JPS61162932A - Brain wave measuring apparatus - Google Patents

Brain wave measuring apparatus

Info

Publication number
JPS61162932A
JPS61162932A JP60003787A JP378785A JPS61162932A JP S61162932 A JPS61162932 A JP S61162932A JP 60003787 A JP60003787 A JP 60003787A JP 378785 A JP378785 A JP 378785A JP S61162932 A JPS61162932 A JP S61162932A
Authority
JP
Japan
Prior art keywords
pulse wave
time
pulse
light
meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60003787A
Other languages
Japanese (ja)
Inventor
稲場 文男
賢浩 芦
明 大友
隆之 鈴木
大原 到
田口 喜雄
葛西 森夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60003787A priority Critical patent/JPS61162932A/en
Publication of JPS61162932A publication Critical patent/JPS61162932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 【発明の利用分野〕 本発明は、脈波測定装置、特に循環器系の臨床診断に用
いられる容積脈波測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a pulse wave measuring device, and particularly to a volume pulse wave measuring device used for clinical diagnosis of the circulatory system.

〔発明の背景〕[Background of the invention]

指尖における脈波の測定結果を循環器系の臨床診断に用
いるために、従来から光電指尖容積脈波計が用いられて
いる。これは指尖部の毛細血管の容積変化を照射光の吸
収量の変化として電気的に検出するもので原理が簡単で
あって、比較的手軽に脈波を測定することが゛でき非侵
襲性であるということから患者の循−器系の診断に用い
られている。しかし、この光電指尖容積脈波計は、フィ
ラメントにタングステンを用いたタングステンランプを
光源とし、指尖を透過した光を受ける受光器に太陽電池
などを用いていたため、光源からの光が広がり弱いため
、S/Nが悪くその結果信頼度が低く、末梢循環器系に
若干障害が生じている程度の患者の診断には使用できず
、また光源のタングステンランプからの熱放射が患者に
対し負荷となる等の問題もあるため、広く診断には使用
することはできなかった。
Photoelectric fingertip plethysmometers have conventionally been used to use the measurement results of pulse waves at fingertips for clinical diagnosis of the circulatory system. This method electrically detects changes in the volume of capillaries at the fingertips as changes in the amount of absorbed light.The principle is simple, pulse waves can be measured relatively easily, and it is non-invasive. Because of this, it is used to diagnose the circulatory system of patients. However, this photoelectric fingertip plethysmometer uses a tungsten lamp with a tungsten filament as the light source, and uses a solar cell or other device for the receiver that receives the light that passes through the fingertip, so the light from the light source spreads out and is weak. Therefore, the S/N is poor, resulting in low reliability, and it cannot be used for diagnosis of patients with slight peripheral circulatory system disorders, and the heat radiation from the tungsten lamp as the light source is a burden on the patient. It could not be widely used for diagnosis because of problems such as .

〔発明の目的〕[Purpose of the invention]

本発明は、このような問題点を除去し、末梢循環器系障
害の定性的及び定量的評価の可能な脈波測定装置を提供
することを目的とするものである。
It is an object of the present invention to provide a pulse wave measuring device that eliminates such problems and enables qualitative and quantitative evaluation of peripheral circulatory system disorders.

〔発明の概要〕[Summary of the invention]

本発明は、手足の指尖部よりなる測定部位に光を照射す
る発光ダイオードと、前記測定部位を透過してきた該発
光ダイオードの光量を測定するフォトトランジスタとよ
りなるトランスジューサ及び脈波計本体よりなる第一の
脈波計と、該第一の脈波形と同一構成を有し、耳等の標
準部位における脈波を前記第一の脈波計と同時に測定す
る第二の脈波計と、前記第一及び前記第二の脈波計の測
定結果から脈波の周期、切痕時間、立上り時間及び前記
第一の脈波計の測定脈波の到達時刻の前記第二の脈波計
の測定脈波の到達時刻に対する遅れ時間を演算する演算
手段を有することを特徴とするものである。
The present invention comprises a transducer including a light emitting diode that irradiates light onto a measurement site consisting of the tip of a finger or a finger, a phototransistor that measures the amount of light from the light emitting diode that has passed through the measurement site, and a pulse wave meter main body. a first pulse wave meter; a second pulse wave meter that has the same configuration as the first pulse waveform and measures pulse waves at a standard site such as the ear at the same time as the first pulse wave meter; From the measurement results of the first and second sphygmographs, the pulse wave period, notch time, rise time, and arrival time of the pulse wave measured by the first sphygmograph are measured by the second sphygmograph. The present invention is characterized by having calculation means for calculating a delay time with respect to the arrival time of the pulse wave.

〔発明の実施例〕[Embodiments of the invention]

以下、実施例について説明する。 Examples will be described below.

第1図は一実施例の脈波測定装置の構成、第2図はその
要部の構成の一部を示すもので、脈波の測定時の状態を
示している。この図で、1は指。
FIG. 1 shows the configuration of a pulse wave measuring device according to an embodiment, and FIG. 2 shows a part of the configuration of its main parts, and shows the state during pulse wave measurement. In this diagram, 1 is the finger.

2は耳を示し、3及び4はそれぞれ発光ダイオード(L
ED)、5及び6はそれぞれフォトトランジスタを示し
、7は脈波計本体部、8はA/Dコンバータ、9はマイ
クロコンピュータ、10はプリンタ、11はフロッピー
デスク、12はカラーディスプレイを示し、13はLE
Dの電源、14はI/Vコンバータ、15,16、及び
17はそれぞれ信号のパイ・パス・フィルタ及びバリア
プル・ゲイン・アンプ、DCオフセット、18及び19
は較正用のバリアプル・ゲイン・アンプ及びロウ・パス
・フィルタを示している。
2 represents an ear, and 3 and 4 each represent a light emitting diode (L
ED), 5 and 6 each indicate a phototransistor, 7 a pulse wave meter body, 8 an A/D converter, 9 a microcomputer, 10 a printer, 11 a floppy desk, 12 a color display, 13 is LE
D power supply, 14 is an I/V converter, 15, 16, and 17 are signal pie-pass filters and variable gain amplifiers, DC offsets, 18 and 19, respectively.
shows a variable pull gain amplifier and low pass filter for calibration.

すなわち、この実施例の脈波測定装置はLEDとフォト
トランジスタとからなるトランスジューサと脈波計本体
部とからなり、第2図の構成を有する脈波計を2組有し
、入力が2チヤンネルで2ケ所の同時測定が可能になっ
ている。トランスジューサに使用したLEDはその中心
波長は940nm、出力は1.8mW、ビーム径は照射
面上でφ1.5mm、フォトトランジスタの受光半値角
は10°である。A/Dコンバータはその入力電圧はO
〜5vで、データは8ビツト、変換時間は約120μS
である。
That is, the pulse wave measuring device of this embodiment consists of a transducer consisting of an LED and a phototransistor, and a pulse wave meter main body, and has two sets of pulse wave meters having the configuration shown in FIG. 2, and has two input channels. Simultaneous measurement of two locations is possible. The LED used for the transducer has a center wavelength of 940 nm, an output of 1.8 mW, a beam diameter of φ1.5 mm on the irradiation surface, and a phototransistor's light reception half-power angle of 10°. The input voltage of the A/D converter is O
~5V, data is 8 bits, conversion time is about 120μS
It is.

次に、この脈波測定装置の作用効果を、この脈波測定装
置を用いて行なった末梢循環器系障害の定量的評価に基
づいて説明する。
Next, the effects of this pulse wave measuring device will be explained based on quantitative evaluation of peripheral circulatory system disorders performed using this pulse wave measuring device.

被検者を23.2℃に保った恒温室内のベッドで、仰臥
位のまま約10分間安静にさせ、測定部位(手足の指尖
部)とコントロールである耳殻部とにトランスジューサ
を取り付は黒い布により遮光する。CRTに表示さ九た
脈波をモニタし、安定した状態を見はからってデータを
サンプリングする。測定部位を変え1以上の操作を繰り
返す。
The subject was kept at rest in a supine position for about 10 minutes on a bed in a constant temperature room kept at 23.2°C, and transducers were attached to the measurement site (tips of fingers and toes) and the ear shell as a control. is shaded by black cloth. The pulse wave displayed on the CRT is monitored, and data is sampled when a stable state is detected. Change the measurement site and repeat one or more operations.

そして信号に重畳した雑音除去のために多項式適合平滑
化法、波形解析のために平滑化微分法、及び最大エンド
ビー法(MEM)を適用しコンピュータにより演算処理
した。波形解析等の演算処理は測定後一括して行った。
Then, a polynomial adaptive smoothing method was applied to remove noise superimposed on the signal, a smoothing differential method was applied to waveform analysis, and a maximum Endby method (MEM) was applied, and calculation processing was performed by a computer. Arithmetic processing such as waveform analysis was performed all at once after measurement.

測定対象は、主幹動脈が開存している無症状の健康人1
0例、主幹動脈が種々閉塞している患者10例の計20
例である。
The measurement target is asymptomatic healthy person 1 whose main artery is patent.
A total of 20 patients: 0 patients and 10 patients with various occlusions of the main arteries.
This is an example.

第3図、第4図及び第5図はこの実施例の脈波測定装置
を用いて得られた足指の脈波を示すもので、それぞれ原
波形、平滑化処理後の波形、微分波形を示し、横軸には
時間(sec、) 、縦軸にはそれぞれ入力電圧(Vo
 it) 、入力電圧(Volt)、微分係数(V/s
ee、)がとってあり、T、To。
Figures 3, 4, and 5 show toe pulse waves obtained using the pulse wave measuring device of this embodiment, and show the original waveform, the smoothed waveform, and the differential waveform, respectively. The horizontal axis represents time (sec,), and the vertical axis represents input voltage (Vo).
it), input voltage (Volt), differential coefficient (V/s
ee,) is taken, T, To.

Tuはそれぞれ、周期切痕時間、立ち上り時間を示して
いる。
Tu indicates the periodic notch time and rise time, respectively.

第6図及び第7図は指と耳との波形を重畳して示すもの
で、それぞれ平滑化処理後の波形及び−次微分波形を示
し、横軸には時間(see、) 、縦軸にはそれぞれ入
力電圧(Vo it) 、微分係数(V/see、)が
とってあり、Tが足指、Eが耳における脈波を示し、T
、To、Tuの他に耳の脈波到達時刻に対する遅れ時間
Tdが示されている。第図は障害のある場合を示してい
る。これらの図で、横軸、縦軸にはそれぞれ周波数(H
z)、相対スペクトルがとってあり、f、、 f、はそ
れぞれ相対スペクトルが一10dBとなる周波数、−2
0dBとなる周波数を示している。そして正常な場合を
示す第8図はスペクトルの最大値が71938.1でノ
イズ差は、 、784879でfl及びf、はそれぞれ
2.37 (Hz)、4.41 (Hz)であるのに対
して、障害のある場合を示す第9図はスペクトルの最大
値が38389.6 、ノイズ差1.69489でfl
及びf、はそれぞれ2.32 (Hz)、3.11(H
z)であった。
Figures 6 and 7 show the waveforms of the finger and ear superimposed, and show the waveform after smoothing processing and the −th order differential waveform, respectively, with the horizontal axis representing time (see, ) and the vertical axis representing The input voltage (Vo it) and the differential coefficient (V/see, ) are taken respectively, T indicates the pulse wave at the toe, E indicates the pulse wave at the ear, and T
, To, and Tu, a delay time Td with respect to the arrival time of the ear pulse wave is shown. The figure shows a case where there is a failure. In these figures, the horizontal and vertical axes represent frequency (H
z), the relative spectrum is taken, and f,, f are the frequencies at which the relative spectrum is 110 dB, -2
It shows the frequency at which it is 0 dB. In Figure 8, which shows the normal case, the maximum value of the spectrum is 71938.1 and the noise difference is , 784879, fl and f are 2.37 (Hz) and 4.41 (Hz), respectively. In Figure 9, which shows the case where there is a disturbance, the maximum value of the spectrum is 38389.6, and the noise difference is 1.69489.
and f are 2.32 (Hz) and 3.11 (H
z).

第10図及び第11図は、以上のようにして得られた測
定値を前脛骨動脈と後脛骨動脈の開存状況に従って分類
したもので、TuとTdとの関係及びflとflとの関
係を示している。第10図は横軸、縦軸にそれぞれT 
u (sec、) 、T e (see、)が、第11
図は横軸にf t(Hz ) 、縦軸にf2(Hz)が
とってあり、ta、、tp。はそれぞれ前脛骨動脈、後
脛骨動脈を示し、+は主幹動脈の開存、−は閉塞を示し
ている。
Figures 10 and 11 show the measured values obtained as described above classified according to the patency status of the anterior and posterior tibial arteries, and the relationship between Tu and Td and the relationship between fl and fl. It shows. Figure 10 shows T on the horizontal and vertical axes, respectively.
u (sec,), T e (see,) are the 11th
In the figure, the horizontal axis is f t (Hz), the vertical axis is f2 (Hz), and ta, tp. indicate the anterior tibial artery and the posterior tibial artery, respectively, + indicates patency of the main artery, and - indicates occlusion.

第1表及び第2表は、それぞれ第10図及び第11図の
場合の実測値を示したもので、Tu。
Tables 1 and 2 show actual measured values in the cases of FIGS. 10 and 11, respectively.

Tdおよびfl、f、の平均値(Av)、標準偏差(σ
)、標本数(N)が示しである。
The average value (Av) and standard deviation (σ
), the number of samples (N) is indicated.

これらの図及び表はta、、tp、の全閉塞例の大部分
はTu待時間0.3 秒以上、あるいはTd待時間0.
2 秒以上の範囲に存在し、fitf2がそれぞれ2 
、5 Hz 、 3 、5 Hz以下の範囲では、標本
数N=21で、T u =0.203±0.034se
c、、 f、=5.28±1.40Hzが得られ、共に
閉塞の群(図中0印)ではN=40で、T u =0.
338±0.064sec、、 f、 ==3.82±
1.32Hzなる値が得られ、これら2群の間に明確な
差異が見られた。動脈の状態が両者の中間にあたる他の
2群(図中・印及びΔ印)ではTuは両者の中間。
These figures and tables show that in most cases of total blockage of ta, tp, the Tu waiting time is 0.3 seconds or more, or the Td waiting time is 0.3 seconds or more.
2 seconds or more, and fitf2 is 2 seconds or more.
, 5 Hz, 3, in the range below 5 Hz, the number of samples N = 21, T u = 0.203 ± 0.034 se
c,, f, = 5.28 ± 1.40 Hz were obtained, and in both the occluded group (marked 0 in the figure), N = 40 and T u = 0.
338±0.064sec, f, ==3.82±
A value of 1.32 Hz was obtained, and a clear difference was seen between these two groups. In the other two groups (marked ・ and Δ in the figure) whose arterial conditions are between the two, Tu is between the two.

f8は共に閉塞の群と同程度の値をとることも判明した
It was also found that both f8 values were comparable to those in the occlusion group.

以上の如く、この実施例の脈波測定装置は、脈波の波形
分析を行ない末梢循環器に障害のある場合に、正常群と
非正常群の間に明確な差異が見られる如き十分大きなS
/N比を有している。
As described above, the pulse wave measuring device of this embodiment analyzes the waveform of a pulse wave, and when there is a disorder in the peripheral circulatory system, the S
/N ratio.

また、2チヤンネルの脈波計を有しているため、その一
つによって指尖の脈波を測定し、これと他の一つによっ
て例えば耳の脈波を測定し、耳の脈波到達時刻に対する
指尖の脈波の遅れ時間の測定が可能となり循環器障害の
定量的な評価・診断をより有効なものとすることが可能
となった。そして例えば、マイクロコンピュータによる
波形解析の結果、正常群と非正常群との間に明確な差異
を生せしめることが可能となり、循環器系障害の定量的
な評価・診断のための多くの客観的な情報を提供可能と
するものである。
In addition, since it has a two-channel pulse wave meter, one of them measures the fingertip pulse wave, and the other one measures the ear pulse wave, for example, and the time when the ear pulse wave arrives. It has become possible to measure the delay time of the pulse wave at the fingertip, making quantitative evaluation and diagnosis of circulatory disorders more effective. For example, as a result of waveform analysis using a microcomputer, it has become possible to clearly differentiate between a normal group and an abnormal group. This makes it possible to provide useful information.

またこの脈波測定装置はトランスジューサにLED、フ
ォトトランジスタを用いているため。
Also, this pulse wave measuring device uses an LED and a phototransistor for the transducer.

タングステンランプを用いる場合の如き熱負荷を患者に
与えることもなく、その結果、脈波高き長時間連続して
記録して、薬剤投与等の効果判定も可能となり、循環器
系障害の評価・治療の上でも有効な手段となりうるもの
である。
It does not impose a heat load on the patient, unlike when using a tungsten lamp, and as a result, high pulse waves can be recorded continuously for a long period of time, making it possible to judge the effectiveness of drug administration, etc., and to evaluate and treat circulatory system disorders. It can also be an effective means.

〔発明の効果〕〔Effect of the invention〕

本発明は、末梢循環器系障害の定性的及び定量的評価の
可能な脈波測定装置を提供可能とするもので、産業上の
効果の大なるものである。
The present invention makes it possible to provide a pulse wave measuring device capable of qualitatively and quantitatively evaluating peripheral circulatory system disorders, and has great industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の脈波測定装置の一実施例の構成図、第
2図は第1図の要部の構成図、第3図。 第4図及び第5図は第1図の実施例を用いて得られた脈
波の原波形、平滑化処理後の波形及び微分波形の説明図
、第6図及び第7図は指と耳における脈波波形を平滑化
処理した後の波形及び−次微分波形が重ねて示しである
説明図、第8図及び第9図はMEMによって得られた脈
波のスペクトルの説明図、第10図及び第11図は、第
1図の実施例を用いて得られた脈波の測定結果を前脛骨
動脈と後脛骨動脈の開存状況に従って分類して示した線
図である。 1・・・指、2・・・耳、3,4・・・発光ダイオード
、5゜6・・・フォトトランジスタ、7・・・脈波形本
体部、8・・・A/Dコンバータ、9・・・マイクロコ
ンピュータ、10・・・プリンタ、11・・・フロッピ
ーデスク、12・・・カラーデスプレイ。
FIG. 1 is a block diagram of an embodiment of the pulse wave measuring device of the present invention, FIG. 2 is a block diagram of the main parts of FIG. 1, and FIG. 4 and 5 are explanatory diagrams of the original waveform, the waveform after smoothing processing, and the differential waveform of the pulse wave obtained using the embodiment of FIG. 1, and FIGS. 6 and 7 are illustrations of the finger and ear. 8 and 9 are explanatory diagrams showing the pulse wave spectrum obtained by MEM, and FIG. and FIG. 11 is a diagram showing the measurement results of pulse waves obtained using the embodiment of FIG. 1, classified according to the patency status of the anterior tibial artery and the posterior tibial artery. DESCRIPTION OF SYMBOLS 1... Finger, 2... Ear, 3, 4... Light emitting diode, 5° 6... Phototransistor, 7... Pulse waveform body part, 8... A/D converter, 9... ... Microcomputer, 10... Printer, 11... Floppy desk, 12... Color display.

Claims (1)

【特許請求の範囲】[Claims] 1、手足の指尖部等よりなる測定部位に光を照射する発
光ダイオードと、前記測定部位を透過してきた該発光ダ
イオードの光量を測定するフォトトランジスタとよりな
るトランスジューサ及び脈波計本体よりなる第一の脈波
計と、該第一の脈波形と同一構成を有し、耳等の標準部
位における脈波を前記第一の脈波計と同時に測定する第
二の脈波計と、前記第一及び前記第二の脈波計の測定結
果から脈波の周期、切痕時間、立上り時間及び前記第一
の脈波計の測定脈波の到達時刻の前記第二の脈波計の測
定脈波の到達時刻に対する遅れ時間を演算する演算手段
を有することを特徴とする脈波測定装置。
1. A transducer consisting of a light-emitting diode that irradiates light onto a measurement site such as the tip of a finger or a finger, and a phototransistor that measures the amount of light from the light-emitting diode that has passed through the measurement site; and a pulse wave meter main body. a second pulse wave meter that has the same configuration as the first pulse waveform and measures pulse waves at a standard site such as the ear at the same time as the first pulse wave meter; Based on the measurement results of the first and second pulse wave meters, the pulse wave period, notch time, rise time, and arrival time of the measured pulse wave of the first pulse wave meter are measured by the second pulse wave meter. A pulse wave measuring device characterized by having a calculation means for calculating a delay time with respect to a wave arrival time.
JP60003787A 1985-01-11 1985-01-11 Brain wave measuring apparatus Pending JPS61162932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60003787A JPS61162932A (en) 1985-01-11 1985-01-11 Brain wave measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60003787A JPS61162932A (en) 1985-01-11 1985-01-11 Brain wave measuring apparatus

Publications (1)

Publication Number Publication Date
JPS61162932A true JPS61162932A (en) 1986-07-23

Family

ID=11566890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60003787A Pending JPS61162932A (en) 1985-01-11 1985-01-11 Brain wave measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61162932A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261235B1 (en) 1993-01-07 2001-07-17 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
JP2012161556A (en) * 2011-02-09 2012-08-30 Seiko Epson Corp Pulse wave measurement device and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110980A (en) * 1980-12-27 1982-07-10 Citizen Watch Co Ltd Wrist watch with sphygmometer
JPS57117830A (en) * 1981-01-14 1982-07-22 Matsushita Electric Works Ltd Pulse detecting circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110980A (en) * 1980-12-27 1982-07-10 Citizen Watch Co Ltd Wrist watch with sphygmometer
JPS57117830A (en) * 1981-01-14 1982-07-22 Matsushita Electric Works Ltd Pulse detecting circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261235B1 (en) 1993-01-07 2001-07-17 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
US6364842B1 (en) 1993-01-07 2002-04-02 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
US6767329B2 (en) 1993-01-07 2004-07-27 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
US7192402B2 (en) 1993-01-07 2007-03-20 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
US7465274B2 (en) 1993-01-07 2008-12-16 Seiko Epson Corporation Diagnostic apparatus for analyzing arterial pulse waves
JP2012161556A (en) * 2011-02-09 2012-08-30 Seiko Epson Corp Pulse wave measurement device and program

Similar Documents

Publication Publication Date Title
Sherebrin et al. Frequency analysis of the peripheral pulse wave detected in the finger with a photoplethysmograph
Drinnan et al. Relation between heart rate and pulse transit time during paced respiration
US5033472A (en) Method of and apparatus for analyzing propagation of arterial pulse waves through the circulatory system
EP0515482B1 (en) A monitor which analyses puls frequency by photoplethysmographic measurement and a measuring method therefor
KR101286402B1 (en) Mobile Diagnosis Device
US6261236B1 (en) Bioresonance feedback method and apparatus
EP0261788A1 (en) Multiple-pulse method and apparatus for use in oximetry
Budidha et al. Design and development of a modular, multichannel photoplethysmography system
JP2004321807A (en) Apparatus and method for diagnosing sleep apnea
JP2693958B2 (en) Oximeter and method for measuring blood components in arteries
Nitzan et al. Low-frequency variability in the blood volume and in the blood volume pulse measured by photoplethysmography
Allen et al. Photoplethysmography assessments in cardiovascular disease
WO1985003211A1 (en) Measurement of physiological parameter
Bestbier et al. Development of a vital signs monitoring wireless ear probe
JPS61162932A (en) Brain wave measuring apparatus
Ramli et al. Design and fabrication of a low cost heart monitor using reflectance photoplethysmogram
Roy et al. Estimation of respiration rate from motion corrupted photoplethysmogram: A combined time and frequency domain approach
TW201106920A (en) Computer system for acquiring physiological information
Yang et al. Cerebrovascular impedance estimation with near-infrared and diffuse correlation spectroscopy
Jadvar et al. Computer analysis of the electrocardiogram during esophageal pacing cardiac stress
RU2233620C1 (en) Pulse oxymeter
RU2175523C1 (en) Pulse oximeter
Liao et al. Effect of filtering on pulse wave transit time Measured by photoplethysmography
Gurzhin et al. Methods of Biomedical Signal Registration and Patient Functional State Control in Complex Chronomagnetotherapy
Huotari et al. Arterial pulse wave analysis based on PPG and EMFi measurements