example was subjected to ih hot press sintering at 1800° C. to produce a disk of 60φ×5t, and after grinding both sides, a hole of 10φ was drilled in the center.

次に円板の中心から径方向に向ってレーザ照射すること
により、円板両面の表面層の粒子が円板の中心から径方
向に伸びた構造を持つ焼結体を作製した。
Next, by irradiating the laser beam from the center of the disk in the radial direction, a sintered body having a structure in which the particles in the surface layer on both sides of the disk extended in the radial direction from the center of the disk was produced.

回転試験により、円板の強度を測定した結果、ホットプ
レス後の平均粒径0.8μmの円板の引張り強度は4−
 Okg / nW112であったが、レーザ照射して
、厚さ50μmの表面層の粒子の長軸方向の粒径を7μ
m、短軸方向の粒径を2μmとした結果、引張り強度は
80 kg/ nn2 に向上した。また、この強度は
室温でも1000℃でも変わりなかった。
As a result of measuring the strength of the disk by a rotation test, the tensile strength of the disk with an average particle size of 0.8 μm after hot pressing was 4-
The particle size in the long axis direction of the particles in the 50 μm thick surface layer was reduced to 7 μm by laser irradiation.
As a result of setting the grain size in the short axis direction to 2 μm, the tensile strength was improved to 80 kg/nn2. Further, this strength did not change at room temperature or at 1000°C.

実施例3 − 平均粒径約500人のZrO2粒子(8%の′Y2
O3含有)にバインダとしてポリビニールアル′/ コール2wt%を加え、4− OX 40 x 200
mn3 に成形し、空気中1600℃で2h焼結した。
Example 3 - Average particle size of approximately 500 ZrO2 particles (8% 'Y2
2 wt% of polyvinyl alcohol/coal was added as a binder to 4-OX 40 x 200
It was molded to a size of mn3 and sintered in air at 1600°C for 2 hours.

得られた焼結体の形状は35X’35X170圃3、粒
径は約10μmであった。
The shape of the obtained sintered body was 35X'35X170 field 3, and the particle size was about 10 μm.

次に、この焼結体を実施例2と同様な方法でレーザ照射
し、照射部を1800℃に加熱することにより、第2図
に示すように、表面層の粒子が長手方向伸びた構造の焼
結体を作製した。
Next, this sintered body is irradiated with a laser in the same manner as in Example 2, and the irradiated part is heated to 1800°C. As shown in FIG. A sintered body was produced.

得られた焼結体の5000Cにおける強度と、表面層の
厚さ9表面層粒子の長軸の長さ、アスペクト比の関係を
第7〜8図に示す。
The relationship between the strength of the obtained sintered body at 5000C, the thickness of the surface layer, the length of the long axis of the surface layer particles, and the aspect ratio is shown in FIGS.

〔発明の効果〕〔Effect of the invention〕

以上説明してきたように、本発明のセラミックス構造物
は従来の構造物にくらべて高強度であり、その結果信頼
性が高いという利点を有する。
As explained above, the ceramic structure of the present invention has the advantage of being higher in strength than conventional structures, and as a result, is highly reliable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例のセラミックス構
造物の組織構造を示す模式図、第3図は本発明の実施例
で得られたセラミックス構造物の構造図、第4図は本発
明の実施例で用いた実験装置の構造を示す模式図、第5
図〜第8図は本発明の実施例で得られた試料の特性を示
す特性曲線図である。 1・・表面層、2・・・内部、10・・・耐圧容器、2
0・・・ガス入口、30・・・回転軸、40・・試料、
50・・・Zn5e窓、60・・・レーザ光。
1 and 2 are schematic diagrams showing the structure of a ceramic structure according to an embodiment of the present invention, FIG. 3 is a structural diagram of a ceramic structure obtained in an embodiment of the present invention, and FIG. Schematic diagram showing the structure of the experimental apparatus used in the examples of the present invention, No. 5
8 are characteristic curve diagrams showing the characteristics of samples obtained in Examples of the present invention. 1...Surface layer, 2...Inside, 10...Pressure container, 2
0... Gas inlet, 30... Rotating shaft, 40... Sample,
50...Zn5e window, 60...Laser light.

Claims (1)

【特許請求の範囲】[Claims] 1、使用時に外部応力を受ける構造物表面の表面層を構
成するセラミックス粒子の粒径が構造物内部を構成する
セラミックス粒子の粒径よりも大きいことを特徴とする
セラミックス構造物。
1. A ceramic structure characterized in that the particle size of the ceramic particles constituting the surface layer on the surface of the structure which is subjected to external stress during use is larger than the particle size of the ceramic particles constituting the inside of the structure.
JP60026279A 1985-02-15 1985-02-15 Ceramic structure Pending JPS61186257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60026279A JPS61186257A (en) 1985-02-15 1985-02-15 Ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60026279A JPS61186257A (en) 1985-02-15 1985-02-15 Ceramic structure

Publications (1)

Publication Number Publication Date
JPS61186257A true JPS61186257A (en) 1986-08-19

Family

ID=12188842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60026279A Pending JPS61186257A (en) 1985-02-15 1985-02-15 Ceramic structure

Country Status (1)

Country Link
JP (1) JPS61186257A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274649A (en) * 1987-04-23 1988-11-11 チオキシド・スペシヤルテイーズ・リミテツド Formed product of ceramic material and manufacture
US4920640A (en) * 1988-01-27 1990-05-01 W. R. Grace & Co.-Conn. Hot pressing dense ceramic sheets for electronic substrates and for multilayer electronic substrates
EP2100865A1 (en) 2008-03-10 2009-09-16 Hitachi Metals, Ltd. Silicon nitride substrate, method of manufacturing the same, and silicon nitride circuit board and semiconductor module using the same
JP5849176B1 (en) * 2014-02-12 2016-01-27 日本碍子株式会社 Handle substrate for composite substrate for semiconductor and composite substrate for semiconductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274649A (en) * 1987-04-23 1988-11-11 チオキシド・スペシヤルテイーズ・リミテツド Formed product of ceramic material and manufacture
US4920640A (en) * 1988-01-27 1990-05-01 W. R. Grace & Co.-Conn. Hot pressing dense ceramic sheets for electronic substrates and for multilayer electronic substrates
EP2100865A1 (en) 2008-03-10 2009-09-16 Hitachi Metals, Ltd. Silicon nitride substrate, method of manufacturing the same, and silicon nitride circuit board and semiconductor module using the same
US7948075B2 (en) 2008-03-10 2011-05-24 Hitachi Metals, Ltd. Silicon nitride substrate, method of manufacturing the same, and silicon nitride circuit board and semiconductor module using the same
JP5849176B1 (en) * 2014-02-12 2016-01-27 日本碍子株式会社 Handle substrate for composite substrate for semiconductor and composite substrate for semiconductor

Similar Documents

Publication Publication Date Title
JP3624225B2 (en) Silicon nitride or sialon ceramics and molding method thereof
JPS59116175A (en) Ceramic sintered member
US4919868A (en) Production and sintering of reaction bonded silicon nitride composites containing silicon carbide whiskers or silicon nitride powders
JPS61186257A (en) Ceramic structure
JPS63260857A (en) Method of rendering age resistance to zirconia-yttria product
JPH06116054A (en) Ceramic porous body and its production
JPH0987009A (en) Alumina-mullite combined sintered compact and its production
JPH0424971A (en) Manufacture of porous piezoelectric ceramic
JP2696596B2 (en) Sialon sintered body and manufacturing method thereof
JPH1087370A (en) Silicon nitride-base composite ceramics and production thereof
JPS6363518B2 (en)
JPH0742172B2 (en) Method for manufacturing piezoelectric ceramics
JPH09227140A (en) Mold for molding optical element
JP3211908B2 (en) Silicon nitride sintered body and method for producing the same
JPH0610115B2 (en) Manufacturing method of composite ceramics
JPH037633B2 (en)
JPH05178668A (en) Silicon nitride-titanium nitride composite sintered body and its production
JP3044287B2 (en) Silicon nitride composite sintered body and method for producing the same
JP3653533B2 (en) Silicon nitride composite material and method for producing the same
JP2670222B2 (en) Silicon nitride sintered body and method for producing the same
JPH05194060A (en) Silicon nitride ceramic part
JPH01152707A (en) Manufacture of ferrite
JPH0828204A (en) Ceramic turbine blade and manufacture thereof
JPH07126075A (en) Ceramic having high toughness and low thermal conductivity and production thereof
JPH0274560A (en) Mullite-zirconia compound ceramics having high strength and toughness and production thereof