JPS61185064A - Drive circuit of static induction type self-extinguishing element - Google Patents

Drive circuit of static induction type self-extinguishing element

Info

Publication number
JPS61185064A
JPS61185064A JP60023334A JP2333485A JPS61185064A JP S61185064 A JPS61185064 A JP S61185064A JP 60023334 A JP60023334 A JP 60023334A JP 2333485 A JP2333485 A JP 2333485A JP S61185064 A JPS61185064 A JP S61185064A
Authority
JP
Japan
Prior art keywords
voltage
induction type
type self
extinguishing element
electrostatic induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60023334A
Other languages
Japanese (ja)
Other versions
JPH0564545B2 (en
Inventor
Chihiro Okatsuchi
千尋 岡土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60023334A priority Critical patent/JPS61185064A/en
Priority to EP86300766A priority patent/EP0190925B1/en
Priority to KR1019860000782A priority patent/KR900008276B1/en
Priority to DE3689445T priority patent/DE3689445T2/en
Priority to CN86101151.1A priority patent/CN1006266B/en
Priority to US06/826,771 priority patent/US4721869A/en
Priority to AU53260/86A priority patent/AU568446B2/en
Publication of JPS61185064A publication Critical patent/JPS61185064A/en
Priority to AU13712/88A priority patent/AU593729B2/en
Publication of JPH0564545B2 publication Critical patent/JPH0564545B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage

Abstract

PURPOSE:To prevent a static induction type self-extinguishing element from deteriorating by providing a voltage regulator for regulating a gate voltage in response to the collector voltage of the element. CONSTITUTION:A voltage of a gate power source 4 is applied to the gate of a static induction self-extinguishing element 3 through transistors 6, 7 complimentarily connected with a base common connecting point through a resistor 10 with a drive signal Vs. The collector of an NPN transistor 14 is connected with the base common connecting point of the transistors 6, 7, the emitter of the transistor 14 is connected through a resistor 13 with the negative electrode of the power source 4, and the base is connected through a resistor 11 with the collector of the element 3. The gate voltage of the element 3 is regulated in response to the collector voltage.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は静電誘導形自己消弧素子を安全に駆動する駆動
回路に関するもので、特に電源装置において使用される
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a drive circuit that safely drives an electrostatic induction type self-extinguishing element, and is particularly used in a power supply device.

〔発明の技術的背景〕[Technical background of the invention]

直流−交流または直流−交流の電力交換装置として静電
誘導形自己消弧素子を用いたものが知られている。この
静電誘導形自己消弧素子としてはGE社のI G T 
(In5ula−ted Gate Transist
or )が知られており、例えば“^pplicati
on of  In5ufated Gate Tra
nsis−tors”  (Fa員0ryElfliC
trOnics 1983 )に詳しく紹介されている
。該文献に記載された典型的なGE社の品番094FQ
1(18A、400V)およびFRI(18A。
2. Description of the Related Art Devices using electrostatic induction type self-extinguishing elements are known as DC-AC or DC-AC power exchange devices. This electrostatic induction type self-extinguishing element is GE's IGT.
(In5ula-ted Gate Transist
or ) is known, for example “^pplicati
on of In5ufated Gate Tra
nsis-tors” (Fa member 0ryElfliC
trOnics 1983). Typical GE product number 094FQ described in the document
1 (18A, 400V) and FRI (18A, 400V).

500V)についてゲート電圧■GE’コレクタ電圧V
CE1コレクタ電流ICの相関関係を示す第8図によれ
ばゲート電圧VGEが低い範囲ではトランジスタに近い
定電流特性を示す一方で、ゲート電圧■GEが高くなる
とサイリスタに近い低い電圧降下を示す、トランジスタ
とサイリスタの中間的特性を有していることがわかる。
500V) Gate voltage GE' Collector voltage V
According to Figure 8, which shows the correlation of the CE1 collector current IC, in the range where the gate voltage VGE is low, the transistor exhibits constant current characteristics similar to that of a transistor, but as the gate voltage VGE increases, it exhibits a low voltage drop similar to that of a thyristor. It can be seen that it has characteristics intermediate to that of a thyristor.

また、第9図は第8図に示した静電誘導形自己消弧素子
素子の安全動作領域(SOA)を示すもので、例えばゲ
ート、エミッタ間抵抗R6Eが5にΩの場合には2OA
以下のコレクタ電流に制限すれば常に安全に運転できる
ことを示している。
Moreover, FIG. 9 shows the safe operating area (SOA) of the electrostatic induction type self-extinguishing element shown in FIG. 8. For example, if the gate-emitter resistance R6E is 5Ω,
This shows that safe operation is always possible if the collector current is limited to the following.

しかし、定格最大電流以上の電流をターンオフしようと
すると、いわゆるラッチアップが生じ、ゲート電圧VG
Eを0にしてもコレクタ電流ICを0にできなくなる上
、素子内の電流密度が高まって素子の劣化が生じる。し
たがって、静電誘導形自己消弧素子の駆動にあたっては
安全動作領域を越えた使用を避けることが必要である。
However, if you try to turn off a current higher than the rated maximum current, so-called latch-up will occur, and the gate voltage VG
Even if E is set to 0, the collector current IC cannot be set to 0, and the current density within the device increases, causing deterioration of the device. Therefore, when driving the electrostatic induction type self-extinguishing element, it is necessary to avoid using it beyond the safe operating range.

第10図に従来使用されている静電誘導形自己消弧素子
のゲート駆動回路を示す。これによれば、直流電源1の
正極に負荷2を介して静電誘導形自己消弧素子3のコレ
クタが、負極にエミッタがそれぞれ接続されるとともに
、直流電源1と負極を共通接続したゲート用電源4の正
極は抵抗5を介してNPNトランジスタ6のコレクタに
接続されている。増幅用のNPNトランジスタ6とPN
Pトランジスタ7とはコンプリメンタリ接続されており
、そのベース共通接続点には駆動信号VSが入力され、
トランジス6および7のエミッタ共通接続点には並列接
続された抵抗8およびダイオード9を介して静電誘導形
自己消弧素子3のゲートが接続されτいる。
FIG. 10 shows a gate drive circuit for a conventional electrostatic induction type self-extinguishing element. According to this, the collector of the electrostatic induction type self-extinguishing element 3 is connected to the positive electrode of the DC power supply 1 via the load 2, the emitter is connected to the negative electrode, and the DC power supply 1 and the negative electrode are connected in common to each other. The positive terminal of the power supply 4 is connected to the collector of an NPN transistor 6 via a resistor 5. NPN transistor 6 and PN for amplification
It is complementary connected to the P transistor 7, and the drive signal VS is input to the base common connection point.
A gate of an electrostatic induction type self-extinguishing element 3 is connected to a common connection point of the emitters of the transistors 6 and 7 via a resistor 8 and a diode 9 connected in parallel.

この回路においては、駆動信号VSがオンとなったとき
は、電源4の電圧がトランジスタ6およびダイオード9
を介して静電誘導形自己消弧素子3のゲートに迅速に印
加され、駆動信号Vsがオフとなったときはゲートは抵
抗8とトランジスタ7を通じて静電誘導形自己消弧素子
3のエミッタと短絡され、ゲート電位は低下する。この
ときの抵抗8は第9図におけるR6.に相当するもので
あり、この抵抗値の大きさによって最大コレクタ電流が
制限を受ける場合もある。
In this circuit, when the drive signal VS is turned on, the voltage of the power supply 4 is applied to the transistor 6 and the diode 9.
When the drive signal Vs is turned off, the gate is applied to the emitter of the electrostatic induction self-turning element 3 through the resistor 8 and the transistor 7. It is short-circuited and the gate potential drops. At this time, the resistor 8 is R6 in FIG. The maximum collector current may be limited depending on the magnitude of this resistance value.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、このような駆動回路では静電誘導形自己
消弧素子のゲート電圧は固定電位のゲート用N源4によ
り定まるため変化が少なく、静電誘導形自己消弧素子の
特徴を有効に発揮できないという問題がある。
However, in such a drive circuit, the gate voltage of the electrostatic induction type self-extinguishing element is determined by the gate N source 4 with a fixed potential, so there is little variation, and the characteristics of the electrostatic induction type self-extinguishing element cannot be effectively exhibited. There is a problem.

すなわち、第10図の回路において■。E= 20Vと
すれば電圧降下は低くなるが、負荷側で事故が発生した
ときにはコレクタ電流は100A以上となって第9図に
示す安全動作領域を外れるため素子は劣化する。また、
素子の劣化が発生しないように最大コレクタ電流を常に
20A以下とするためには第8図から■GEを8■に制
限する必要があるが、静電誘導形自己消弧素子がオンと
なったときのコレクタ電流を10Aとすればゲート、コ
レクタ間の電圧降下はVQE−20Vのときに比べ30
%程度大きく、コレクタ電圧15Aでは約5倍の大きさ
となって損失が著しく増大するという問題がある。
That is, in the circuit of FIG. 10, ■. If E=20V, the voltage drop will be low, but if an accident occurs on the load side, the collector current will exceed 100A, which is outside the safe operating area shown in FIG. 9, and the element will deteriorate. Also,
In order to always keep the maximum collector current below 20A to prevent element deterioration, it is necessary to limit ■GE to 8■ from Figure 8, but when the electrostatic induction type self-extinguishing element is turned on. If the collector current at that time is 10A, the voltage drop between the gate and collector is 30% compared to when VQE is -20V.
%, and at a collector voltage of 15 A, it becomes about five times as large, resulting in a significant increase in loss.

〔発明の目的〕[Purpose of the invention]

本発明はこのような問題を解決するためなされたもので
、最大コレクタ電流を安全動作領域内に保ち、また損失
を減少させることのできる静電誘導形自己消弧素子の駆
動回路を提供することを目的とする。
The present invention was made to solve these problems, and it is an object of the present invention to provide a drive circuit for an electrostatic induction type self-extinguishing element that can maintain the maximum collector current within a safe operating area and reduce loss. With the goal.

〔発明の概要〕[Summary of the invention]

上記目的を達成のため、本発明においては、静電誘導形
自己消弧素子のコレクタ電圧を検出し、この検出された
電圧に応じて静電誘導形自己消弧素子のゲート電圧を低
下させる電圧調整回路を備えており、素子の劣化を防止
することができる。
In order to achieve the above object, the present invention detects the collector voltage of the electrostatic induction type self-extinguishing element, and provides a voltage that lowers the gate voltage of the electrostatic induction type self-extinguishing element according to the detected voltage. Equipped with an adjustment circuit, it is possible to prevent element deterioration.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照しながら本発明の実施例のいくつかを詳
細に説明する。なお、従来と同一の構成要素は同一番号
を付しその詳細な説明を省略するものとする。
Some embodiments of the present invention will be described in detail below with reference to the drawings. Note that the same components as in the prior art will be given the same numbers and detailed explanations thereof will be omitted.

第1図は本発明にかかる静電誘導形自己消弧素子の駆動
回路の一実施例を示す回路図であって、第10図の場合
と同様に、ゲート用m源4の電圧は、駆動信号VSが抵
抗10を介してベース共通接続点に印加されるコンプリ
メンタリ接続されたトランジスタ6および7を介して静
′R誘導形自己消弧素子3のゲートに印加されているが
、トランジスタ6および7のベース共通接続点にはNP
N型トランジスタ14のコレクタが接続され、このトラ
ンジスタ14のエミッタは抵抗13を介してゲート用電
源の負極に、またベースは静電誘導形自己消弧素子素子
3のコレクタに抵抗11を介して接続されている。さら
にこのベースとゲート用電源4の負極との間にゼナーダ
イオード15および抵抗12が並列接続されている。
FIG. 1 is a circuit diagram showing an embodiment of a drive circuit for an electrostatic induction type self-extinguishing element according to the present invention, and as in the case of FIG. 10, the voltage of the gate m source 4 is The signal VS is applied to the gate of the static R-inductive self-extinguishing element 3 through complementary connected transistors 6 and 7, which are applied to the base common connection point through a resistor 10, but the transistors 6 and 7 NP is at the base common connection point of
The collector of an N-type transistor 14 is connected, the emitter of this transistor 14 is connected to the negative electrode of the gate power supply via a resistor 13, and the base is connected to the collector of the electrostatic induction type self-extinguishing element 3 via a resistor 11. has been done. Furthermore, a Zener diode 15 and a resistor 12 are connected in parallel between this base and the negative electrode of the gate power source 4.

次にこの回路の動作を第2図および第3図を参照して説
明する。
Next, the operation of this circuit will be explained with reference to FIGS. 2 and 3.

抵抗11および12は静電誘導形自己消弧素子のコレク
タ電圧■。E@:抵抗分割しており、抵抗12の両端に
はコレクタ電圧■。Eに比例した電圧が現れる。一方、
トランジスタ14と抵抗13はエミッタフォロアを構成
しており、トランジスタ14のコレクタ電流は抵抗12
の電圧降下にほぼ比例することになる。
Resistors 11 and 12 are collector voltages of electrostatic induction type self-extinguishing elements. E@: Resistor divided, collector voltage ■ across both ends of resistor 12. A voltage proportional to E appears. on the other hand,
The transistor 14 and the resistor 13 constitute an emitter follower, and the collector current of the transistor 14 is connected to the resistor 12.
It is approximately proportional to the voltage drop.

トランジスタ14がオフ状態であるときは、駆動信号■
Sはそのままトランジスタ6および7によって電力増幅
され、静電誘導形自己消弧素子3のゲートに電圧V。E
として印加される。トランジスタ14がオフ状態である
ためにはトランジスタ14のエミッタ、ベース間の電圧
降下が抵抗12の電圧降下よりも大きいことが必要であ
るから、静M誘導形自己消弧素子3のコレクタ、エミッ
タ間電圧■。Eはトランジスタ14のエミッタ、ベース
間電圧降下を上回る抵抗12の電圧降下を発生させる電
圧■1以下である。VGEがこの電圧■1を上回るとト
ランジスタ14はコレクタ電流を流し始めその電流値は
前述したように抵抗R12の電圧降下にほぼ比例する。
When the transistor 14 is in the off state, the drive signal ■
The power of S is directly amplified by transistors 6 and 7, and voltage V is applied to the gate of electrostatic induction type self-extinguishing element 3. E
is applied as . In order for the transistor 14 to be in the off state, it is necessary that the voltage drop between the emitter and the base of the transistor 14 be larger than the voltage drop across the resistor 12. Voltage ■. E is less than or equal to the voltage 1 which causes a voltage drop across the resistor 12 to exceed the voltage drop between the emitter and base of the transistor 14. When VGE exceeds this voltage (1), the transistor 14 begins to flow a collector current, and the current value is approximately proportional to the voltage drop across the resistor R12, as described above.

したがって、このコレクタ電流は抵抗10において電圧
降下を生じ、駆動信号VSの値は降下し静電誘導形自己
消弧素子3のゲート電圧VGEはそれに応じて降下する
。この降下はコレクタ電圧VcEがエミッタフォロワの
コレクタ電流を流さなくなる電圧■1に低下するまで続
くことになる。なお、静電誘導形自己消弧素子3のコレ
クタ電圧■。Eの上昇が続いた場合、抵抗12の両端電
圧が所定電圧■2を超えるとゼナーダイオード15が作
用してそれ以上の電圧上昇を押えるため駆動信号■Sは
一定値以下にはならず、このためVGEは所定の下限値
に維持される。
Therefore, this collector current causes a voltage drop in the resistor 10, the value of the drive signal VS drops, and the gate voltage VGE of the electrostatic induction type self-extinguishing element 3 drops accordingly. This drop will continue until the collector voltage VcE drops to a voltage (1) at which the collector current of the emitter follower no longer flows. In addition, the collector voltage of the electrostatic induction type self-extinguishing element 3 is ■. If the voltage E continues to rise, and the voltage across the resistor 12 exceeds the predetermined voltage ■2, the Zener diode 15 acts to suppress any further voltage rise, so the drive signal S does not fall below a certain value. Therefore, VGE is maintained at a predetermined lower limit value.

第3図はこのようなゲート電圧V。Eの制御による作用
を説明するグラフであって、第3図(a)は第8図と同
様なコレクタ電圧■。[とコレクタ電流ICとの関係を
示すグラフにおいてラッチアップ現象を避けるためにI
c −20Aを示すI!ilAを引いたものであり、第
3図のグラフにおけるゲート電圧■ とコレクタ電圧V
cEをプロットしたのE が第3図(b)の曲IIBである。一方、第2図と同様
の直線近似を行なったものが線Cであり、ゲ−ト電圧V
。Eの最大値はエミッタフォロアとなるトランジスタ1
4の特性と抵抗分割を行う抵抗11および12の値を適
当に選択することにより適宜定めることができ、また、
ゲート電圧■。Eの最小値はゼナーダイオードの特性を
選択することにより適宜定めることができる。このよう
に静電誘導形自己消弧素子のゲート電圧VGEを所定範
囲内で制御することにより、静電誘導形自己消弧素子に
流れる電流は常に最大許容電流以下となる。
Figure 3 shows such a gate voltage V. FIG. 3(a) is a graph illustrating the effect of controlling E, and FIG. 3(a) shows the same collector voltage as in FIG. In order to avoid latch-up phenomenon in the graph showing the relationship between [ and collector current IC]
I indicating c-20A! ilA, and the gate voltage ■ and collector voltage V in the graph of Figure 3.
The E obtained by plotting cE is song IIB in Fig. 3(b). On the other hand, the line C is obtained by performing the same linear approximation as in FIG. 2, and the gate voltage V
. The maximum value of E is transistor 1, which becomes an emitter follower.
It can be determined as appropriate by appropriately selecting the characteristics of 4 and the values of resistors 11 and 12 that perform resistance division.
Gate voltage■. The minimum value of E can be appropriately determined by selecting the characteristics of the Zener diode. By controlling the gate voltage VGE of the electrostatic induction type self-extinguishing element within a predetermined range in this manner, the current flowing through the electrostatic induction type self-extinguishing element is always equal to or less than the maximum allowable current.

第4図ないし第7図は本発明の他の実施例のいくつかを
示す回路図である。
4 to 7 are circuit diagrams showing some other embodiments of the present invention.

第4図は第1図におけるゼナーダイオード15に直列抵
抗16を付加したもので、直列抵抗により電圧降下が生
ずるために静電誘導形自己消弧素子のコレクタ電圧■。
FIG. 4 shows a series resistor 16 added to the zener diode 15 in FIG. 1, and since a voltage drop occurs due to the series resistor, the collector voltage of the electrostatic induction self-extinguishing element is .

Eが増加したときのゲート電圧■。Eは第2図のグラフ
における破線のような特性となる。これにより、静電誘
導形自己消弧素子の定電流特性をより正確に近似するこ
とが可能となる。
Gate voltage ■ when E increases. E has a characteristic like the broken line in the graph of FIG. This makes it possible to more accurately approximate the constant current characteristics of the electrostatic induction type self-extinguishing element.

第5図は第1図の回路に対してエミッタフォロアとなる
トランジスタのコレタフタ側およびベース側にそれぞれ
ゼナーダイオード17および18を接続し、ベース、エ
ミッタ間のゼナーダイオードおよびエミッタ側の抵抗を
省略した他の実施例を示すものである。この回路におい
てはゼナーダイオード17.18により静電誘導形自己
消弧素子のゲート電圧■。、が変化するコレクタ電圧■
。Eの値■ およびV2を近似させることができ、ゲ−
ト電圧■。Eは2値的に変化する。この実施例における
特性は第3図(b)の曲NIBを厳密に近似するもので
はないが、実用上は十分である。
In Figure 5, Zener diodes 17 and 18 are connected respectively to the collector side and base side of the transistor that becomes the emitter follower for the circuit in Figure 1, and the Zener diode between the base and emitter and the resistor on the emitter side are omitted. This figure shows another example. In this circuit, the gate voltage of the electrostatic induction self-extinguishing element is set by the Zener diode 17.18. , the collector voltage that changes
. The value of E and V2 can be approximated, and the game
Voltage ■. E changes binary. Although the characteristics in this example do not closely approximate the song NIB in FIG. 3(b), they are sufficient for practical use.

第6図は第5図におけるゼナーダイオード17を抵抗1
9に変え、ゼナーダイオード18を削除した実施例を示
しており、基本的な特性は第5図の場合と同様である。
Figure 6 shows the zener diode 17 in Figure 5 as a resistor 1.
9 and omitting the zener diode 18, the basic characteristics are the same as in the case of FIG.

第7図は第1図の構成に駆動信号■Sを供給する制御回
路の詳細を示したものである。
FIG. 7 shows the details of a control circuit that supplies the drive signal S to the configuration shown in FIG.

これによれば、制御信号VQがアンド回路20の一方側
に入力され、その出力が駆動信号■Sとなって抵抗10
に印加される。一方、トランジスタ14に流れる電流は
フォトカプラ22の発光ダイオードにより検出され、受
信側のフォトトランジスタに光電流を生じるため抵抗2
4によって発生したロジックレベル信号がタイムディレ
ィ回路25のセット端子(S)に入力され、この出力は
ラッチ回路26で保持され、その出力はアンド回路20
の他方側入力端子に入力されている。この回路では制御
信号Vaが立上るとタイムディレィ回路25がリセット
されるが、フォトカプラ22により検出されたコレクタ
電流がタイムディレィ回路25により定められる所定時
間よりも長く流れ続けたこと、すなわち過電流により静
電誘導形自己消弧素子3のコレクタ電圧V。Eが低下し
ない事故状態が続いていることが検出されたときはラッ
チ回路26に事故状態が保持されるためアンド回路20
の出力■Sはオフ状態となり、静電誘導形自己消弧素子
3はオフされ、静電誘導形自己消弧素子3の保護が図ら
れる。
According to this, the control signal VQ is inputted to one side of the AND circuit 20, and its output becomes the drive signal ■S, and the resistor 10
is applied to On the other hand, the current flowing through the transistor 14 is detected by the light emitting diode of the photocoupler 22, and the resistor 2 is used to generate a photocurrent in the phototransistor on the receiving side.
4 is input to the set terminal (S) of the time delay circuit 25, this output is held by the latch circuit 26, and the output is input to the AND circuit 20.
is input to the other side input terminal. In this circuit, when the control signal Va rises, the time delay circuit 25 is reset, but if the collector current detected by the photocoupler 22 continues to flow for longer than a predetermined time determined by the time delay circuit 25, that is, an overcurrent occurs. Therefore, the collector voltage V of the electrostatic induction type self-extinguishing element 3. When it is detected that the accident state in which E does not decrease continues, the accident state is held in the latch circuit 26, so the AND circuit 20
The output ■S is turned off, and the electrostatic induction type self-extinguishing element 3 is turned off, thereby protecting the electrostatic induction type self-extinguishing element 3.

以上の実施例にお(プる静電誘導形自己消弧素子にはI
GTの他にFE丁がある。また実施例では静電誘導形自
己消弧素子は1個のみであるが実際には静電誘導形自己
消弧素子のコレクタ、エミッタ間にフリーホイールダイ
オードを逆極性接続したものを4個あるいは6個使用し
てブリッジを形成したものが多用される。
In the above embodiment, the electrostatic induction type self-extinguishing element has an I
In addition to GT, there is FE. In addition, in the embodiment, there is only one electrostatic induction type self-extinguishing element, but in reality, four or six electrostatic induction type self-extinguishing elements are connected with opposite polarity between the collector and emitter of the electrostatic induction type self-extinguishing element. Bridges are often used.

また、エミッタフォロワトランジスタより成る電圧調整
回路の電圧調整点は上記各実施例ではゲート電圧調整回
路の増幅トランジスタの入力側に接続されているが、出
力側に接続されていてもよい。ただし、この場合には駆
動回路全体として損失がやや増加する。
Furthermore, although the voltage adjustment point of the voltage adjustment circuit made of emitter follower transistors is connected to the input side of the amplification transistor of the gate voltage adjustment circuit in each of the above embodiments, it may be connected to the output side. However, in this case, the loss of the entire drive circuit increases slightly.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明にかかる静電誘導形自己消弧素子の
駆動回路によれば、検出された静電誘導形自己消弧素子
のコレクタ電圧に応じて静電誘導形自己消弧素子のゲー
ト電圧を降下させる電圧調整回路を備えているので、コ
レクタ電流を所定の最大許容値以下に維持することがで
き静電誘導形自己消弧素子の劣化を防止することができ
る。
As described above, according to the drive circuit for an electrostatic induction type self-extinguishing element according to the present invention, the gate of the electrostatic induction type self-extinguishing element is controlled according to the detected collector voltage of the electrostatic induction type self-extinguishing element. Since a voltage adjustment circuit that lowers the voltage is provided, the collector current can be maintained below a predetermined maximum allowable value, and deterioration of the electrostatic induction type self-extinguishing element can be prevented.

また、静電誘導形自己消弧素子のゲート電圧を所定値以
下に降下しないようにした実[様では損失の発生を減少
させることができる。
Further, in the case where the gate voltage of the electrostatic induction type self-extinguishing element is prevented from dropping below a predetermined value, the occurrence of loss can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる静電誘導形自己消弧素子の駆動
回路の構成を示す回路図、第2図は第1図の動作を示す
グラフ、第3図は本発明の効果を示すグラフ、第4図な
いし第7図は本発明の他の実施例を示す回路図、第8図
および第9図は静電誘導形自己消弧素子の特性を示すグ
ラフ、第10図は従来の静電誘導形自己消弧素子の駆動
回路を示す回路図である。 1・・・直流14ilG!、2・・・負荷、3・・・静
1!誘導形自己消弧素子、4・・・ゲート用電源、5,
8,10゜11.12,13.19.24・・・抵抗、
6,7゜14・・・トランジスタ、9・・・ダイオード
、15゜17.18・・・ゼナーダイオード、20・・
・アンド回路、22・・・フォトカプラ、25・・・タ
イムディレィ回路、26・・・ラッチ回路。 処1図 第2図 コレグダ電圧(VCE ) 第3図 (a) コしゲタ電圧(VCE) (b) コしゲタ 電圧(voE) 第4図 熱5図 も6図 第8図 第9図 ピークコレクタ電圧(VcE) 第7図 第10図 手続補正書 昭和61年3 月14日 1 事件の表示 昭和60年 特許願 第23334号 2 発明の名称 静電誘導型自己消弧素子の駆動回路 3 補正をづる者 事イ′1どの関係  特許出願人 (307)  株式会社 東 芝 4  代  埋  人 東京都千代田区丸の内三丁目2番3号 電話東京(211)2321大代表 8 補正の内容 (1)  明細1第3頁第15行「l n5ula −
ted Jを[I n5ulatedJと訂正する。 (2)  同、第3頁第17行「TranSiS−to
rsJを[TransistorsJと訂正する。 (3)  同、第13頁第18行と第19行との間に次
の文を挿入する。 「なお、第7図においてはフォトカプラ22a。
FIG. 1 is a circuit diagram showing the configuration of a drive circuit for an electrostatic induction type self-extinguishing element according to the present invention, FIG. 2 is a graph showing the operation of FIG. 1, and FIG. 3 is a graph showing the effects of the present invention. , FIGS. 4 to 7 are circuit diagrams showing other embodiments of the present invention, FIGS. 8 and 9 are graphs showing the characteristics of static induction type self-extinguishing elements, and FIG. 10 is a circuit diagram showing other embodiments of the present invention. FIG. 2 is a circuit diagram showing a drive circuit for an electric induction type self-extinguishing element. 1...DC 14ilG! , 2...Load, 3...Static 1! Inductive self-extinguishing element, 4...gate power supply, 5,
8,10°11.12,13.19.24...Resistance,
6,7゜14...transistor, 9...diode, 15゜17.18...zener diode, 20...
・AND circuit, 22... Photocoupler, 25... Time delay circuit, 26... Latch circuit. Figure 1 Figure 2 Core voltage (VCE) Figure 3 (a) Core voltage (VCE) (b) Core voltage (voE) Figure 4 Heat Figure 5 Figure 6 Figure 8 Figure 9 Peak Collector voltage (VcE) Figure 7 Figure 10 Procedural amendment March 14, 1985 1 Indication of case 1985 Patent application No. 23334 2 Title of invention Drive circuit for electrostatic induction type self-extinguishing element 3 Amendment Relationship between the persons who write the information Patent applicant (307) Toshiba Corporation 4th generation Buried person 3-2-3 Marunouchi, Chiyoda-ku, Tokyo Telephone Tokyo (211) 2321 Representative 8 Contents of the amendment (1) Details 1, page 3, line 15 “l n5ula −
Correct ted J to [I n5ulatedJ. (2) Same, page 3, line 17 “TransSiS-to
Correct rsJ to [TransistorsJ. (3) Insert the following sentence between lines 18 and 19 on page 13. ``In addition, in FIG. 7, the photocoupler 22a.

Claims (1)

【特許請求の範囲】 1、定電圧電源と、 入力された制御信号の大きさに応じて前記定電圧電源か
ら発生した電圧を静電誘導形自己消弧素子のゲートに印
加させるゲート電圧入力回路と、前記静電誘導形自己消
弧素子のコレクタ電圧を検出し、この検出されたコレク
タ電圧に応じて前記制御信号の電圧を下げることにより
前記静電誘導形自己消弧素子のゲート電圧を降下させる
電圧調整回路と、 を備えた静電誘導形自己消弧素子の駆動回路。 2、ゲート電圧入力回路がコンプリメンタリ接続された
2つのトランジスタより成る特許請求の範囲第1項記載
の静電誘導形自己消弧素子の駆動回路。 3、電圧調整回路がエミッタ、ベース間電圧に応じてコ
レクタ電流を流すエミッタフォロワ回路で、そのコレク
タがゲート電圧入力回路の入力点に接続された特許請求
の範囲第1項記載の静電誘導形自己消弧素子の駆動回路
。 4、エミッタ、ベース間電圧を静電誘導形自己消弧素子
のコレクタ電圧の抵抗分割により得るようにした特許請
求の範囲第3項記載の静電誘導形自己消弧素子の駆動回
路。 5、電圧調整回路が静電誘導形自己消弧素子のゲート電
圧が下限値に達したときはゲート電圧の低下を行わない
ものである特許請求の範囲第4項記載の静電誘導形自己
消弧素子の駆動回路。 6、エミッタフォロア回路のエミッタベース間に定電圧
ダイオードを接続して成る特許請求の範囲第5項記載の
静電誘導形自己消弧素子の駆動回路。 7、電圧調整回路のゲート電圧降下動作が所定時間以上
に続いたときは制御信号をオフさせることにより静電誘
導形自己消弧素子をオフさせるようにした特許請求の範
囲第1項記載の静電誘導形自己消弧素子の駆動回路。 8、ゲート電圧降下動作をフォトカプラで検出するよう
にして成る特許請求の範囲第7項記載の静電誘導形自己
消弧素子の駆動回路。
[Claims] 1. A constant voltage power supply, and a gate voltage input circuit that applies a voltage generated from the constant voltage power supply to the gate of an electrostatic induction type self-extinguishing element in accordance with the magnitude of an input control signal. and detecting the collector voltage of the electrostatic induction type self-extinguishing element, and lowering the voltage of the control signal according to the detected collector voltage to lower the gate voltage of the electrostatic induction type self-extinguishing element. A drive circuit for an electrostatic induction self-extinguishing element, comprising: a voltage adjustment circuit for controlling the voltage; 2. A drive circuit for a static induction type self-extinguishing element according to claim 1, wherein the gate voltage input circuit comprises two complementary-connected transistors. 3. The electrostatic induction type according to claim 1, wherein the voltage adjustment circuit is an emitter follower circuit that flows a collector current according to the voltage between the emitter and the base, and the collector is connected to the input point of the gate voltage input circuit. Drive circuit for self-extinguishing element. 4. A drive circuit for a static induction type self-turn-off element according to claim 3, wherein the voltage between the emitter and the base is obtained by resistive division of the collector voltage of the static induction type self-turn-off element. 5. The electrostatic induction self-extinguishing device according to claim 4, wherein the voltage regulating circuit does not reduce the gate voltage when the gate voltage of the electrostatic induction self-extinguishing element reaches a lower limit value. Arc element drive circuit. 6. A drive circuit for a static induction type self-extinguishing element according to claim 5, comprising a constant voltage diode connected between the emitter and base of the emitter follower circuit. 7. The electrostatic induction type self-extinguishing device according to claim 1, wherein the electrostatic induction type self-extinguishing element is turned off by turning off the control signal when the gate voltage drop operation of the voltage regulating circuit continues for a predetermined time or more. Drive circuit for electric induction type self-extinguishing element. 8. A drive circuit for an electrostatic induction type self-extinguishing element according to claim 7, wherein the gate voltage drop operation is detected by a photocoupler.
JP60023334A 1985-02-08 1985-02-08 Drive circuit of static induction type self-extinguishing element Granted JPS61185064A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60023334A JPS61185064A (en) 1985-02-08 1985-02-08 Drive circuit of static induction type self-extinguishing element
EP86300766A EP0190925B1 (en) 1985-02-08 1986-02-05 A protection circuit for an insulated gate bipolar transistor
KR1019860000782A KR900008276B1 (en) 1985-02-08 1986-02-05 Protection circuit for an insulated gate bipolar transistor utilizing a two-step turn off
DE3689445T DE3689445T2 (en) 1985-02-08 1986-02-05 Protection circuit for an insulated gate bipolar transistor.
CN86101151.1A CN1006266B (en) 1985-02-08 1986-02-06 Driving circuit for an insulated gate bipolar transitor
US06/826,771 US4721869A (en) 1985-02-08 1986-02-06 Protection circuit for an insulated gate bipolar transistor utilizing a two-step turn off
AU53260/86A AU568446B2 (en) 1985-02-08 1986-02-06 Drive circuit for insulated gate bipolar transistor
AU13712/88A AU593729B2 (en) 1985-02-08 1988-03-24 A driving circuit for an insulated gate bipolar transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023334A JPS61185064A (en) 1985-02-08 1985-02-08 Drive circuit of static induction type self-extinguishing element

Publications (2)

Publication Number Publication Date
JPS61185064A true JPS61185064A (en) 1986-08-18
JPH0564545B2 JPH0564545B2 (en) 1993-09-14

Family

ID=12107679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023334A Granted JPS61185064A (en) 1985-02-08 1985-02-08 Drive circuit of static induction type self-extinguishing element

Country Status (1)

Country Link
JP (1) JPS61185064A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250518A (en) * 1988-08-12 1990-02-20 Hitachi Ltd Driving circuit for static induced type self-arc extinction element and inverter device static induced type self-arc-suppressing element
JP2004015884A (en) * 2002-06-05 2004-01-15 Nissan Motor Co Ltd Switching circuit and power supply circuit
JP2014529239A (en) * 2011-08-26 2014-10-30 ゼネラル・エレクトリック・カンパニイ Reverse conduction mode self-turn-off gate driver

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007029221A1 (en) 2007-06-22 2008-12-24 Bühler AG Process for the preparation of agave-containing chocolate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989570A (en) * 1982-11-11 1984-05-23 Toyo Electric Mfg Co Ltd Gate circuit for self-extinguishing type controlled rectifier

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989570A (en) * 1982-11-11 1984-05-23 Toyo Electric Mfg Co Ltd Gate circuit for self-extinguishing type controlled rectifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250518A (en) * 1988-08-12 1990-02-20 Hitachi Ltd Driving circuit for static induced type self-arc extinction element and inverter device static induced type self-arc-suppressing element
JP2004015884A (en) * 2002-06-05 2004-01-15 Nissan Motor Co Ltd Switching circuit and power supply circuit
JP2014529239A (en) * 2011-08-26 2014-10-30 ゼネラル・エレクトリック・カンパニイ Reverse conduction mode self-turn-off gate driver

Also Published As

Publication number Publication date
JPH0564545B2 (en) 1993-09-14

Similar Documents

Publication Publication Date Title
EP0190925B1 (en) A protection circuit for an insulated gate bipolar transistor
US5305192A (en) Switching regulator circuit using magnetic flux-sensing
US4091434A (en) Surge current protection circuit
JPWO2019038957A1 (en) Control circuit and power conversion device
JPH0225107A (en) Overvoltage suppression circuit for semiconductor switch element
JPH09163583A (en) Protective circuit for semiconductor device
JPS61185064A (en) Drive circuit of static induction type self-extinguishing element
US6084760A (en) Device for driving self arc-extinguishing type power element
JP4003833B2 (en) Driving circuit for electric field control type semiconductor device
JPH04368469A (en) Switching power source
JPH0250518A (en) Driving circuit for static induced type self-arc extinction element and inverter device static induced type self-arc-suppressing element
JPH06508980A (en) circuit protection device
JPS61500347A (en) Series transistor chip
JPH0681500B2 (en) Switching circuit
JPS61182324A (en) Gate driver
KR102644758B1 (en) Analog output circuit and inverter having the same
JPH0729739Y2 (en) FET drive circuit
US4602323A (en) Single-ended transformer drive circuit
JP3232981B2 (en) Control signal level shift circuit
JPH0257376B2 (en)
JP2001168652A (en) Protective circuit and semiconductor device having protective circuit
JP4122689B2 (en) Buffer circuit and semiconductor power converter using the same
KR100287963B1 (en) Excess voltage suppression circuit for limiting voltage of both ends of inverse parallel diode during turn-on of insulated gate bipolar transistor
SU836735A1 (en) Device for control of series-connected thyristors
JPS60212027A (en) Overvoltage protecting circuit of transistor