JPS61181503A - Apparatus for filtering solution - Google Patents

Apparatus for filtering solution

Info

Publication number
JPS61181503A
JPS61181503A JP2139985A JP2139985A JPS61181503A JP S61181503 A JPS61181503 A JP S61181503A JP 2139985 A JP2139985 A JP 2139985A JP 2139985 A JP2139985 A JP 2139985A JP S61181503 A JPS61181503 A JP S61181503A
Authority
JP
Japan
Prior art keywords
membrane
rotating shaft
liq
filtration
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2139985A
Other languages
Japanese (ja)
Inventor
Hitoshi Masuda
等 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2139985A priority Critical patent/JPS61181503A/en
Publication of JPS61181503A publication Critical patent/JPS61181503A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate or reduce the concn. polarization on the surface of a membrane by covering both surfaces of a carrier wherein a soln. path is provided with a semipermeable membrane, and inserting a rotating shaft to be used as a liq. discharge port provided with many filter plates into the central part of a vessel. CONSTITUTION:A rotating shaft 22 furnished with many filter plates 23 is vertically provided in a vessel 21. The filter plate 23 is obtained by covering both surfaces of a porous membrane carrier with a semipermeable membrane to seal the carrier, a path through which a permeated liq. is passed is furnished at the inside, and the liq. is collected into the rotating shaft 22 from a hole at the central part. A permeated liq. outlet 24 for discharging a permeated liq. 4 is provided to the lower part of the rotating shaft 22. The rotating shaft 22 is rotated by a motor 29, and the number of revolutions is regulated in accordance with the quality of untreated liq. 3. Filtration is carried out under pressure or under reduced pressure through the rotating shaft 22.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧力を駆動力とした半透膜による溶液濾過装置
に関し、特にミクロ濾過、限外濾過操作を効率よく行う
溶液濾過装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a solution filtration device using a semipermeable membrane using pressure as a driving force, and particularly to a solution filtration device that efficiently performs microfiltration and ultrafiltration operations. be.

〔従来技術〕[Prior art]

近年、文化の発展に伴い、水やエネルギーの使用が年々
増加し、海水から真水を製造したり、使用した廃水を浄
化して再利用したり、あるいは種々の工程における溶液
中の有価物や有害物の濃縮分離を極力省エネルギー的な
プロセスで効率良く遂行する努力が多くなされてきてい
る。
In recent years, with the development of culture, the use of water and energy has increased year by year, and it has become necessary to produce fresh water from seawater, purify and reuse used wastewater, and remove valuable and harmful substances in solutions in various processes. Many efforts have been made to efficiently concentrate and separate substances using energy-saving processes as much as possible.

そのプロセスとしては、蒸発法、吸着法、活性汚泥法種
々の分離、あるいは除去の方法が用いられているが、膜
分離プロセスも一つの有力な分離手段である。
Various separation or removal methods such as evaporation, adsorption, and activated sludge methods are used for this process, and membrane separation is also an effective separation method.

この膜分離プロセスに用いる膜モジユール装置としては
、主として中空糸型管状型、スパイラル型、耐圧板型(
フィルタプレス型)が用いられているが、中空糸型の外
形は第5図に示すような形状で、内径0.8から1.4
fi位の多数の中空糸を両端の中空糸束固定端1で固定
して中空糸膜2をドラム内に内設して、原液3を導入し
、濾過液4を上部から取出し、濃縮液5は反対側から取
出すものである。
The membrane module devices used in this membrane separation process are mainly hollow fiber tubular type, spiral type, and pressure plate type (
The outer shape of the hollow fiber type is as shown in Figure 5, and the inner diameter is 0.8 to 1.4.
A large number of hollow fibers at position fi are fixed with hollow fiber bundle fixed ends 1 at both ends, a hollow fiber membrane 2 is installed inside the drum, a stock solution 3 is introduced, a filtrate 4 is taken out from the upper part, and a concentrated solution 5 is formed. is taken out from the opposite side.

従って、原液3の濃度が高かったり、大きな粒子が混入
したりしていると、原液流路が容易に閉塞する問題が起
り、一方、狭い間隙を速い流速で原液3を供給するので
圧力損失も大きい。
Therefore, if the concentration of the stock solution 3 is high or if large particles are mixed in, there will be a problem that the stock solution flow path will be easily blocked.On the other hand, since the stock solution 3 is supplied at a high flow rate through a narrow gap, there will be no pressure loss. big.

また、第6図に示す管状モジュール構造のものは通常内
径lから2.5 amの多孔性管状支持体の内側に半透
膜6を装着しており、このような管がUベンドで何本か
シリーズに接続されており、管の一方から原液3を導入
して他方から濃縮液5を取出し、半透膜6を透過した透
過水7を取出している。
In addition, the tubular module structure shown in Fig. 6 usually has a semipermeable membrane 6 attached to the inside of a porous tubular support with an inner diameter of l to 2.5 am. The tubes are connected in series, and the stock solution 3 is introduced from one of the tubes, the concentrated solution 5 is taken out from the other, and the permeated water 7 that has passed through the semipermeable membrane 6 is taken out.

この場合、上記のような管の内側を高流速で原液3を通
して濾過するため、単位濾過量当りのエネルギー消費量
が最も大きく、また単位容積当りの膜充填密度が最も小
さいモジュールである。
In this case, since the stock solution 3 is filtered through the inside of the tube as described above at a high flow rate, this module has the highest energy consumption per unit filtration amount and the lowest membrane packing density per unit volume.

次に、第7図に示すように、プレート8、ストップディ
スク9、ネックリング1o及び膜11等からなる耐圧板
型(プレートアンドフレーム型)モジュールでは、原液
3が膜11の間隙を高流速で流れ、その端で鋭角に流れ
が曲がって、次の膜11の間隙へと供給される。
Next, as shown in FIG. 7, in a pressure plate type (plate and frame type) module consisting of a plate 8, a stop disk 9, a neck ring 1o, a membrane 11, etc., the stock solution 3 flows through the gap between the membranes 11 at a high flow rate. The flow turns sharply at the end and is fed into the gap of the next membrane 11.

従って、モジュールの原液3の入口と透過水7の出口と
の間の圧力差が非常に大きく、濾過に要するエネルギー
が大きいという問題があると共に、膜11の物理的洗浄
が不可能である。
Therefore, there is a problem that the pressure difference between the inlet of the stock solution 3 and the outlet of the permeated water 7 of the module is very large, and the energy required for filtration is large, and it is impossible to physically clean the membrane 11.

更に、第8図に示す4スパイラル型モジユールは、膜間
に挟んだ網目12の支持体間隙を原液3が流れて濾過が
起り、濾過液4を取出すものであり、この支持体と膜が
接触した部分は半透膜としての機能を果していない。
Furthermore, in the 4-spiral type module shown in Fig. 8, the stock solution 3 flows through the gap between the supports of the mesh 12 sandwiched between the membranes, filtration occurs, and the filtrate 4 is taken out, and the support and the membrane are in contact with each other. This part does not function as a semipermeable membrane.

また、このような部分は濾過と共に溶質や懸濁物が沈積
し、それが生長し、流路閉塞する恐れがあり、あまり粘
性の高い流体や、濃度の高い溶液、あるいは懸濁物のあ
る溶液処理には問題の起きる恐れがある。
In addition, in such areas, solutes and suspended matter may deposit during filtration, grow, and block the flow path, and fluids with high viscosity, highly concentrated solutions, or solutions with suspended matter may Processing problems may occur.

また、半透膜を用いて濾過を行う場合には、溶媒の濾過
に伴って膜面の溶質濃度が上昇し、それが大きな濾過抵
抗になり、更に膜面に沈積したり、耐着したりして膜性
能の劣化を起す原因となる。
In addition, when filtration is performed using a semipermeable membrane, the concentration of solutes on the membrane surface increases as the solvent is filtered, which creates a large filtration resistance and causes further deposits and adhesion on the membrane surface. This may cause deterioration of membrane performance.

このような現象を軽減するために原液を高流速でモジュ
ールに送ったり、激しく攪拌したり、スポンジボールで
洗浄したりする。
To reduce this phenomenon, the stock solution is sent to the module at a high flow rate, stirred vigorously, and washed with a sponge ball.

しかし、上記のモジールを用いた場合、膜面積に対する
モジュールのホールドアツプ量が大きいので、一度原液
を通過するだけで濾過分離を達成できず、従って何回か
循環させるか、クリスマスツリー型にモジュールを数段
並べるかして所定の目的を達成することになり、このよ
うな方法では接続パイプ等屈曲による原液のもつ運動エ
ネルギーの損失が大きい。
However, when using the above module, the hold-up amount of the module is large relative to the membrane area, so filtration separation cannot be achieved just by passing the stock solution once. A predetermined purpose is achieved by arranging the liquid in several stages, and in such a method, there is a large loss of kinetic energy of the raw liquid due to bending of the connecting pipe, etc.

従って、濾過に要する理論分離エネルギーの数倍から数
十倍のエネルギーを要する結果になる。
Therefore, the result is that several times to several tens of times more energy is required than the theoretical separation energy required for filtration.

更に、膜を用いる分離操作において、エネルギー費の全
処理コストに占める割合は非常に大きく、例えば限外濾
過によりパルプのさらし廃液中のリグニンを10倍濃縮
する場合、2,000から4,000rrr/日の透過
水処理規模で管状及び耐圧板式のモジュールによる処理
コストに占めるエネルギーコストは全処理費の70から
80%を占めるという問題がある。
Furthermore, in separation operations using membranes, energy costs account for a very large proportion of the total treatment cost; for example, when concentrating lignin in pulp bleaching waste 10 times by ultrafiltration, it costs 2,000 to 4,000 rrr/ There is a problem in that on a daily permeated water treatment scale, energy costs account for 70 to 80% of the total treatment cost using tubular and pressure plate type modules.

〔発明の目的〕[Purpose of the invention]

そこで本発明は、前記せる従来の濾過モジュールの現状
を考察し、その問題点を解消するためになされたも、の
であり、従来の市販モジュールのように激しい原液流動
による流路やモジュール器壁の抵抗に、よるエネルギー
損失がなく、かつモジュール内での圧力損失のない溶液
濾過装置を提供し、高いモジュール性能を保持すること
を目的とし、その上、高い耐圧性を必要とせず、濾過槽
内に簡単に膜セットを装着できる溶液濾過装置を提供す
ることを目的としたものである。
Therefore, the present invention was made to solve the problems by considering the current state of the conventional filtration modules mentioned above. The purpose is to provide a solution filtration device that has no energy loss due to resistance and no pressure loss within the module, maintains high module performance, and also does not require high pressure resistance and has no pressure loss inside the filtration tank. The purpose of this invention is to provide a solution filtration device that can be easily equipped with a membrane set.

〔発明の構成〕[Structure of the invention]

即ち、本発明の溶液濾過装置は、溶液の通路を有する膜
支持体の両面を半透膜でおおい、その中央部に穴を設け
た複数の濾過板を、濾過液の排出口となる回転軸に上記
の穴で貫設して一定間隔で積層した膜セットを槽内に装
着し、それを回転させながら加圧、もしくは減圧で濾過
を行うことにより構成される。
That is, in the solution filtration device of the present invention, both sides of a membrane support having a solution passage are covered with semipermeable membranes, and a plurality of filter plates each having a hole in the center are connected to a rotating shaft that serves as a filtrate outlet. It is constructed by installing a set of membranes stacked at regular intervals through the above-mentioned holes in the tank, and performing filtration under pressure or reduced pressure while rotating the membrane set.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例における溶液濾過装
置を説明するが、第1図はその実施例1における概略縦
断面図であり、図中の槽21内には濾過板23を多数装
着した回転軸22が垂直に設けられている。
A solution filtration device according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic vertical cross-sectional view of Embodiment 1, and a large number of filter plates 23 are installed in a tank 21 in the figure. A rotating shaft 22 is provided vertically.

これら濾過板23は多孔性の膜支持体の両面を半透膜で
おおってシールしたものであり、半透膜を透過した溶液
が通過する通路を有し、更に中央部に設けられた穴から
回転軸22内に集液されるようになっている。
These filter plates 23 are made by covering and sealing both sides of a porous membrane support with a semipermeable membrane, and have a passage through which the solution that has permeated the semipermeable membrane passes, and a hole provided in the center. The liquid is collected in the rotating shaft 22.

即ち、中央部に穴を設けた多数の濾過板23は濾過液4
を排出する濾過液出口24を下部に有する回転軸22に
一定間隔で積層した膜セットとし、それを槽21内に装
着している。
That is, a large number of filter plates 23 having holes in the center are used to filter the filtrate 4.
A set of membranes is formed by stacking the membranes at regular intervals on a rotary shaft 22 having a filtrate outlet 24 at the bottom, which discharges the filtrate, and is installed in the tank 21.

このような膜セットを用いた膜濾過を加圧下で行う場合
には、槽21は外気と気密を保っていなければならない
ので、回転軸22は上下をメカニカルシール25のよう
な機構を用いて気密性を保持するが、一方、膜が槽21
の深い下部に装着され、その静水圧で濾過が行われたり
、回転軸22を介して減圧で濾過が行なわれる場合には
、槽21と回転軸22との間に気密性を要しない。
When performing membrane filtration under pressure using such a membrane set, the tank 21 must be kept airtight from the outside air, so the rotating shaft 22 must be airtight at the top and bottom using a mechanism such as a mechanical seal 25. On the other hand, the membrane retains its properties in tank 21.
When the tank 21 is installed in a deep lower part of the tank and filtration is performed using its hydrostatic pressure, or when the filtration is performed under reduced pressure via the rotating shaft 22, airtightness is not required between the tank 21 and the rotating shaft 22.

ここで、26は必要な場合、気体で槽21内を加圧した
りする気体を導入もしくは排出するパルプである。
Here, 26 is a pulp into which gas is introduced or discharged to pressurize the inside of the tank 21, if necessary.

また、27は原液3の供給口、28は濃縮液5の排出口
であり、更に29は濾過板23を回転させるためのモー
タであり、その回転数は原液3の性質、濾過の目的等に
応じて適当に調節するようになっている。
Further, 27 is a supply port for the stock solution 3, 28 is a discharge port for the concentrated solution 5, and 29 is a motor for rotating the filter plate 23, whose rotation speed depends on the properties of the stock solution 3, the purpose of filtration, etc. It will be adjusted accordingly.

回転軸22は第1図のように垂直に設置することもでき
るが、第2図の実施例2のように水平に設置しても良く
、また、第3図の実施例3のごとく1つの槽21内に回
転軸22を中心とした膜セットを多数個設置しても良い
The rotating shaft 22 can be installed vertically as shown in FIG. 1, horizontally as in the second embodiment shown in FIG. A large number of membrane sets may be installed in the tank 21 with the rotating shaft 22 as the center.

更に、回転方向を第3図のごとく交互に違った方向にす
ればより有効な濾過性能を得ることもできる。
Furthermore, more effective filtration performance can be obtained by alternately rotating the filter in different directions as shown in FIG.

上記濾過板23を積層した膜セットは、第4図に示すご
とく、金属あるいはプラスチックの多孔体あるいはプレ
ート等の膜支持体31の表面に重環溶液の通路となるも
のを重ね合せた両面に半透膜をセットし、その周囲を接
着材もしくはシール等で封じた中央部に、多数の透水口
34を設けた回転軸22を挿入せしめる穴30のあいた
ドーナツ形状の円板複数個を、0リング32やスペーサ
33を用いて一定間隔で積層し、両端をしめつけて気密
性を保つようにセットしたもので、ここではこれを膜セ
ットと称することにする。
As shown in FIG. 4, the membrane set in which the above-mentioned filter plates 23 are laminated is made up of a membrane support 31 such as a metal or plastic porous body or a plate, and a material that serves as a passage for the heavy ring solution is superimposed on both sides of the membrane support 31. A plurality of donut-shaped disks with holes 30 into which the rotating shaft 22 with a large number of water permeable holes 34 can be inserted are inserted into the center of the transparent membrane, which is sealed with an adhesive or a seal. 32 and spacers 33 to stack them at regular intervals and tighten both ends to maintain airtightness, and this will be referred to as a membrane set here.

この膜セットは回転軸22に取つけられているので、膜
セットがカセットとして用いられ、半透膜の交換や、洗
浄が簡単に行なわれる。この膜支持体31は、円盤が最
も普通であるが、矩形、正方形、多角形、あるいは楕円
形等、その形状には限定されるのもではない。
Since this membrane set is attached to the rotating shaft 22, the membrane set is used as a cassette, and the semipermeable membrane can be easily replaced and cleaned. The membrane support 31 is most commonly a disk, but is not limited to a rectangular, square, polygonal, or elliptical shape.

〔発明の効果〕 以上のごと〈従来の市販モジュールの濾過では通常原液
を固定した膜面上に激しく流して膜透過を行っていたの
に対し、本発明の溶液濾過装置においては、処理原液だ
けをモジュール槽内に供給し、濾過に伴う膜面の濃度分
極は積層した膜力セットが回転することにより、消滅も
しくは減少できる。
[Effects of the Invention] As mentioned above, in the conventional filtration of commercially available modules, normally the stock solution was passed vigorously over the fixed membrane surface to permeate the membrane, but in the solution filtration device of the present invention, only the processed stock solution is passed through the membrane. is supplied into the module tank, and the concentration polarization on the membrane surface that accompanies filtration can be eliminated or reduced by rotating the laminated membrane force set.

従って、本発明の装置では、従来の市販モジュールシス
テムのように激しい原液流動による流路やモジュール器
壁の抵抗によるエネルギー損失が殆んどないので、エネ
ルギー費が低減されるばかりでなく、モジュール内での
圧力損失−IJ<ftいので、低い圧力操作で高いモジ
ュール性能を保持できるという効果があり、その上装置
に高い耐圧性を必要としない。
Therefore, in the device of the present invention, unlike conventional commercially available module systems, there is almost no energy loss due to flow paths due to intense flow of stock solution or resistance in the module wall, so not only energy costs are reduced, but also energy loss inside the module is reduced. Since the pressure loss at -IJ<ft is low, there is an effect that high module performance can be maintained with low pressure operation, and moreover, high pressure resistance is not required for the device.

また、単位容積当りの膜充填密度も100がら400r
rf/rrrで充分大きな膜面積と処理容量とを有し、
更に濾過槽内に膜セントを容易に装着でき保守が簡単で
あるという利点がある。
In addition, the membrane packing density per unit volume ranges from 100 to 400 r.
It has a sufficiently large membrane area and processing capacity at rf/rrr,
A further advantage is that the membrane centrifuge can be easily installed in the filtration tank and maintenance is simple.

なお、本発明の装置は特にミクロ濾過、限外濾過操作を
効率よく行う上で極めて有効な装置である。
Note that the apparatus of the present invention is an extremely effective apparatus particularly for efficiently carrying out microfiltration and ultrafiltration operations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1における溶液濾過装置の概略
縦断面図、第2図は実施例2の装置の概略側断面図、第
3図は実施例3の装置の概略平面図、第4図は第1図の
要部拡大の概略側断面図、第5図、第6図、第7図及び
第8図はそれぞれ異なる従来例の溶液濾過装置の断面図
を示している。 3・・・原液、4・・・濾過液、21・・・槽、22・
・・回転軸、23・・・濾過板 24・・・濾過液出口
、26・・・パルプ、29・・・モータ、30・・・穴
、31・・・膜支持体。 特許出願人 工業技術院長 等々力   達第3図
FIG. 1 is a schematic vertical sectional view of a solution filtration device in Example 1 of the present invention, FIG. 2 is a schematic side sectional view of the device in Example 2, and FIG. 3 is a schematic plan view of the device in Example 3. FIG. 4 is a schematic side sectional view of an enlarged main part of FIG. 1, and FIGS. 5, 6, 7, and 8 are sectional views of different conventional solution filtration apparatuses. 3... Stock solution, 4... Filtrate, 21... Tank, 22...
... Rotating shaft, 23... Filter plate 24... Filtrate outlet, 26... Pulp, 29... Motor, 30... Hole, 31... Membrane support. Patent applicant: Director of the Agency of Industrial Science and Technology Tatsu Todoroki Figure 3

Claims (1)

【特許請求の範囲】[Claims] 溶液の通路を有する膜支持体の両面を半透膜でおおい、
その中央部に穴を設けた複数の濾過板を、濾過液の排出
口となる回転軸に上記の穴で貫設して一定間隔で積層し
た膜セットを槽内に装着し、それを回転させながら加圧
、もしくは減圧で濾過を行うことを特徴とする溶液濾過
装置。
Covering both sides of a membrane support having a solution passage with a semipermeable membrane,
A plurality of filter plates with holes in the center are inserted through the rotating shaft that serves as the filtrate outlet, and a set of membranes stacked at regular intervals is installed in the tank and rotated. A solution filtration device characterized by performing filtration under increased pressure or reduced pressure.
JP2139985A 1985-02-06 1985-02-06 Apparatus for filtering solution Pending JPS61181503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2139985A JPS61181503A (en) 1985-02-06 1985-02-06 Apparatus for filtering solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2139985A JPS61181503A (en) 1985-02-06 1985-02-06 Apparatus for filtering solution

Publications (1)

Publication Number Publication Date
JPS61181503A true JPS61181503A (en) 1986-08-14

Family

ID=12053971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2139985A Pending JPS61181503A (en) 1985-02-06 1985-02-06 Apparatus for filtering solution

Country Status (1)

Country Link
JP (1) JPS61181503A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115409A (en) * 1987-10-27 1989-05-08 Shonan Koryo Kk Medium-and high-pressure membrane treating device
JPH0347026U (en) * 1989-09-09 1991-04-30
JPH0523194A (en) * 1991-07-19 1993-02-02 Hitachi Plant Eng & Constr Co Ltd Method for separating protein by membrane
US6872301B2 (en) * 2001-12-20 2005-03-29 Anthony Schepis High shear rotating disc filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865179A (en) * 1971-12-06 1973-09-08
JPS5243782A (en) * 1975-09-29 1977-04-06 Dresser Ind Method and apparatus for separating fluid and method of manufacturing apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865179A (en) * 1971-12-06 1973-09-08
JPS5243782A (en) * 1975-09-29 1977-04-06 Dresser Ind Method and apparatus for separating fluid and method of manufacturing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01115409A (en) * 1987-10-27 1989-05-08 Shonan Koryo Kk Medium-and high-pressure membrane treating device
JPH0347026U (en) * 1989-09-09 1991-04-30
JPH0523194A (en) * 1991-07-19 1993-02-02 Hitachi Plant Eng & Constr Co Ltd Method for separating protein by membrane
US6872301B2 (en) * 2001-12-20 2005-03-29 Anthony Schepis High shear rotating disc filter

Similar Documents

Publication Publication Date Title
JP3577460B2 (en) Rotating disk type filtration device equipped with means for reducing axial force
CA2327659C (en) Rotary filtration device with flow-through inner member
US7396464B2 (en) Filter comprising rotatable, disk-shaped filter elements
CN101700472B (en) Rotary membrane separation device and application thereof
US6808634B1 (en) Method and device for cross-flow filtration
US20150060360A1 (en) Systems and methods of membrane separation
US4062771A (en) Apparatus and process for membrane filtration
US8753509B2 (en) Advanced filtration device for water and wastewater treatment
JP2000157846A (en) Hollow fiber membrane cartridge
KR101513250B1 (en) Central baffle, pressurized hollow fiber membrane module having the same and cleaning method thereof
EP0586591A4 (en)
IL172214A (en) Membrane cartridge, membrane separating device and membrane separating method
CN106925128A (en) A kind of membrane bioreactor and its rolled membrane module
JP3897591B2 (en) Separation membrane module and module assembly
JPS61181503A (en) Apparatus for filtering solution
KR100828742B1 (en) A Submerged Membrane Module and System Equipped With Rotating Disc Or Propeller
EP0277660B1 (en) Filtration method and apparatus
JPS61200808A (en) Apparatus for filtering solution
RU2179062C1 (en) Membrane apparatus for separating liquid mixtures
JP3694536B2 (en) Membrane module
JPS62213810A (en) Revolving plane membrane separation device
JPH11300175A (en) Fluid medium filtering and separating device having at least one permeated material outlet
RU200267U1 (en) MEMBRANE DEVICE
JPH11104469A (en) Spiral-type membrane element, membrane module and water treatment apparatus using the element
JP3453518B2 (en) Porous ceramic filter and fluid purification method and apparatus using the same