JPS61160028A - Temperature monitoring apparatus - Google Patents

Temperature monitoring apparatus

Info

Publication number
JPS61160028A
JPS61160028A JP60000235A JP23585A JPS61160028A JP S61160028 A JPS61160028 A JP S61160028A JP 60000235 A JP60000235 A JP 60000235A JP 23585 A JP23585 A JP 23585A JP S61160028 A JPS61160028 A JP S61160028A
Authority
JP
Japan
Prior art keywords
light
temperature
wavelengths
light source
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60000235A
Other languages
Japanese (ja)
Inventor
Sakae Sugiyama
栄 杉山
Makoto Senoo
誠 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60000235A priority Critical patent/JPS61160028A/en
Publication of JPS61160028A publication Critical patent/JPS61160028A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To make it possible to measure temp. with high accuracy even when the optical characteristics of an object are unknown, by operating surface temp. after calculating the radiation ratio showing the surface state of the object by using a light source comprising a plurality of wavelengths. CONSTITUTION:Two light beams having different wavelengths are allowed to irradiate an object 1 from a light source 2 and the reflected light and radiant rays are received by an infrared TV camera 3. To lights with wavelengths lambda1, lambda2, Af2(T)-Bf1(T)=Af2(Ts)-Bf1(Ts) and A=[E1-f1(Rs)]g(lambda2), B=[E2-f2f2(Ts)]g(lambda1) are formed and the surface temp. T of the object can be calculated by an operation circuit 4. By this method, the monitoring and inspection of various objects can be performed efficiently and certainly.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は温度監視装置に係り、特に対象物の物質、表面
状態が異る場合でも高精度で温度を測定するのに好適な
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a temperature monitoring device, and particularly to a device suitable for measuring temperature with high accuracy even when the materials and surface conditions of objects are different.

〔発明の背景〕[Background of the invention]

物体表面の温度を遠隔で測定する装置として赤外線TV
がある。この代表的な従来例として、R0f3arbe
rの発表(Non (::ontact Temper
atureMeasurement of Metal
 3urfaces in theOpen、ISA 
1978 ANNUAL C0NFERENCE。
Infrared TV as a device to remotely measure the temperature of the surface of an object
There is. As a typical conventional example, R0f3arbe
Announcement of r (Non (:: contact Temper
atureMeasurement of Metal
3 surfaces in the Open, ISA
1978 ANNUAL CONFERENCE.

p417〜434)がある。この方法による温度測定で
は、対象物の表面から放射される赤外線の強度を測定す
る場合、或いは対象物に赤外線を照射して、反射された
赤外線を測定する場合でも、対象物の赤外線放射率εが
既知でなければならない。
p417-434). In temperature measurement using this method, whether the intensity of infrared rays emitted from the surface of the object is measured or the infrared rays reflected from the object are measured, the infrared emissivity ε of the object is must be known.

現実には対象物の物質や表面状態が不明、従って赤外線
放射率eは未知である場合が多いので、εが既知である
ことを前提にした従来方法では高精度の測定は難しい。
In reality, the substance and surface condition of the object are unknown, and therefore the infrared emissivity e is often unknown. Therefore, it is difficult to measure with high precision using conventional methods that assume that ε is known.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、対象物の光学的特性が未知の場合でも
高精度の温度測定が可能な温度監視装置を提供するにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a temperature monitoring device that can measure temperature with high accuracy even when the optical characteristics of an object are unknown.

〔発明の概要〕[Summary of the invention]

本発明は、と記目的を達成するために、波長の異なる数
稿の光を対象物に照射することによって、赤外線放射率
Cを算定し、対象物の表面温度を測定するものである。
In order to achieve the above object, the present invention calculates the infrared emissivity C and measures the surface temperature of the object by irradiating the object with several types of light having different wavelengths.

〔発明の実施例〕[Embodiments of the invention]

本発明について以下、第1図を用いて説明する。 The present invention will be explained below using FIG. 1.

同図において、対象物1に光源2から波長λの光を照射
すると、赤外線TVカメラ3では強度Eの光を受光する
。この強度Eは(1)式で表わされる。
In the figure, when an object 1 is irradiated with light of a wavelength λ from a light source 2, an infrared TV camera 3 receives light of an intensity E. This intensity E is expressed by equation (1).

E=(1−ε)f(TS)+εf (T)  ・・・・
・・・・・・・・・・・ (1)ここで、 E:赤外線TVカメラの受光強度 ε:対象物の光の放射率 TS:周囲温度 T:対象物の表面温度 f:黒体の放射光の強さく温度の関数)光の放射率εは
(2)式で近似することができる。
E=(1-ε)f(TS)+εf(T)...
・・・・・・・・・・・・ (1) Here, E: Intensity of light received by the infrared TV camera ε: Emissivity of light of the object TS: Ambient temperature T: Surface temperature of the object f: Black body temperature The emissivity ε of light, which is a function of the intensity of emitted light and the temperature, can be approximated by equation (2).

ε=ε。g(λ)・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・ (2
)ここで、 ε0;対象物の物質、表面状態に係る定数λ:光の波長 g:放射率(波長の関数) 上記の(1)、(2)式において、関数f1 gは物理
的実験において予め求めることができる。また周囲温度
Tは、各種温度計で簡単に計れるので既知である。残る
は、対象物に係る定数ε。および測定の項目である温[
Tの2つが未知数となる。2つの未知数を解くために、
波長の異る2つの光を対象物に照射し、そこから反射お
よび輻射される光を赤外線TVカメラで受光する方法を
発明した。
ε=ε. g(λ)・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・ (2
) Here, ε0: Constant related to the material and surface state of the object λ: Wavelength of light g: Emissivity (function of wavelength) In the above equations (1) and (2), the function f1 g is It can be obtained in advance. Furthermore, the ambient temperature T is known because it can be easily measured with various thermometers. What remains is a constant ε related to the object. and the measurement item temperature [
Two of T are unknown quantities. To solve the two unknowns,
We have invented a method in which two lights of different wavelengths are irradiated onto an object, and the reflected and radiated light is received by an infrared TV camera.

波長λ1および波長λ2の光に対して、(3)および(
4)式が成立する。
For light of wavelength λ1 and wavelength λ2, (3) and (
4) The formula holds true.

E、= f、 (TS)+68g(λ、)[:fl(T
)−f□(TS) )・・・・・・・・・・・・・・・
・・・・・・・・・ (3)E2 = ’2 (TS)
+68g(λ、)Cf2(T)−f2(TS))・・・
・・・・・・・・・・・・・・・・・・・・・ (4)
ここで、添字1.2は波長λ1、λ2に対応するもので
ある。
E,=f,(TS)+68g(λ,)[:fl(T
)−f□(TS) )・・・・・・・・・・・・・・・
・・・・・・・・・ (3) E2 = '2 (TS)
+68g(λ,)Cf2(T)-f2(TS))...
・・・・・・・・・・・・・・・・・・・・・ (4)
Here, the subscript 1.2 corresponds to the wavelengths λ1 and λ2.

上記の(3)および(4)式から(5)式が導出できる
Equation (5) can be derived from the above equations (3) and (4).

Af2CT)−Bf工(T) −Af2(TS)−Bf
l(TS)・・・・・・・・・・・・・・・・・・・・
・・・・ (5)A= (El−fl(TS) ) g
 (λ2)・・・・・・・・・・・・・・・・・・ (
6)B= (E2−f2(TS) )g (λ、) ・
・・・・・・・・・・・・・・・・・ (7)(5)式
から、対象物の表面温#Tを導出することができる。
Af2CT)-Bf Engineering (T)-Af2(TS)-Bf
l(TS)・・・・・・・・・・・・・・・・・・・・・
... (5) A= (El-fl(TS)) g
(λ2)・・・・・・・・・・・・・・・ (
6) B= (E2-f2(TS))g (λ,) ・
・・・・・・・・・・・・・・・・・・ From equations (7) and (5), the surface temperature #T of the object can be derived.

第1図における演算回路4において(5)式を演算する
。演算回路4の一実施例を第2図に示す。関数発生器4
1,42、加算器43,44、乗算器45.46および
演算器47の構成にて、表面温度Tを出力する。とくに
、演算器47では、上記(5)式の関係式から温度Tを
逆算する。
The calculation circuit 4 in FIG. 1 calculates equation (5). An embodiment of the arithmetic circuit 4 is shown in FIG. Function generator 4
1, 42, adders 43, 44, multipliers 45, 46, and arithmetic unit 47, the surface temperature T is output. In particular, the computing unit 47 back-calculates the temperature T from the relational expression (5) above.

光源2からは、波長λ1およびλ2を同時に含む光を照
射するか、または単色光(λ1またはλ2)を順次照射
するか、または、広帯域の光源と単色光を通過させる色
フィルタの組合せにより対象物に照射すればよい。
The light source 2 irradiates the object with light containing wavelengths λ1 and λ2 simultaneously, sequentially irradiates monochromatic light (λ1 or λ2), or uses a combination of a broadband light source and a color filter that passes monochromatic light. Just irradiate it.

〔発明の効果〕〔Effect of the invention〕

以上のごとく、本発明によれば、表面状態(いい変えれ
ば放射率)が未知の対象物に対しても、表面温度を正確
に測定することができる。従って各種の装置や機器、材
料などの監視、検査を遠隔から実施するに際して能率よ
く、かつ確実に遂行できるという大きな効果を生むもの
である。
As described above, according to the present invention, it is possible to accurately measure the surface temperature of an object whose surface condition (in other words, emissivity) is unknown. Therefore, it has the great effect of being able to efficiently and reliably monitor and inspect various devices, instruments, materials, etc. from a distance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図、第2図は同じく一実施
例の温度演算回路図である。
FIG. 1 is a detailed explanatory diagram of the present invention, and FIG. 2 is a temperature calculation circuit diagram of one embodiment.

Claims (1)

【特許請求の範囲】[Claims] 1、測定対象物に光を照射して反射光の強度から当該対
象物の表面温度を測定する場合、複数の波長からなる光
源を用いて、当該対象物の表面状態を表わす放射率を算
定した上で表面温度を演算することを特徴とする温度監
視装置。
1. When measuring the surface temperature of an object by irradiating it with light and measuring the intensity of the reflected light, a light source consisting of multiple wavelengths is used to calculate the emissivity that represents the surface condition of the object. A temperature monitoring device characterized in that a surface temperature is calculated on the surface of the device.
JP60000235A 1985-01-07 1985-01-07 Temperature monitoring apparatus Pending JPS61160028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60000235A JPS61160028A (en) 1985-01-07 1985-01-07 Temperature monitoring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60000235A JPS61160028A (en) 1985-01-07 1985-01-07 Temperature monitoring apparatus

Publications (1)

Publication Number Publication Date
JPS61160028A true JPS61160028A (en) 1986-07-19

Family

ID=11468304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60000235A Pending JPS61160028A (en) 1985-01-07 1985-01-07 Temperature monitoring apparatus

Country Status (1)

Country Link
JP (1) JPS61160028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474381A (en) * 1993-11-30 1995-12-12 Texas Instruments Incorporated Method for real-time semiconductor wafer temperature measurement based on a surface roughness characteristic of the wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474381A (en) * 1993-11-30 1995-12-12 Texas Instruments Incorporated Method for real-time semiconductor wafer temperature measurement based on a surface roughness characteristic of the wafer
US5741070A (en) * 1993-11-30 1998-04-21 Texas Instruments Incorporated Apparatus for real-time semiconductor wafer temperature measurement based on a surface roughness characteristic of the wafer

Similar Documents

Publication Publication Date Title
US10605662B2 (en) Material property determination using photothermal speckle detection
ATE284532T1 (en) METHOD AND DEVICE FOR DETERMINING THE GAS CONSISTENCY OF A NATURAL GAS
JPH0447254A (en) Method and apparatus for measuring content of component of skim milk, milk, cream and cheese by using near infrared rays
JP7078520B2 (en) Material property inspection equipment
US7581877B1 (en) Apparatus and method for measuring the dew point of gases using spectral recognition of the condensate
US20220276154A1 (en) Method for analysing a gas using an optical sensor
Thiel et al. Localization of subsurface defects in uncoated aluminum with structured heating using high-power VCSEL laser arrays
JPH06500387A (en) Multiwavelength pyrometer
JPS61160028A (en) Temperature monitoring apparatus
YU38192A (en) GAS ANALYSIS PROCEDURE AND DEVICE
RU2664969C1 (en) Laser radiation with structural materials interaction parameters examination test bench
Bulatov et al. Determination of the Melting Point of Solids by the Imaging Acousto-Optical Filter
JP6570059B2 (en) Non-contact temperature measurement method and measurement system
JPH0638058B2 (en) Gas concentration and partial pressure measuring device
RU2251098C1 (en) Method of contact-free nondestructive testing of thermal- physical properties of materials
RU2247339C2 (en) Method and device for measuring emissive power of inner surfaces of non-uniformly heated space
SU396609A1 (en) METHOD OF CONTROL OF THE FORM AND DIMENSIONS OF THE CAST POINT OF A POINT WELDED CONNECTION
JPH0450734A (en) Noncontact heating device for surface of body accompanied by temperature measurement
JPS6073347A (en) Method and apparatus for inspecting bonding state
JPH08219891A (en) Surface condition measuring method for steel sheet and steel sheet temperature measuring method
JPH09182740A (en) Biological photomeasuring device
Tsai et al. Characterization and calibration of lightpipe radiation thermometers for use in rapid thermal processing
JPH05273045A (en) Temperature measuring apparatus for object covered with transparent thin film
RU2626227C1 (en) Method for determining material defects
JP2018040623A (en) Spectrometer and temperature measurement device