JPS6118599A - Stiffness holder for space missile expanding structure - Google Patents

Stiffness holder for space missile expanding structure

Info

Publication number
JPS6118599A
JPS6118599A JP59139317A JP13931784A JPS6118599A JP S6118599 A JPS6118599 A JP S6118599A JP 59139317 A JP59139317 A JP 59139317A JP 13931784 A JP13931784 A JP 13931784A JP S6118599 A JPS6118599 A JP S6118599A
Authority
JP
Japan
Prior art keywords
cable
stiffness
holder
deployable structure
tension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59139317A
Other languages
Japanese (ja)
Inventor
有三 芝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP59139317A priority Critical patent/JPS6118599A/en
Publication of JPS6118599A publication Critical patent/JPS6118599A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Aerials (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、人工衛星等の宇宙飛行体に搭載される太陽電
池パドルあるいはアンテナ等の展開構造物の展開後の展
張状態における剛性を増大させるのに有用な剛性保持装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a rigidity retaining device useful for increasing the rigidity of a deployable structure such as a solar array paddle or an antenna mounted on a spacecraft such as an artificial satellite in an expanded state after deployment. Regarding.

人工衛星等宇宙飛行体に搭載される展開構造物は、宇宙
飛行体の大型化と共に、展開構造物も大型化しつつある
。こうした展開構造物に対して設計上強く要求されるの
が軽量化及び衛星本体への収納時のコンパクト化である
。展開構造物の軽量化及び収納時のコンパクト化を満足
させるために、展開物がハニカム板等で構成された構造
物からフィルム状の薄膜を用いたものも使われるように
なってきた。以下、この薄膜展開構造物をブランケット
と称することとする。第1図はこのブランケットの展開
途中の状態を示したものであるが、この図に示すように
、従来このブランケット3の展開は、伸展ブーム2によ
り行われ、展開後は、伸展ブーム2の伸展力によりブラ
ンケット3に張力を与えた状態となっている。1は宇宙
飛行体、4はパレット、5は先端のプレートである。
BACKGROUND ART Deployable structures mounted on spacecraft such as artificial satellites are becoming larger as spacecraft become larger. In terms of design, such deployment structures are strongly required to be lightweight and compact when stored in the satellite body. In order to satisfy the requirements for reducing the weight of the deployable structure and making it more compact during storage, structures in which the deployable product is made of honeycomb plates and the like have been replaced by structures using film-like thin films. Hereinafter, this thin film developed structure will be referred to as a blanket. FIG. 1 shows a state in which this blanket is in the middle of being deployed.As shown in this figure, conventionally, this blanket 3 is deployed by an extension boom 2, and after deployment, the extension of the extension boom 2 is performed. The force exerts tension on the blanket 3. 1 is a spacecraft, 4 is a pallet, and 5 is a plate at the tip.

第1図に示したような展開構造の展張時の1次振動モー
ドは、一般的には第2図の破線に示すような伸展ブーム
2を中心にした捩シ振・動モードとな9、また、1次振
動数は概略0. I H2前後である。
Generally, the primary vibration mode when the deployable structure shown in FIG. Also, the primary frequency is approximately 0. It is around IH2.

このようfxO,IH2前後の固有振動数の展開構造物
をもつ宇宙飛行体の姿勢制御系は、展開構造物の固有振
動数と制御系の閉ループ周波数特性の帯域幅が近いため
に姿勢制御が不安定となシ姿勢制御精度を高くすること
が困難であった。また姿勢制御精度を高くするたゆには
、更に複雑な制御回路を組み込まなければならないと云
う欠点があった。
As described above, the attitude control system of a spacecraft that has a deployed structure with a natural frequency around fxO, IH2 has difficulty in attitude control because the natural frequency of the deployed structure and the bandwidth of the closed loop frequency characteristic of the control system are close. It has been difficult to achieve stable posture control with high accuracy. In addition, in order to improve the accuracy of attitude control, a more complicated control circuit must be incorporated.

本発明は、これらの欠点を除去するために、展張状態に
おける展開構造物の周辺に張力を加えたケーブルを引き
回すことによシ、展開構造物全体の捩シ剛性を増加させ
て展張状態での1次固有振動数を上げるとともに、前記
展開構造物が温度変化によシ伸縮することによるケーブ
ル張力の変化に対して、ケーブルの途中に圧縮ばねを入
れることにより、ケーブルの張力を一定に保ち、固有振
動数の変化を小さくした宇宙飛行体展開構造物の剛性保
持装置を提供するものである。
In order to eliminate these drawbacks, the present invention increases the torsional rigidity of the entire deployable structure by routing a tensioned cable around the deployable structure in the deployed state. In addition to increasing the primary natural frequency, the tension of the cable is kept constant by inserting a compression spring in the middle of the cable against changes in cable tension due to expansion and contraction of the deployable structure due to temperature changes, The present invention provides a rigidity maintaining device for a spacecraft deployable structure that reduces changes in natural frequency.

以下、本発明を、図面を参照しながら、実施例について
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明を適用した宇宙飛行体展開構造物の一展
開途中の状態における斜視図であり、第4図は第3図の
実施例における展開完了後の展開構造物の正面図である
。なお、第3図では、展開構造物であるブランケット3
が伸展プーム2により展開される状態であり、第1図に
対応している。
FIG. 3 is a perspective view of a spacecraft deployable structure to which the present invention is applied, in a state in the middle of deployment, and FIG. 4 is a front view of the deployable structure after completion of deployment in the embodiment of FIG. . In addition, in FIG. 3, the blanket 3 which is a deployed structure is shown.
is in a state where it is expanded by the extension pool 2, which corresponds to FIG.

伸展ブーム2は飛行体本体1の側部から伸張する。The extendable boom 2 extends from the side of the aircraft body 1.

パレット4に取り付けられているプーリ8にその一端が
固定されているケーブル6は、その他端がブランケット
3の折シ目3aの端部に1つおきに固定されたガイド7
の穴(第5図に詳細て示す)を通シ、先端のプレート5
に取り付けられたプーリ9を通って、プレート5に固定
されたテンションアジャスタ10(第6図に詳細て示す
)の両端に固定されている。ケーブル6は、収納状態に
おいては、グーIJIK巻き付けられ、伸展プーム2の
伸展と共にブランケット3及びケーブル6が伸び、第4
図の展張状態となる。このようにケーブル6を這い回す
ことによシ第2図に示した振動モードに対して捩シ剛性
が増加するため展張時の固有振動数を上げることが可能
となる。
One end of the cable 6 is fixed to a pulley 8 attached to the pallet 4, and the other end is connected to a guide 7 fixed to every other end of the fold line 3a of the blanket 3.
through the hole (shown in detail in Figure 5) and the plate 5 at the tip.
The tension adjuster 10 (shown in detail in FIG. 6) is fixed to both ends of the tension adjuster 10 fixed to the plate 5 through a pulley 9 attached to the plate 5. In the stored state, the cable 6 is wrapped tightly around the blanket 3 and the cable 6, and as the extension pool 2 extends, the blanket 3 and the cable 6 extend.
It becomes the expanded state shown in the figure. By extending the cable 6 in this way, the torsional rigidity increases with respect to the vibration mode shown in FIG. 2, so that it is possible to increase the natural frequency when it is stretched.

テンションアジャスタ10は、宇宙空間にオケる展開構
造物の日陰、日照等による温度変化の際に生じる熱変形
に対して、ケーブル6の張力ができる限シ一定となるよ
うにするためのものである。
The tension adjuster 10 is used to keep the tension of the cable 6 as constant as possible against thermal deformation that occurs when the temperature changes due to shade, sunlight, etc. of a deployable structure in space. .

このテンションアジャスタ10は、第6図に詳細に示す
ように、テンションアジャスタケース13と、該ケース
内に収容された圧縮ばね11と、該圧縮ばねの一端を保
持しかつケース13から突出するピストンロッド12と
から構成され、ケーブル6はこれらのケース13及びピ
ストンロッド12に固定されている。圧縮ばね11のば
ね力によシケーブル6に張力がかけられる。この圧縮ば
ね11を、第7図に示すようなばねの変位に対して圧縮
力の変化の少ないばね定数に設定することにより1ケ1
プル6の張力をほぼ一定に保つことが可能となる。従っ
てこのような構成によシ、展張状態での展開構造物の固
有振動数を高くすることが可能となり、さらに宇宙空間
での展開構造物の温度変化よる固有振動数の変化をほぼ
一定とすることが可能・となる。
As shown in detail in FIG. 6, the tension adjuster 10 includes a tension adjuster case 13, a compression spring 11 housed in the case, and a piston rod that holds one end of the compression spring and protrudes from the case 13. 12, and the cable 6 is fixed to these case 13 and piston rod 12. Tension is applied to the cable 6 by the spring force of the compression spring 11. By setting the compression spring 11 to a spring constant such that the compression force changes little with respect to the displacement of the spring as shown in FIG.
It becomes possible to keep the tension of the pull 6 almost constant. Therefore, with such a configuration, it is possible to increase the natural frequency of the deployable structure in the expanded state, and furthermore, it is possible to keep the change in the natural frequency due to temperature changes of the deployable structure in space almost constant. It becomes possible.

以上説明したように本発明は、展開構造物の1次固有振
動数を上げることができ、宇宙飛行体の姿勢制御系の閉
ループ周・波数特性の帯域幅から展開構造物の1次固有
振動数が遠ざかるため、安定な姿勢制御が可能となり、
高精度の姿勢制御を得えることができる利点がある。
As explained above, the present invention can increase the first natural frequency of the deployable structure, and the first natural frequency of the deployable structure can be increased from the bandwidth of the closed-loop frequency/wavenumber characteristics of the attitude control system of the spacecraft. moves away, making stable posture control possible.
This has the advantage of providing highly accurate attitude control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の宇宙飛行体展開構造物の展開途中の状態
における斜視図、第2図は従来の展開構造物の振動モー
ドを示した図、第3図は本発明の実施例に係る展開構造
物の展開途中の状態における斜視図、第4図は本発明の
展開構造物の展開完了状態の正面図、第5図は本発明の
実施例のケーブルガイドの拡大斜視図、第6図はテンシ
ョンアジャスタの拡大縦断面図、第7図はテンションア
ジャスタのばね特性を示す図である。 1・・・宇宙飛行体本体、 2・・・伸展ブーム、3・
・・ブランケット、   4・・・パレット、5・・・
プレート、     6・・・ケーブル、7・・・ガイ
ド、      8,9・・・プーリ、10・・・テン
ションアジャスタ、 11・・・圧縮ばね、    12・・・ピストンロッ
ド、13・・・テンションアジャスタケース。
FIG. 1 is a perspective view of a conventional spacecraft deployable structure in the middle of deployment, FIG. 2 is a diagram showing vibration modes of the conventional deployable structure, and FIG. 3 is a deployment according to an embodiment of the present invention. FIG. 4 is a front view of the deployed structure of the present invention in a fully deployed state; FIG. 5 is an enlarged perspective view of the cable guide of the embodiment of the present invention; FIG. 6 is a perspective view of the structure in the middle of deployment; FIG. 7 is an enlarged longitudinal sectional view of the tension adjuster, and is a diagram showing the spring characteristics of the tension adjuster. 1...Spacecraft body, 2...Extension boom, 3.
...Blanket, 4...Pallet, 5...
Plate, 6... Cable, 7... Guide, 8, 9... Pulley, 10... Tension adjuster, 11... Compression spring, 12... Piston rod, 13... Tension adjuster case .

Claims (1)

【特許請求の範囲】[Claims] 宇宙飛行体展開構造物の展張状態における展開構造物周
縁に、ばね手段を介して張力を加えたケーブルを這りめ
ぐらせたことを特徴とする展開構造物の剛性保持装置。
1. A device for maintaining the rigidity of a deployable spacecraft structure, characterized in that a cable to which tension is applied via a spring means is routed around the periphery of the deployable spacecraft structure in the deployed state.
JP59139317A 1984-07-05 1984-07-05 Stiffness holder for space missile expanding structure Pending JPS6118599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59139317A JPS6118599A (en) 1984-07-05 1984-07-05 Stiffness holder for space missile expanding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59139317A JPS6118599A (en) 1984-07-05 1984-07-05 Stiffness holder for space missile expanding structure

Publications (1)

Publication Number Publication Date
JPS6118599A true JPS6118599A (en) 1986-01-27

Family

ID=15242488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59139317A Pending JPS6118599A (en) 1984-07-05 1984-07-05 Stiffness holder for space missile expanding structure

Country Status (1)

Country Link
JP (1) JPS6118599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242799A (en) * 1987-03-30 1988-10-07 日本電気株式会社 Expansion storage mechanism of membrane structure
JPH035300A (en) * 1989-05-31 1991-01-11 Nec Corp Developing device for development structure of space travelling craft
JP2012249301A (en) * 2006-02-28 2012-12-13 Boeing Co:The Desirably formed expandable mesh reflector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242799A (en) * 1987-03-30 1988-10-07 日本電気株式会社 Expansion storage mechanism of membrane structure
JPH035300A (en) * 1989-05-31 1991-01-11 Nec Corp Developing device for development structure of space travelling craft
JP2012249301A (en) * 2006-02-28 2012-12-13 Boeing Co:The Desirably formed expandable mesh reflector

Similar Documents

Publication Publication Date Title
US20140326833A1 (en) Directionally Controlled Elastically Deployable Roll-Out Array
JP3286237B2 (en) Deployable precision boom assembly
US9611056B1 (en) Directionally controlled elastically deployable roll-out solar array
WO2005027186A2 (en) Expansion-type reflection mirror
JPH0760971B2 (en) A simplified spacecraft antenna reflector for folding into a container of limited volume.
JPS6118599A (en) Stiffness holder for space missile expanding structure
US11962272B2 (en) Z-fold solar array with curved substrate panels
US20230050780A1 (en) Z-fold flexible blanket solar array
JPH08156899A (en) Sun shield
US11912440B2 (en) Partially flexible solar array structure
JP2012232738A (en) Device for protection of multibeam optical instrument
JPH0145762B2 (en)
JP2642591B2 (en) Deployable antenna reflector
US11434025B2 (en) Deployable space vehicle
JP2611235B2 (en) Membrane surface structure
JP2728081B2 (en) Space structure extension structure
US20230049753A1 (en) Retractable z-fold flexible blanket solar array
JPS62255299A (en) Tension device for space missile
JP2727892B2 (en) Bending deployment mechanism
JPH0581480B2 (en)
JPS6388903A (en) Three-dimensional truss universal structure
JP2508066B2 (en) Mechanism for deploying and storing membrane structures
Johnston et al. An evaluation of thermally-induced structural disturbances of spacecraft solar arrays
JPS6249706A (en) Expansion type antenna reflector
JP3889384B2 (en) Deployment antenna