JPS61173124A - Pyroelectric type thermal image device - Google Patents

Pyroelectric type thermal image device

Info

Publication number
JPS61173124A
JPS61173124A JP60013689A JP1368985A JPS61173124A JP S61173124 A JPS61173124 A JP S61173124A JP 60013689 A JP60013689 A JP 60013689A JP 1368985 A JP1368985 A JP 1368985A JP S61173124 A JPS61173124 A JP S61173124A
Authority
JP
Japan
Prior art keywords
array
pyroelectric
measured
signal
gain amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60013689A
Other languages
Japanese (ja)
Inventor
Ryoichi Takayama
良一 高山
Yoshihiro Tomita
佳宏 冨田
Kenji Iijima
賢二 飯島
Ichiro Ueda
一朗 上田
Nozomi Ueshiba
上芝 望
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60013689A priority Critical patent/JPS61173124A/en
Publication of JPS61173124A publication Critical patent/JPS61173124A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • G01J5/485Temperature profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/026Control of working procedures of a pyrometer, other than calibration; Bandwidth calculation; Gain control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To form an exact image corresponding to the temp. distribution of an object to be measured by providing a programmable gain amplifier to a signal processing part which processes the outputs from respective element groups of a pyroelectric element array and applying an automatic sensitivity correcting function. CONSTITUTION:The IR rays from the object to be measured is imaged on the pyroelectric element array 3 through a lens 1. The output signal of the array 3 corresponding to the temp. distribution of the object to be measured is subjected to parallel-series conversion by a multiplexer 6 and after the signal is passed through the programmable gain amplifier 7, the signal is converted to a digital signal by an AD converter 8. The digital signal is stored in a memory 9 and is displayed on a display device 10. The gain amplifier 7 in this stage is preliminarily regulated by detecting the IR rays from the object to be measured having the same temp. distribution by the array 3 so that the signals of the respective element groups to be stored into the memory 9 attain the same value. The sensitivity variance of the array 3 and the circuit system is thus considerably decreased and the exact thermal image device is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は焦電型赤外線アレイを用いた熱画像装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thermal imaging device using a pyroelectric infrared array.

従来の技術 焦電型赤外線検出器を用いた熱画像装置には、焦電型赤
外線ビジコンあるいは薄膜化された焦電素子アレイが使
用される。上記熱画像装置は、従来のスキャンミラー、
回転プリズム等を用いた光学的走査機構が簡略化され、
室温動作が可能で装置の小型化が期待できるものである
BACKGROUND OF THE INVENTION A thermal imaging device using a pyroelectric infrared detector uses a pyroelectric infrared vidicon or a thin film pyroelectric element array. The above thermal imaging device uses a conventional scan mirror,
The optical scanning mechanism using a rotating prism etc. has been simplified,
It is possible to operate at room temperature and can be expected to make the device more compact.

焦電型ビジコンは、電子ビーム走査によって信号読出し
を行なうため、高電圧が必要・寿命が短かい等の欠点を
有する。一方、薄膜化された焦電素子アレイを用いた熱
画像装置は、一層の小型化・長寿命化・高空間分解能を
可能とする。しかし、薄膜化された焦電素子アレイは、
素子作製上から微細配列が困難であり、0.1叫程度で
100素子以上配列することは著しく困難で、開発途上
のものが多く、その構造・製造方法は種々提案されてい
る。
Since the pyroelectric vidicon performs signal readout by electron beam scanning, it has disadvantages such as requiring high voltage and short life. On the other hand, thermal imaging devices using thinned pyroelectric element arrays enable further miniaturization, longer lifespan, and higher spatial resolution. However, the thin film pyroelectric element array
Fine arraying is difficult from the viewpoint of device fabrication, and it is extremely difficult to array 100 or more elements at a resolution of about 0.1 mm.Many devices are still under development, and various structures and manufacturing methods have been proposed.

例えば、特開昭57−120830号公報によれば、!
2図に示す構造を提案している。
For example, according to Japanese Patent Application Laid-Open No. 57-120830,!
The structure shown in Figure 2 is proposed.

支持基板24の中央部には°、焦電素子感光部27が宙
吊シになるよう窓26が打抜かれておシ、焦電材料21
は、中央の感光部のみ分離されている。出力信号電極2
2は各々素子毎に分離されており、各素子のアース電極
23は支持基板24の中央部2oの周辺で連結され共通
になっている。
A window 26 is punched out in the center of the support substrate 24 so that the pyroelectric element photosensitive section 27 is suspended in the air.
In this case, only the central photosensitive area is separated. Output signal electrode 2
2 are separated for each element, and the ground electrodes 23 of each element are connected around the central portion 2o of the support substrate 24 and are common.

支持板24には、焦電材料21の端部が導電性接着剤2
6で接着固定されており、これで感光部27が宙吊シ状
態に保持されている〇 信号電極22は、リード線接続部分、微細なリード線と
接続され、信号処理回路(図示せず)に連結される。信
号処理回路の出力信号に基づき、表示装置が被測定物の
熱分布を表示する。
The support plate 24 has an end portion of the pyroelectric material 21 coated with a conductive adhesive 2.
6, and the photosensitive part 27 is held in a suspended state. The signal electrode 22 is connected to a lead wire connection part, a fine lead wire, and a signal processing circuit (not shown). connected to. A display device displays the heat distribution of the object to be measured based on the output signal of the signal processing circuit.

発明が解決しようとする問題点 上記構造による焦電アレイは、クロストークの低減と感
度向上を図るため、焦電材料21を信号電極22のピッ
チに合わせて切り込み分離する工程が必要である。この
工程にレーザ加工機による方法、化学エツチングによる
方法が提案されている0 しかし、上記切シ込み分離する工程が主因となり、各素
子の感度バラツキが大きい問題があった。
Problems to be Solved by the Invention The pyroelectric array having the above structure requires a step of cutting and separating the pyroelectric material 21 in accordance with the pitch of the signal electrodes 22 in order to reduce crosstalk and improve sensitivity. A method using a laser processing machine and a method using chemical etching have been proposed for this step. However, there is a problem in that the sensitivity of each element varies widely, mainly due to the above-mentioned step of cutting and separating.

したがって被測定物の温度分布に対応した画像信号を精
度良く得ることは困難であった。
Therefore, it has been difficult to accurately obtain an image signal corresponding to the temperature distribution of the object to be measured.

問題点を解決するための手段 焦電素子アレイと、各素子群の出力信号を増幅するマル
チアンプと、並直列変換するマルチプレクサと、AD変
換器と、メモリと、熱分布を表示する表示装置とを備え
るとともに、マルチプレクサとAD変換器との間にプロ
グラマブルゲインアンプを設ける。プログラマブルゲイ
ンアンプは、同一温度分布の被測定物を各素子群が検出
した場合、メモリに格納される各素子群のデジタル信号
が同一になるように設定されている0自動感度補正機能
を有するものである。
Means for solving the problem: A pyroelectric element array, a multi-amplifier that amplifies the output signal of each element group, a multiplexer that performs parallel-to-serial conversion, an AD converter, a memory, and a display device that displays heat distribution. A programmable gain amplifier is provided between the multiplexer and the AD converter. The programmable gain amplifier has a zero automatic sensitivity correction function that is set so that when each element group detects an object to be measured with the same temperature distribution, the digital signals of each element group stored in the memory are the same. It is.

作  用 最初に同一温度分布の被測定物を焦電素子プレイの各素
子群に検出させて、そのとき種々の値を示す各デジタル
信号を同一値に、かつ被測定物の温度を正しく示す値に
なるように設定したプログラマブルゲインアンプを、マ
ルチプレクサの出力側に設けることによって、焦電素子
アレイの各素子群の感度バラツキ及びマルチアンプのゲ
イン差等回路系のバラツキを皆無にし、被測定物の温度
分布に対応した画像信号を得る熱画像装置を実現できる
Function: First, each element group of the pyroelectric device detects the object to be measured with the same temperature distribution, and at that time, each digital signal showing various values is set to the same value, and a value that correctly indicates the temperature of the object to be measured is set. By installing a programmable gain amplifier set to A thermal imaging device that obtains image signals corresponding to temperature distribution can be realized.

実施例 第1図は本発明の焦電型熱画像装置の一実施例を示すブ
ロック図である。
Embodiment FIG. 1 is a block diagram showing an embodiment of the pyroelectric thermal imaging device of the present invention.

ゲルマニウム等からなる赤外線レンズ1により、被測定
物(図示せず)から放射される赤外線はチョッパ2を通
って焦電素子アレイ3に結像される。
Infrared rays emitted from an object to be measured (not shown) pass through a chopper 2 and are imaged onto a pyroelectric element array 3 by an infrared lens 1 made of germanium or the like.

チョッパ2は赤外線を断続する。Chopper 2 intermittents infrared rays.

焦電素子アレイ3は、特開昭57−120830号公報
に示されているように、研磨等により薄板化された焦電
素子を用いたもの、あるいは、スパッタ等により薄膜化
して構成したもの等を使用することができる。
The pyroelectric element array 3 may be constructed using pyroelectric elements made into a thin plate by polishing or the like, or made into a thin film by sputtering or the like, as shown in Japanese Patent Application Laid-Open No. 57-120830. can be used.

焦電素子アレイ3を構成する各素子群の出力信号は、被
測定物の温度分布に対応しており、マルチアンプ4に入
力され、所定の信号レベルまで増幅される。マルチアン
プ4の各出力信号は、テンプルホールド6でそれぞれの
値に保持された後、マルチプレクサ6で並直列変換され
る。並直列変換された信号は、プログラマブルゲインア
ンプ7を介してAD変換器8でデジタル変換されメモリ
eに格納される。
The output signal of each element group constituting the pyroelectric element array 3 corresponds to the temperature distribution of the object to be measured, and is input to the multi-amplifier 4 and amplified to a predetermined signal level. Each output signal of the multi-amplifier 4 is held at its respective value by a temple hold 6, and then parallel-serial converted by a multiplexer 6. The parallel-serial converted signal is digitally converted by an AD converter 8 via a programmable gain amplifier 7 and stored in a memory e.

プログラマブルゲインアンプ7はDA変換器を用いたも
ので、焦電素子アレイ3の感度及びマルチアンプ4のゲ
インのバラツキを補正する機能を有する〇 この補正は、同一温度分布の被測定物から放射される赤
外線を、焦電素子アレイ3の各素子群に検出させて、各
素子群の出力信号に対応するメモリ9に格納されたデジ
タル信号を同一値になるように調整することで実行され
る。
The programmable gain amplifier 7 uses a DA converter and has the function of correcting variations in the sensitivity of the pyroelectric element array 3 and the gain of the multi-amplifier 4. This correction is performed by adjusting the variation in the sensitivity of the pyroelectric element array 3 and the gain of the multi-amplifier 4. This is carried out by having each element group of the pyroelectric element array 3 detect infrared rays, and adjusting the digital signals stored in the memory 9 corresponding to the output signals of each element group so that they have the same value.

1oは、メモリ9に格納されたデータを画像信号として
被測定物の温度分布を表示する表示装置である。
1o is a display device that displays the temperature distribution of the object to be measured using the data stored in the memory 9 as an image signal.

11はCPUでチョッパ2の周期に同期して、各信号処
理系をコントロールする。
A CPU 11 controls each signal processing system in synchronization with the cycle of the chopper 2.

なお焦電素子アレイ3が一次元でも、スキャンミラー等
の光学系を用いて二次元の画像を表示することが可能で
ある。
Note that even if the pyroelectric element array 3 is one-dimensional, it is possible to display a two-dimensional image using an optical system such as a scan mirror.

また、焦電素子アレイ3に信号処理デバイスを付加し、
その信号が時間順次に出力されるものでも、本発明は有
用であることは言うまでもない。
In addition, a signal processing device is added to the pyroelectric element array 3,
It goes without saying that the present invention is useful even if the signal is output in time sequence.

発明の効果 信号処理系回路にプログラマブルゲインアンプを設けて
なる自動感度補正機能を有するので、焦電素子アレイの
各素子群の感度バラツキ、マルチアンプのゲイン差等回
路系のバラツキを著しく低減し、被測定物の温度分布に
対応した正確な画像信号を得る熱画像装置を実現するこ
とができる。
Effects of the Invention Since the signal processing system circuit has an automatic sensitivity correction function by providing a programmable gain amplifier, it is possible to significantly reduce sensitivity variations in each element group of a pyroelectric element array, variations in the circuit system such as gain differences of multi-amplifiers, A thermal imaging device that obtains accurate image signals corresponding to the temperature distribution of the object to be measured can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明焦電型熱画像装置の一実施例を示すブロ
ック図、第2図は熱画像装置に用いる焦電素子アレイの
一例を示し、(、)はその平面図、(ロ)はその断面図
である。 3・・・・・・焦電素子アレイ、4・・・・・・マルチ
アンプ、7・・・・・・プログラマブルゲインアンプ、
8・・・・・・AD変換器、9・・・・・・メモリ、1
0・・・・・・表示装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 (山)
Fig. 1 is a block diagram showing an embodiment of the pyroelectric thermal imaging device of the present invention, Fig. 2 shows an example of a pyroelectric element array used in the thermal imaging device, (,) is a plan view thereof, (b) is a sectional view thereof. 3...Pyroelectric element array, 4...Multi amplifier, 7...Programmable gain amplifier,
8...AD converter, 9...Memory, 1
0...Display device. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 (Mountain)

Claims (1)

【特許請求の範囲】[Claims] 赤外光学系と、前記赤外光学系を通った赤外線が入射さ
れる焦電素子アレイと、前記焦電素子アレイを構成する
各素子群の出力を処理する信号処理部と、前記信号処理
部の出力に基づき被測定物の温度分布を表示する表示装
置とを備え、前記信号処理部は前記焦電素子アレイの各
素子群の信号をデジタル変換してメモリに格納する機能
を有するとともに、前記メモリに格納されたデータにも
とづいて設定されるプログラマブルゲインアンプを備え
、前記プログラマブルゲインアンプにより前記各素子群
の感度補正を行うことを特徴とする焦電型熱画像装置。
an infrared optical system, a pyroelectric element array into which the infrared rays that have passed through the infrared optical system are incident, a signal processing unit that processes outputs of each element group constituting the pyroelectric element array, and the signal processing unit a display device that displays the temperature distribution of the object to be measured based on the output of the pyroelectric element array; A pyroelectric thermal imaging device comprising a programmable gain amplifier set based on data stored in a memory, the programmable gain amplifier correcting the sensitivity of each element group.
JP60013689A 1985-01-28 1985-01-28 Pyroelectric type thermal image device Pending JPS61173124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60013689A JPS61173124A (en) 1985-01-28 1985-01-28 Pyroelectric type thermal image device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60013689A JPS61173124A (en) 1985-01-28 1985-01-28 Pyroelectric type thermal image device

Publications (1)

Publication Number Publication Date
JPS61173124A true JPS61173124A (en) 1986-08-04

Family

ID=11840155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60013689A Pending JPS61173124A (en) 1985-01-28 1985-01-28 Pyroelectric type thermal image device

Country Status (1)

Country Link
JP (1) JPS61173124A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000576A1 (en) * 1991-06-24 1993-01-07 Matsushita Electric Industrial Co., Ltd. Device for sensing thermal image
JPH0694536A (en) * 1992-09-17 1994-04-05 Matsushita Electric Ind Co Ltd Thermal image detector
JPH06194136A (en) * 1992-09-17 1994-07-15 Matsushita Electric Ind Co Ltd Thermal image detecting device
US5763882A (en) * 1994-04-12 1998-06-09 Hughes Aircraft Company Low cost night vision camera
US6758595B2 (en) * 2000-03-13 2004-07-06 Csem Centre Suisse D' Electronique Et De Microtechnique Sa Imaging pyrometer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000576A1 (en) * 1991-06-24 1993-01-07 Matsushita Electric Industrial Co., Ltd. Device for sensing thermal image
JPH0694536A (en) * 1992-09-17 1994-04-05 Matsushita Electric Ind Co Ltd Thermal image detector
JPH06194136A (en) * 1992-09-17 1994-07-15 Matsushita Electric Ind Co Ltd Thermal image detecting device
US5763882A (en) * 1994-04-12 1998-06-09 Hughes Aircraft Company Low cost night vision camera
US6758595B2 (en) * 2000-03-13 2004-07-06 Csem Centre Suisse D' Electronique Et De Microtechnique Sa Imaging pyrometer

Similar Documents

Publication Publication Date Title
US4700076A (en) Solid-state X-ray receptor and method of making same
US4876453A (en) Method and apparatus for calibrating an imaging sensor
JPH0636599B2 (en) Light detection system
EP0509640A2 (en) Solid-state imaging device sensitive on two sides
JPS61173124A (en) Pyroelectric type thermal image device
US5120960A (en) Infrared image detecting device and method
EP0919794B1 (en) Thermal type infrared sensing device, fabrication method and infrared imaging apparatus
US3381133A (en) Scanning device for tracker using concentric photosensitive surfaces cooperating with oscillated image
US4845530A (en) Reduced projection type step- and repeat-exposure apparatus
JPH10227689A (en) Infrared detector and infrared focal plane array
US6710348B1 (en) Apparatus for sensing electromagnetic radiation
JPS62218823A (en) Infrared image pickup device
JP4300305B2 (en) Thermal infrared image sensor
JPS6145862B2 (en)
JPH0834566B2 (en) How to operate the radiation sensor
US20070222993A1 (en) Filter Unit Having a Tunable Wavelength, and an Arrangement with the Filter Unit
Erhardt et al. Silicon cylindrical lens arrays for improved photoresponse in focal plane arrays
JPH1016295A (en) Method and system for assembling and adjusting recording head
JPS58102114A (en) Spectrophotometer device
JPH0518816A (en) Pyroelectric array sensor
JPH11148868A (en) Heat detecting element and its manufacture
JPH05191733A (en) Solid-state image pickup device
JPH1038683A (en) Light quantity detector
JP2001044400A (en) Semiconductor infrared ray detecting element
TW432872B (en) Imaging circuit and method of spatial compensation