JPS61173592A - Interframe encoding system - Google Patents

Interframe encoding system

Info

Publication number
JPS61173592A
JPS61173592A JP60014744A JP1474485A JPS61173592A JP S61173592 A JPS61173592 A JP S61173592A JP 60014744 A JP60014744 A JP 60014744A JP 1474485 A JP1474485 A JP 1474485A JP S61173592 A JPS61173592 A JP S61173592A
Authority
JP
Japan
Prior art keywords
signal
quantization
motion
still
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60014744A
Other languages
Japanese (ja)
Other versions
JPH0797861B2 (en
Inventor
Junichi Oki
淳一 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60014744A priority Critical patent/JPH0797861B2/en
Priority to CA000488530A priority patent/CA1277416C/en
Priority to US06/765,357 priority patent/US4683494A/en
Publication of JPS61173592A publication Critical patent/JPS61173592A/en
Publication of JPH0797861B2 publication Critical patent/JPH0797861B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce deterioration in picture quality and to obtain a high- compressibility system by separating a motion picture signal into a motion area and a still area when an image signal is transmitted digitally, and quantizing roughly predicted errors of picture elements in the still area and also quantizing one image plane finely at every constant period. CONSTITUTION:An adder 5 adds the quantized predicted error signal to a prediction signal from a frame memory 6 and supplies the result as a local decoded signal to the frame memory 6. A quantization switch 701 outputs a quantization switching signal which normally selects rough quantization for a part determined as the still area with a motion/still decision signal supplied from a motion/still separating circuit 2 through a signal line 201 and also outputs a quantization switching signal which selects fine quantization for the whole of the still area when a timing signal is sent from a timer 702. Thus, the rough quantization is normally performed by utilizing the motion/still decision signal and buffer occupancy and the whole still area is quantized finely upon occasion.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、画像信号のデジタル伝送に係わり、特に入力
動画像信号の動静領域別に異なる量子化を行なうフレー
ム間符号化方式による高能率の帯域圧縮伝送技術に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to digital transmission of image signals, and particularly relates to high-efficiency bandwidth transmission using an interframe coding method that performs different quantization for each motion and static region of an input moving image signal. Regarding compressed transmission technology.

(従来技術と問題点) 従来、入力動画像信号を動静分離して、動静領域別に異
なる量子化特性を適用するフレーム間符号化方式として
は、特願昭59−169011号明細書[動画像信号の
予測符号化装置」にあるように、静止領域に対して大き
なデッドゾーン(入力に対して出力ゼロとなる範囲)を
持つ量子化特性を適用する予測符号化方式が知られてい
る。しかし、この方式では動領域と静止領域のさかいめ
で、デッドゾーンの大きさが急に変わるため、物体の動
いたあとに尾を引くような画面の汚れが残り、特にこの
部分が静止領域となるデッドゾーンが大きくされるため
に、いつまでも汚れが残ってしまうという欠点があった
。また量子化特性の選択は通常は複数ライン単位でなさ
れるため、シーンチェンジ後の静止領域ではこの特性が
変化した境界部分に微妙な階調の差が目につくことがあ
った。
(Prior Art and Problems) Conventionally, as an interframe coding method that separates motion and static of an input video signal and applies different quantization characteristics to each motion and static region, there is a method described in Japanese Patent Application No. 169011/1989 [Moving Image Signal As described in ``Predictive Coding Apparatus'', a predictive coding method is known that applies a quantization characteristic that has a large dead zone (a range where the output is zero relative to the input) to a stationary region. However, with this method, the size of the dead zone changes suddenly between the moving area and the static area, which leaves behind a trail of dirt on the screen after the object moves, and this area in particular becomes the static area. Since the dead zone is enlarged, there is a drawback that dirt remains forever. Furthermore, since the selection of quantization characteristics is usually made in units of multiple lines, subtle differences in gradation may be noticeable in the static area after a scene change at the boundary where the characteristics have changed.

(発明の目的) 本発明は、復号画像の特に静止領域における画質劣化が
少なく、しかも高い圧縮率の得られる符号化方式を供給
することを目的とする。
(Objective of the Invention) An object of the present invention is to provide an encoding method that causes less deterioration in the image quality of a decoded image, especially in a still region, and that can obtain a high compression rate.

(発明の構成) 本発明は、予め動画像信号を動き領域と静止領域に分離
し、この静止領域に含まれる画素に対する予測誤差につ
いては通常は粗い量子化を行うが、少なくとも1画面に
ついては密な量子化を行うことを特徴とするフレーム間
符号化方式である。
(Structure of the Invention) The present invention separates a moving image signal into a moving area and a still area in advance, and normally performs coarse quantization on prediction errors for pixels included in the still area, but finely quantizes at least one screen. This is an interframe encoding method characterized by performing quantization.

(発明の原理) 本発明においては、まず動画像信号を動き領域と静止領
域に分離する。この分離方法はすでに幾つか知られてい
る。例えば特願昭59−194110号明細書[動画像
信号の動静分離装置」にあるように、画面をある大きさ
のブロックに分割しブロック内の各画素のフレーム差分
値の絶対値をブロック内で加算し、この加算結果と定め
られたしきい値との大小比較により、該ブロックの動静
判定を行う方法がある。あるいは、グラジェント法と呼
ばれる方法では、フレーム内の輝度勾配とフレーム差分
値から、画素単位の動ベクトルが求まり、この動ベクト
ルがゼロでない画素の集合をもって、動領域とすること
ができる。本発明においては、動静分離の方法が、いず
れの方法でも構わない。次に第1,2図を用いて静止領
域に含まれる画素に対してのみある任意のフレームにお
いて密な量子化を行う方法を説明する。前述のいずれの
方法により動静分離を行った結果を第1図に示す。第1
図の各フレームにおける斜線部分は、動静分離により静
止領域と判定されたとする。各フレームの斜線の静止領
域に対して通常は粗い量子化を行うことにより、静止領
域の雑音により発生する情報を抑圧することができる。
(Principle of the Invention) In the present invention, first, a moving image signal is separated into a moving region and a still region. Several methods of separation are already known. For example, as described in Japanese Patent Application No. 59-194110 [Moving Picture Signal Dynamic Separator], the screen is divided into blocks of a certain size, and the absolute value of the frame difference value of each pixel in the block is calculated within the block. There is a method in which the motion and static of the block is determined by adding the sum and comparing the result of the addition with a predetermined threshold value. Alternatively, in a method called the gradient method, a pixel-by-pixel motion vector is determined from the luminance gradient within a frame and a frame difference value, and a set of pixels for which this motion vector is not zero can be defined as a motion region. In the present invention, any method of separating motion and static may be used. Next, using FIGS. 1 and 2, a method of performing dense quantization in an arbitrary frame only for pixels included in a still area will be explained. FIG. 1 shows the results of motion and static separation performed using any of the methods described above. 1st
It is assumed that the shaded area in each frame in the figure is determined to be a stationary area by motion and static separation. Generally, coarse quantization is performed on the diagonally shaded static region of each frame, thereby suppressing information generated by noise in the static region.

次にある任意のフレームたとえば第nフレームの斜線の
静止領域の全体に密な量子化を行う。第2図を用いて密
な量子化を行う方法について説明する。動静判定により
静止領域と判定された部分に通常は、粗い量子化を行い
、たとえば第nフレームにおける静止領域に密な量子化
を行い、次のフレームからPフレームの間は、静止領域
に粗い量子化を行なう。そして第nフレームの静止領域
に密な量子化を行なう。このように間をおいて適当な周
期で静止領域に対して密な量子化を行なう。静止領域の
量子化が粗いままだと画像の動きやシーンチェンジによ
り、動領域と静止領域。
Next, dense quantization is performed on the entire diagonally shaded stationary region of an arbitrary frame, for example, the n-th frame. A method for performing dense quantization will be explained using FIG. Normally, coarse quantization is performed on the portion determined to be a stationary area by motion/static judgment.For example, fine quantization is applied to the stationary area in the n-th frame, and coarse quantization is applied to the stationary area between the next frame and the P frame. . Then, dense quantization is performed on the static region of the n-th frame. In this manner, dense quantization is performed on the stationary region at appropriate intervals. If the quantization of the static area remains coarse, the dynamic area and the static area will change due to image movement or scene changes.

の境目や静止領域に発生した画面の汚れが残ってしまう
のがときどき静止領域全体に密な量子化を行うことによ
り、静止領域の雑音により発生する情報を抑圧し、かつ
動領域と静止領域の境目やシーンチェンジ後の静止領域
の画面の汚れを除去することができる。また量子化を一
度密にしておけばその後に粗い量子化を行っても動きや
シーンチェンジが起こらない限り静止領域に画面の汚れ
は発生しない。このようにして高い圧縮率の符号化方式
が得られる。
By performing dense quantization on the entire static area, information generated by noise in the static area can be suppressed, and the information generated by the noise in the static area can be suppressed, and the screen smudges that occur at the boundaries between the moving and static areas can sometimes remain. It is possible to remove screen smudges at boundaries and static areas after a scene change. Furthermore, once the quantization is done finely, even if coarse quantization is performed afterwards, screen smudges will not occur in still areas unless there is movement or a scene change. In this way, an encoding system with a high compression rate can be obtained.

(実施例) 第3図を用いて本発明の実施例を詳細に説明する。第3
図は、本発明を用いた符号器の一実施例である。信号線
101より入力されるディジタル化された動画像信号は
、遅延回路1と、動静分離回路2に供給される。動静分
離回路2で計算された動静判定信号は、信号線201を
介し符号化制御回路7に供給される。遅延回路1で遅延
調整された動画像信号は減算器3に入る。減算′63は
、フレームメモリーからの1フレ一ム時間遅延された予
測信号とによりフレーム差分を計算し、これを予測誤差
信号として量子化回路4に送る。量子化回路4は、予測
誤差信号を量子化するにあたり、符号化制御回路7から
の量子化切換信号により、たとえば第2図に示したよう
に静止領域に対して粗・密の量子化の切換制御を行う。
(Example) An example of the present invention will be described in detail using FIG. Third
The figure shows one embodiment of an encoder using the present invention. A digitized moving image signal input through a signal line 101 is supplied to a delay circuit 1 and a motion/static separation circuit 2. The motion/static determination signal calculated by the motion/static separation circuit 2 is supplied to the encoding control circuit 7 via the signal line 201. The moving image signal whose delay has been adjusted by the delay circuit 1 enters the subtracter 3. Subtraction '63 calculates a frame difference based on the predicted signal delayed by one frame time from the frame memory, and sends this to the quantization circuit 4 as a predicted error signal. When quantizing the prediction error signal, the quantization circuit 4 switches between coarse and fine quantization for the static region, for example, as shown in FIG. 2, using a quantization switching signal from the encoding control circuit 7. Take control.

動領域に対しては、従来と同様にたとえば後述のバッフ
ァーメモリー11の占有状態に基づいて定められる量子
化が行われる。つぎに量子化回路4で量子化された予測
誤差信号は加算器5および符号変換器8に供給される。
For the dynamic region, quantization determined based on, for example, the occupancy state of the buffer memory 11, which will be described later, is performed as in the conventional case. Next, the prediction error signal quantized by the quantization circuit 4 is supplied to an adder 5 and a code converter 8.

加算器5は、量子化された予測誤差信号と、フレームメ
モリー6からの予測信号とを加算し、その結果を局部復
号信号としてフレームメモリー6に供給する。符号変換
器8は、量子化回路4からの供給された予測誤差信号を
可変長符号化し圧縮する。
Adder 5 adds the quantized prediction error signal and the prediction signal from frame memory 6, and supplies the result to frame memory 6 as a locally decoded signal. The code converter 8 variable-length encodes and compresses the prediction error signal supplied from the quantization circuit 4.

符号変換器8は、可変長符号化を行う際に、符号化制御
回路7からの量子化切換信号により、どの量子化特性が
選択されたかに従い対応する可変、長符号化を行い、可
変長符号を多重化回路に出力する。
When performing variable length encoding, the code converter 8 performs variable length encoding according to which quantization characteristic is selected by the quantization switching signal from the encoding control circuit 7, and converts the variable length code into a variable length code. is output to the multiplexing circuit.

符号変換器9は、符号化制御回路7からの量子化切換信
号により、どの量子化特性が選択されたかを、モード符
号として符号化し多重化回路に出力する。多重化回路1
0は、モード符号と可変長符号を多重化し、バッファメ
モリー11に出力する。
The code converter 9 encodes as a mode code which quantization characteristic is selected based on the quantization switching signal from the encoding control circuit 7, and outputs the code to the multiplexing circuit. Multiplexing circuit 1
0 multiplexes the mode code and variable length code and outputs it to the buffer memory 11.

バッファメモリー11は、伝送路1101の伝送速度を
一定に保つように、符号化の速度と伝送路の速度の整合
を行う。またバッファメモリー11の占有状態を示すバ
ッファーオキパンシーを1102を介して符号化制御回
路7に供給する。
The buffer memory 11 matches the encoding speed and the transmission path speed so as to keep the transmission speed of the transmission path 1101 constant. Further, buffer occupancy indicating the occupied state of the buffer memory 11 is supplied to the encoding control circuit 7 via 1102.

次に符号化制御回路7について第4図を参照して説明す
る。符号化制御回路7は、第4図に示すように量子化切
換器701とタイマー702によって構成される。タイ
マー702はある任意の周期たとえば数フレーム単位で
タイミング信号を量子化切換器に供給する。またタイマ
ー702は、バッファメモリー11から信号線1102
を介して供給されるバッファーオキユパンシ−により発
生情報量を監視し、発生情報が多いときにはタイミング
信号を出さないようにする。量子化切換器701は動静
分離回路2から信号線201を介して供給される動静判
定信号により静止領域と判定された部分に通常は粗い量
子化を選択する量子化切換信号を出力し、タイマー70
2からタイミング信号が送られて来たときのみ静止領域
の全体に密な量子化を選択する量子化切り換え信号を出
力する。このように動静判定信号とバッファオキユパン
シ−により、通常は粗い量子化を行い、ときどき静止領
域の全体に密な量子化を行う。このとき発生情景が多け
れば(すなわち信号線1102がバッファオキユパンシ
−が大なることを示すとき)密な量子化は行わず粗い量
子化を行なう。
Next, the encoding control circuit 7 will be explained with reference to FIG. The encoding control circuit 7 is comprised of a quantization switch 701 and a timer 702, as shown in FIG. A timer 702 supplies a timing signal to the quantization switch at an arbitrary period, for example, in units of several frames. Further, the timer 702 is connected to the signal line 1102 from the buffer memory 11.
The amount of generated information is monitored by the buffer occupancy supplied via the buffer, and the timing signal is not output when there is a large amount of generated information. The quantization switch 701 outputs a quantization switching signal that normally selects coarse quantization to the portion determined to be a stationary region by the motion/static determination signal supplied from the motion/static separation circuit 2 via the signal line 201, and the timer 70
Only when a timing signal is sent from 2, a quantization switching signal is output for selecting dense quantization for the entire stationary region. In this way, depending on the motion/static determination signal and the buffer occupancy, coarse quantization is normally performed, and sometimes fine quantization is performed over the entire stationary region. At this time, if there are many occurrences (that is, when the signal line 1102 indicates that the buffer occupancy is large), coarse quantization is performed instead of fine quantization.

また、バッファオキパンシーを示す信号1102をタイ
マー702に供給する代わりに、信号1102を量子化
切り換え器701に供給することとし、バッファオキユ
パンシ−が大なるときは、タイマー702より供給され
るタイミ ング信号を無視するように構成してもほとん
ど同等の効果が得られる。
Also, instead of supplying the signal 1102 indicating buffer occupancy to the timer 702, the signal 1102 is supplied to the quantization switch 701, and when the buffer occupancy becomes large, the timer 702 supplies the signal 1102. Almost the same effect can be obtained even if the configuration is configured so that the switching signal is ignored.

次に第5図により復号器の説明をする。バッファーメモ
リー12には、伝送路1201により符号器から一定の
速度で送られて来る圧縮符号化された信号と、復号化す
る速度との整合を行い符号逆交換器13.14に出力す
る。符号逆交換器13は、多重化されている圧縮符号か
らモード符号のみ取り出し復号化する。復号された(量
子化特性を表す)信号は1301により符号逆交換器1
4に供給され、量子化切り換えの制御に用いられる。符
号逆交換器14は、多重化されている圧縮符号の内のモ
ード符号を除いた可変長符号の復号をこの量子化特性に
基づいて行い、復号された予測誤差信号を加算器15に
出力する。加算器15は、符号逆交換器14からの復号
された予測誤差信号とフレームメモリー16からの予測
信号を加算し復号信号をフレームメモリー16に供給す
るほか、線1501を介して復号器から出力される。
Next, the decoder will be explained with reference to FIG. The buffer memory 12 matches the compression-encoded signal sent from the encoder at a constant speed through the transmission path 1201 with the decoding speed, and outputs the signal to the code inverse exchanger 13.14. The code inverse exchanger 13 extracts only the mode code from the multiplexed compressed code and decodes it. The decoded signal (representing the quantization characteristic) is sent to the code inverse exchanger 1 by 1301.
4 and is used to control quantization switching. The code inverse exchanger 14 decodes the variable length code excluding the mode code among the multiplexed compressed codes based on this quantization characteristic, and outputs the decoded prediction error signal to the adder 15. . The adder 15 adds the decoded prediction error signal from the code inverse exchanger 14 and the prediction signal from the frame memory 16, and supplies the decoded signal to the frame memory 16. Ru.

(発明の効果) 以上詳しく説明したように、静止領域に粗い量子化を行
い静止領域の雑音により発生する情報を抑圧しつつ、フ
レーム単位に静止領域に対して中、密と段々と細かにな
る量子化を行うことにより、わずかの情報の追加により
従来問題となっていた静止領域の画面の汚れを除去する
ことができ、高い圧縮率のフレーム間符号化方式が実現
される。このように本発明を実用に供するとその効果は
きわめて大きい。
(Effects of the Invention) As explained in detail above, coarse quantization is performed on the static region to suppress information generated by noise in the static region, while quantizing the static region gradually from medium to fine on a frame-by-frame basis. By performing quantization, it is possible to remove screen smudges in static areas, which have been a problem in the past, by adding a small amount of information, and an interframe coding method with a high compression rate can be realized. When the present invention is put to practical use in this way, its effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の詳細な説明する図、る図で
ある。 図において 1・・・・・遅延回路     2・・・・・動静分離
回路3・・・・・減算器      4・・・・・量子
化回路5・・・・・加算器      6・・・・・フ
レームメモリー7・・・・・符号化制御回路  8・・
・・・符号変換器9・・・・・符号変換器   10・
・・・・多重化回路11・・・・・バッファーメモリー 12・・・・・バッファーメモリー 13・・・・・符号逆変換器  工4・・・・・符号逆
変換器15・・・・−加算i      16・・・・
・フレームメモリーである。 代二人弁理士内原  蝋答 邸□ 兜□ 邸□ ・ ・ ・ ・
FIGS. 1 and 2 are diagrams for explaining the present invention in detail. In the figure, 1...Delay circuit 2...Dynamic/static separation circuit 3...Subtractor 4...Quantization circuit 5...Adder 6... Frame memory 7... Encoding control circuit 8...
... Code converter 9 ... Code converter 10.
...Multiplexing circuit 11...Buffer memory 12...Buffer memory 13...Sign inverse converter Engineering 4...Sign inverse converter 15...- Addition i 16...
・Frame memory. Two Patent Attorneys Uchihara's House□ Kabuto□ House□ ・ ・ ・ ・

Claims (1)

【特許請求の範囲】[Claims] テレビジョン信号等、動画像信号をフレーム間予測符号
化するにあたり、動画像信号の動き領域と静止領域を分
離し、該静止領域に含まれる画素に対する予測誤差につ
いては、粗い量子化を行なうとともに、一定周期毎に1
画面については密な量子化を行なうことを特徴とするフ
レーム間符号化方式。
When performing interframe predictive coding on a moving image signal such as a television signal, the moving image signal is separated into a moving area and a still area, and prediction errors for pixels included in the still area are coarsely quantized. 1 every fixed period
An interframe encoding method that is characterized by performing dense quantization on the screen.
JP60014744A 1984-08-13 1985-01-29 Interframe coding method Expired - Lifetime JPH0797861B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP60014744A JPH0797861B2 (en) 1985-01-29 1985-01-29 Interframe coding method
CA000488530A CA1277416C (en) 1984-08-13 1985-08-12 Inter-frame predictive coding apparatus for video signal
US06/765,357 US4683494A (en) 1984-08-13 1985-08-13 Inter-frame predictive coding apparatus for video signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60014744A JPH0797861B2 (en) 1985-01-29 1985-01-29 Interframe coding method

Publications (2)

Publication Number Publication Date
JPS61173592A true JPS61173592A (en) 1986-08-05
JPH0797861B2 JPH0797861B2 (en) 1995-10-18

Family

ID=11869620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60014744A Expired - Lifetime JPH0797861B2 (en) 1984-08-13 1985-01-29 Interframe coding method

Country Status (1)

Country Link
JP (1) JPH0797861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512792B1 (en) 1998-01-08 2003-01-28 Nec Corporation Moving image encoding apparatus with a quantization step size different from the dequantization step size

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382218A (en) * 1976-12-28 1978-07-20 Nec Corp Television signal coding unit
JPS5729112A (en) * 1980-07-29 1982-02-17 Tokai Rika Co Ltd Load controlling method
JPS59141887A (en) * 1983-02-03 1984-08-14 Nec Corp Estimating and coding device of dynamic picture signal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382218A (en) * 1976-12-28 1978-07-20 Nec Corp Television signal coding unit
JPS5729112A (en) * 1980-07-29 1982-02-17 Tokai Rika Co Ltd Load controlling method
JPS59141887A (en) * 1983-02-03 1984-08-14 Nec Corp Estimating and coding device of dynamic picture signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512792B1 (en) 1998-01-08 2003-01-28 Nec Corporation Moving image encoding apparatus with a quantization step size different from the dequantization step size

Also Published As

Publication number Publication date
JPH0797861B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
KR100340370B1 (en) Image signal transmission method and apparatus
JP2744871B2 (en) Image signal encoding method and image signal encoding device
JP2000013799A (en) Device and method for motion compensation encoding and decoding
US5703649A (en) Digital video signal coding apparatus and method, and coded video signal decoding apparatus and method
US6016365A (en) Decoder having adaptive function of eliminating block effect
KR0128859B1 (en) Adaptive image coding controller
WO2000001158A1 (en) Encoder and encoding method
JP2614212B2 (en) Image signal encoding method and apparatus
JPH10229563A (en) Moving image encoding method and moving image encoder
JP3591700B2 (en) Motion compensated image encoding / decoding device and method thereof
JPS61173592A (en) Interframe encoding system
KR0172902B1 (en) Mpeg encoder
JP4399794B2 (en) Image coding apparatus and image coding method
JPS61173593A (en) Predictive encoding system
JPS61164390A (en) Adaptive forecast coding device of inter-frame and between frames of animation picture signal
EP0927954B1 (en) Image signal compression coding method and apparatus
KR100213283B1 (en) Moving picture encoder
JP2621337B2 (en) Predictive coding method for video using background prediction and its apparatus
GB2393060A (en) Manipulation of video compression
JPH08149481A (en) Device and method for encoding/decoding video signal
JP2005197879A (en) Video signal coding apparatus
JPH0545117B2 (en)
JPH06319124A (en) Picture data converter and its inverter
JP4353928B2 (en) Data compression method, recording method, and transmission method
KR0148142B1 (en) Image data analysis apparatus moving image decoding system