JPS61157819A - Journal slide bearing - Google Patents

Journal slide bearing

Info

Publication number
JPS61157819A
JPS61157819A JP27609484A JP27609484A JPS61157819A JP S61157819 A JPS61157819 A JP S61157819A JP 27609484 A JP27609484 A JP 27609484A JP 27609484 A JP27609484 A JP 27609484A JP S61157819 A JPS61157819 A JP S61157819A
Authority
JP
Japan
Prior art keywords
bearing body
pressure
bearing
outside
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27609484A
Other languages
Japanese (ja)
Inventor
Yukihiko Kazeo
幸彦 風尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27609484A priority Critical patent/JPS61157819A/en
Publication of JPS61157819A publication Critical patent/JPS61157819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To prevent seizure and abrasion of a bearing body by disposing a void or a hole connected to the outside of the bearing body at a portion of the bearing body where the generation of negative pressure is presupposed. CONSTITUTION:A void 4 having a depth about equal to the average radial gap and extending in the longitudinal direction of a bearing body 2 to both end portions is disposed at a portion of the bearing body 2 where the generation of negative pressure is presupposed. Accordingly, lubricating liquid 3 easily flows from both ends of the bearing body 2 into the interior of the bearing, so that negative pressure is not produced at that portion. The pressure at that portion is equal to the base pressure of lubricating oil, so that a difference in pressure between the inner and outer portions of the bearing body 2 relatively becomes zero not to cancel the resultant force of components in the direction of load of static pressure.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は周囲圧力が大気圧と比較して高圧となる環境下
中に存する回転機械に使用されるジャーナルすべり軸受
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in journal plain bearings used in rotating machines that exist in environments where the ambient pressure is high compared to atmospheric pressure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般にジャーナルすべり軸受は局部的に油や水などの潤
滑液を供給するものと軸受を含む回転軸全体が潤滑液の
中に浸されて潤滑されるものとがあり、いずれの場合も
潤滑液のベースとなる圧力はほぼ大気圧と等しくなって
いる。
In general, there are two types of journal plain bearings: those that supply lubricating liquid such as oil or water locally, and those that lubricate the entire rotating shaft including the bearing by immersing it in lubricating liquid. The base pressure is approximately equal to atmospheric pressure.

ところで、原子炉の圧力容器内部や系統の中で用いられ
ているポンプモータなどは潤滑液のベース圧力がその容
器内の圧力と等しく、非常に高圧になることがある。例
えば原子炉の圧力容器に直接取付けられたインターナル
ポンプなどはそのジャーナルすべり軸受の潤滑液のベー
ス圧力が9゜Kg/cdにも達している。
By the way, the base pressure of the lubricating fluid in pump motors and the like used inside the pressure vessel or system of a nuclear reactor is equal to the pressure inside the vessel, and the pressure may be extremely high. For example, in an internal pump directly attached to the pressure vessel of a nuclear reactor, the base pressure of the lubricating fluid in the journal sliding bearing reaches as much as 9°Kg/cd.

したがって、このような高圧力下で用いられるジャーナ
ルすべり軸受としてはその特性上大きな問題がある。こ
こで、その問題について第5図(a>乃至(f)を参照
しながら説明する。第5図(a)は回転軸1がジャーナ
ルすべり軸受本体(以下単に軸受本体と称する)2に支
持された状態を軸と直交する方向に断面した概略図であ
り、潤滑液のベース圧力が大気圧に等しいときの圧力の
発生状態を示したものである。
Therefore, journal sliding bearings used under such high pressures have serious problems in terms of their characteristics. Here, the problem will be explained with reference to Fig. 5 (a> to (f)). Fig. 5 (a) shows that the rotating shaft 1 is supported by the journal sliding bearing body (hereinafter simply referred to as the bearing body) 2. FIG. 3 is a schematic cross-sectional view of a state in which the lubricant is in a state perpendicular to the axis, and shows a state in which pressure is generated when the base pressure of the lubricant is equal to atmospheric pressure.

この状態にあるときは理論上は負圧も発生するが、絶対
圧が負になるとキャビテーションを生じ現実には負圧が
ほとんど発生しない。図中Wで示しであるのは荷重方向
で、模型機械の場合にはロータの自重が、また立型機械
の場合には不釣合い力やその他の外力が作用している。
In theory, negative pressure is generated in this state, but when the absolute pressure becomes negative, cavitation occurs and in reality, almost no negative pressure is generated. In the figure, W indicates the load direction, and in the case of a model machine, the rotor's own weight acts, and in the case of a vertical machine, an unbalanced force or other external force acts.

ここで、第5図(a)において潤滑膜厚さが最小となる
位置3と180°反対位置に極座標の角度の原点をとっ
て圧力分布を示すと第5図(b)のようになり、はとん
ど負圧を発生していない。したがって、正圧の合力が負
荷Wと釣り合うように軸受本体内で回転軸の中心位置が
決り、負荷の大きさに対応して変化する回転軸中心の軌
跡は第5図(C)に示すようになる。但し、荷重の作用
方向は図示上下方向であり、軸受本体と回転軸の平均の
半径隙間は1.0となるように目盛りをとっである。こ
の第5図(C)によれば、回転軸中心は荷重によって円
弧状の軌跡を描いて変化することが分る。
Here, if the origin of the polar coordinate angle is set at a position 180 degrees opposite to position 3 where the lubricant film thickness is minimum in FIG. 5(a), the pressure distribution will be as shown in FIG. 5(b). hardly ever generates negative pressure. Therefore, the center position of the rotating shaft is determined within the bearing body so that the resultant force of the positive pressure balances the load W, and the locus of the center of the rotating shaft that changes in response to the magnitude of the load is as shown in Figure 5 (C). become. However, the direction in which the load is applied is the vertical direction in the drawing, and the scale is set so that the average radial gap between the bearing body and the rotating shaft is 1.0. According to FIG. 5(C), it can be seen that the center of the rotation axis changes in an arcuate trajectory depending on the load.

一方、潤滑液のベース圧力が高圧になると軸受本体内で
相対的な負圧が発生するもののその絶対圧は正圧となる
ためキャビテーションが発生せず、理論計算とおなじよ
うにベース圧力に対して正圧と負圧の両者が同時に発生
する。この様子を第5図(a)、(b)と同じように描
くと、第5図(d)、me)のようになる。すなわち、
正圧に対して負圧の発生分布も同形状となるため、これ
らの荷重方向の合力は相殺されてほとんどなくな、す、
荷重と直角方向の合力のみが生じる。したがって、荷重
の大きさに対応した回転軸中心の軌跡は第5図(f)に
示すようになる。
On the other hand, when the base pressure of the lubricating fluid becomes high, a relative negative pressure is generated within the bearing body, but the absolute pressure is positive pressure, so cavitation does not occur, and the base pressure is similar to the theoretical calculation. Both positive pressure and negative pressure are generated at the same time. If this situation is drawn in the same manner as in FIGS. 5(a) and (b), it will become as shown in FIG. 5(d), me). That is,
Since the generation distribution of negative pressure has the same shape as that of positive pressure, the resultant force in these load directions cancels out and almost disappears.
Only the resultant force in the direction perpendicular to the load is generated. Therefore, the locus of the rotation axis center corresponding to the magnitude of the load is as shown in FIG. 5(f).

このように潤滑液のベース圧力が高圧となると第5図(
d)乃至(f)からも明らかなように荷重の作用方向に
対して回転軸の変位はこれと直角方向となるため、この
ような状態のときは軸受本体は非常に大きな振動不安定
性を有することになる。特に立型回転機械に用いられる
場合には不釣合い力など回転荷重に対して全く軸受とし
ての能力を発揮できず、オイルホワールやオイルホイッ
プと呼ばれる不安定現象が起きる。これは軸受本体の隙
間一杯に軸が振れ回り、焼付き、摩耗と言った致命的な
事故につながる。また、これに伴う大きな振動は接続部
の緩みや材料の疲労破壊など広い範囲で軸受回転機械の
システム全体の信頼性を著しく低下させると言う問題が
ある。
When the base pressure of the lubricant becomes high as shown in Figure 5 (
As is clear from d) to (f), the displacement of the rotating shaft is perpendicular to the direction in which the load is applied, so in this situation the bearing body has extremely large vibrational instability. It turns out. In particular, when used in vertical rotating machinery, bearings cannot exhibit their full bearing capacity against rotational loads such as unbalanced forces, and unstable phenomena called oil whirl and oil whip occur. This causes the shaft to swing around completely in the gap in the bearing body, leading to fatal accidents such as seizure and wear. Furthermore, the accompanying large vibrations have the problem of significantly lowering the reliability of the entire bearing rotating machine system in a wide range of ways, such as loosening of connections and fatigue failure of materials.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような問題点を解消するためになされた
もので、その目的は軸受本体内部に負圧が発生しないよ
うにすることにより潤滑液のベース圧力が高圧下の元で
使用しても不安定な振動を防止することができ、もって
軸受本体の焼付きゃ以上摩耗の心配がなく、信頼性の高
いジャーナルすべり軸受を提供するにある。
The present invention was made to solve the above-mentioned problems, and its purpose is to prevent the base pressure of the lubricating fluid from being used under high pressure by preventing negative pressure from occurring inside the bearing body. The purpose of the present invention is to provide a highly reliable journal sliding bearing that can prevent unstable vibrations and eliminate the risk of seizure or further abrasion of the bearing body.

〔発明の概要〕[Summary of the invention]

本発明はかかる目的を達成するため、周囲圧力が大気圧
と比較して高圧となる環境下に設けられた回転機械に使
用されるジャーナルすべり軸受において、軸受本体の予
め負圧が発生すると予測される部分に軸受本体外部と連
通ずる窪み又は孔を設け、この窪み又は孔を通して軸受
本体外部より潤滑液を流入可能にしたことを特徴とする
ものである。
In order to achieve such an object, the present invention is designed to prevent negative pressure from occurring in the bearing body in advance in a journal slide bearing used in a rotating machine installed in an environment where the surrounding pressure is high compared to atmospheric pressure. The bearing is characterized in that a recess or hole communicating with the outside of the bearing body is provided in a portion that communicates with the outside of the bearing body, and lubricating fluid can flow from the outside of the bearing body through this recess or hole.

また、回転荷重の作用方向が予測される部分の回転軸に
軸受外部に連通ずる窪みを設けることにより、特に立型
回転機械で不釣り合い力が大きい場合に顕著にその効果
が発揮できるようにしなものである。
In addition, by providing a recess that communicates with the outside of the bearing on the rotating shaft in the area where the direction of rotational load is expected to be applied, the effect can be particularly noticeable when the unbalanced force is large in a vertical rotating machine. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の第1の実施例を示すもので、軸に対し
て直交する方向に断面した概略図である。
FIG. 1 shows a first embodiment of the present invention, and is a schematic cross-sectional view taken in a direction perpendicular to the axis.

本実施例では第1図(a)に示すように軸受本体2の負
圧の発生が予測される部分に平均半径隙間程度の深さで
軸受本体の長手方向に両端部まで達する長さの窪み4を
設ける構成とするものである。
In this embodiment, as shown in FIG. 1(a), in the part of the bearing body 2 where negative pressure is expected to be generated, a recess is formed with a depth of about the average radius clearance and a length reaching both ends of the bearing body in the longitudinal direction. 4 is provided.

この場合、回転軸1に対して加わる荷重Wの方向が一定
で、その大きさも判るならば簡単な理論計算で負圧の発
生する範囲を知ることができ、その範囲に相当する部分
に前述したような窪み4を設ければよい。
In this case, if the direction of the load W applied to the rotating shaft 1 is constant and its magnitude is known, the range in which negative pressure is generated can be determined by simple theoretical calculations, and the area corresponding to that range is shown above. What is necessary is to provide such a depression 4.

したがって、軸受本体2にかかる窪み4を設けることに
より、軸受本体2の両端からその内部に潤滑液3の流入
が容易になり、この部分に負圧は発生しなくなる。
Therefore, by providing the recess 4 in the bearing body 2, the lubricating fluid 3 can easily flow into the bearing body 2 from both ends thereof, and no negative pressure is generated in this portion.

第1図(b)はかかる構成の軸受における圧力の発生状
態を示すものであり、窪みがなければ点線波形で示すよ
うな負圧が発生するが、本実施例に示すような窪み4を
設けることによりこの部分の圧力が潤滑液のベース圧力
と等しく相対的に軸受本体2の内外部の圧力差が零とな
り、静圧の荷重方向成分の合力が相殺されることがなく
なる。
FIG. 1(b) shows the state of pressure generation in a bearing with such a configuration. If there were no depressions, negative pressure would be generated as shown by the dotted line waveform, but if depressions 4 are provided as shown in this example, negative pressure will be generated. As a result, the pressure in this portion is equal to the base pressure of the lubricating fluid, and the pressure difference between the inside and outside of the bearing body 2 becomes zero, so that the resultant force of the static pressure components in the load direction is no longer canceled out.

したがって、最も単純な真円軸受でも前述したような窪
み4を設けることにより高圧力下で充分  ・な振動安
定性を有し、且つ同時に軸受としての負荷特性が確保さ
れ焼き付きや摩耗の心配のないジャーナルすべり軸受と
なる。かかる構成の軸受は横型回転機械、若しくは立型
回転機械でも荷重の作用する方向が常に一定で明確に判
明している場合に採用してその効果を発揮できる。
Therefore, even the simplest perfect circular bearing can have sufficient vibration stability under high pressure by providing the recess 4 as described above, and at the same time, the load characteristics as a bearing are ensured and there is no worry of seizure or wear. It becomes a journal sliding bearing. A bearing having such a configuration can be used effectively in a horizontal rotating machine or a vertical rotating machine when the direction in which the load is applied is always constant and clearly known.

第2図および第3図は本発明の第2および第3の実施例
を示すものである。
FIGS. 2 and 3 show second and third embodiments of the present invention.

まず、第2図により第2の実施例について述べる。第2
の実施例では第2図に示すように軸受本体2において負
圧が発生すると予測される部分にラジアル方向に外部に
連通する複数個の孔5を設けるようにしたものである。
First, a second embodiment will be described with reference to FIG. Second
In this embodiment, as shown in FIG. 2, a plurality of holes 5 communicating with the outside in the radial direction are provided in a portion of the bearing body 2 where negative pressure is expected to be generated.

したがって、これらの孔5を通して外部より潤滑液3が
内部に流入可能となるので、負圧の発生を防止すること
ができる。またこれらの孔5を軸受本体2の長手方向中
央部に集中させて設けることにより、よりその効果を顕
著に発揮することができる。
Therefore, since the lubricating liquid 3 can flow into the interior from the outside through these holes 5, generation of negative pressure can be prevented. Further, by providing these holes 5 in a concentrated manner in the longitudinal center of the bearing body 2, the effect can be more clearly exhibited.

次に第3図により第3の実施例について述べる。Next, a third embodiment will be described with reference to FIG.

第3の実施例では第3図に示すよに軸受本体2の全周に
渡って外部に連通ずる複数個の孔6をラジアル方向に予
定の間隔を存して設けると共にその各孔6内に逆止弁7
をそれぞれ設けるようにしたものである。
In the third embodiment, as shown in FIG. 3, a plurality of holes 6 communicating with the outside are provided along the entire circumference of the bearing body 2 at predetermined intervals in the radial direction. Check valve 7
are provided for each.

したがって、かかる構成とすれば軸受本体2の内部に正
圧が発生しているときは逆止弁7が閉じて外部への潤滑
液の流出を防ぎ、逆に負圧が発生しようとすると外部と
の圧力差により逆止弁7が開いて外部から潤滑液が流入
するので、負圧の発生が防止できる。この場合、逆止弁
7を含む各孔6は軸受本体長手方向の中央部付近に一箇
所から複数箇所設けることにより、一層その効果を発揮
することができる。また逆止弁7を軸受本体外部に設け
、孔6に対してはパイプで連結するようにしても前述と
同様の効果が得られることは勿論のことである。
Therefore, with such a configuration, when positive pressure is generated inside the bearing body 2, the check valve 7 closes to prevent the lubricating fluid from flowing out to the outside, and conversely, when negative pressure is generated, the check valve 7 closes and prevents the lubricating fluid from flowing outside. The check valve 7 opens due to the pressure difference, and lubricating fluid flows in from the outside, thereby preventing the generation of negative pressure. In this case, each hole 6 including the check valve 7 may be provided at one or more locations near the center in the longitudinal direction of the bearing main body, thereby making the effect even more effective. It goes without saying that the same effect as described above can also be obtained by providing the check valve 7 outside the bearing body and connecting it to the hole 6 with a pipe.

かかる構成の軸受は特に立型回転機械で、静荷重より回
転荷重の方が大きい場合、すなわち負圧の発生位置が予
め予測できなかつたり、時々刻々変化するような場合に
採用してその効果を発揮できる。
Bearings with this configuration are particularly useful in vertical rotating machines where the rotating load is greater than the static load, i.e. where the negative pressure generation position cannot be predicted in advance or changes from moment to moment. I can demonstrate it.

第4図は本発明の第4の実施例を示すものである。本実
施例では第4図(a)、(6)に示すように回転荷重が
予測される部分の回転軸1に軸受外部に連通ずる窪み8
を設けるようにしたものである。この場合窪み8の長さ
は回転軸長手方向で軸受端より若干外側に出る程度にし
である。
FIG. 4 shows a fourth embodiment of the present invention. In this embodiment, as shown in FIGS. 4(a) and 4(6), a recess 8 is formed on the rotating shaft 1 in a portion where rotational loads are expected to be applied, and the recess 8 communicates with the outside of the bearing.
It is designed to provide a. In this case, the length of the recess 8 is such that it extends slightly outward from the bearing end in the longitudinal direction of the rotating shaft.

かかる構成の軸受は特に立型回転機械で、不釣合い力が
大きい場合に採用してその効果を発揮するものである。
Bearings with such a configuration are particularly effective when used in vertical rotating machines where unbalanced forces are large.

つまり、不釣合い力は回転荷重であるが、予めその作用
方向が判明しており、且つ回転軸の一次の危険速度以下
で使用されるなら、回転軸の不釣合い方向に対して負圧
の発生する範囲が軸上で決定される。すなわち、軸の振
れ回り方向は不釣合いの方向と一致しているため、この
方向より図示する如く角度eだけ進んだ位置に最小潤滑
膜厚さができる。ざらにこれより進んだ角度において負
圧の発生領域があるので、軸と軸受本体の平均半径隙間
程度の深さで窪み8を設ければよい。
In other words, unbalanced force is a rotational load, but if the direction of its action is known in advance and it is used below the primary critical speed of the rotating shaft, negative pressure will be generated in the unbalanced direction of the rotating shaft. The range is determined on the axis. That is, since the whirling direction of the shaft coincides with the direction of unbalance, the minimum lubricant film thickness is formed at a position advanced by an angle e from this direction as shown in the figure. Since there is a region where negative pressure is generated at an angle that is more advanced than this, the recess 8 may be provided with a depth approximately equal to the average radial gap between the shaft and the bearing body.

したがって、このような構成とすれば回転軸1に設けら
れた窪み8により外部より潤滑液が容易に流入するので
、第4図(C)に示すように負圧が発生せず、前述の実
施例と同様の効果が期待できる。
Therefore, with such a configuration, the lubricating fluid easily flows in from the outside through the recess 8 provided in the rotating shaft 1, so that negative pressure is not generated as shown in FIG. The same effect as in the example can be expected.

【発明の効果〕【Effect of the invention〕

以上述べたように本発明によれば、軸受本体の予め負圧
が発生すると予測される部分に軸受本体外部と連通する
窪み又は孔を設け、この窪み又は孔を通して軸受本体外
部よりa滑液を流入可能にしたので、周囲圧力が大気圧
と比較して高圧となる環境下で使用しても軸受本体内部
に相対的な負圧が発生せず、大気圧下で使用したのと同
程度の振動安定性を得ることができ、したがって負荷容
量の大きい真円軸受であっても不安定な振動が防止でき
、これに伴い軸受本体の焼付きや異常摩耗の心配がなく
、且つ大きな振動が発生しないため、軸受を含む回転機
械全体のシステムの信頼性を確保することができるジャ
ーナルすべり軸受を提供することができる。
As described above, according to the present invention, a depression or a hole communicating with the outside of the bearing body is provided in a portion of the bearing body where negative pressure is predicted to be generated in advance, and synovial fluid is drawn from the outside of the bearing body through this depression or hole. This allows for inflow, so even when used in an environment where the surrounding pressure is high compared to atmospheric pressure, relative negative pressure does not occur inside the bearing body, and the pressure is the same as when used under atmospheric pressure. Vibration stability can be obtained, and therefore unstable vibration can be prevented even with a true round bearing with a large load capacity.As a result, there is no need to worry about seizure or abnormal wear of the bearing body, and large vibrations can occur. Therefore, it is possible to provide a journal sliding bearing that can ensure the reliability of the entire rotating machine system including the bearing.

また回転荷重が予測される部分の回転軸に軸受外部に連
通する窪みを設けることにより、特に立型回転機械で不
釣合い力が大きい場合に適用してその効果を十分に発運
することができるジャーナルすべり軸受を提供すること
ができる。
In addition, by providing a recess that communicates with the outside of the bearing on the rotating shaft in the area where rotational loads are predicted, the effect can be fully utilized, especially when the unbalanced force is large in vertical rotating machines. Journal plain bearings can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の第1の実施例を示すも
ので、(a>は軸に直交する方向から断面して示す概略
構成図、(b)はその圧力発生状態を示す分布図、第2
図および第3図は本発明の第2および第3の実施例をそ
れぞれ示す概略構成図、第4図(a)乃至(C)は本発
明の第4の実施例を示すもので、(a)は軸に直交する
方向から断面して示す概略構成図、(b)は軸受本体の
みを断面した回転軸を示す側面図、(C)はその圧力発
生状態を示す分布図、第5図(a)乃至(C)は従来の
ジャーナルすべり軸受において正圧のみが発生している
場合を説明するためのもので、(a)は軸に直交する方
向に断面して示す概略構成図、(b)は圧力発生状態を
示す分布図、(C)は負荷の大きさに対応して変化する
回転軸中心の軌跡を示す図、第5図(d)乃至(f)は
従来のジャーナルすべり軸受において正圧と負圧の両者
が発生している場合を説明するためのもので、(d)は
軸に直交する方向に断面して示す概略構成図、(e)は
圧力発生状態を示す分布図、(f)は負荷の大きさに対
応して変化する回転軸中心の軌跡を示す図である。 1・・・回転軸、2・・・軸受本体、3・・・潤滑液、
4゜8・・・窪み、5.6・・・孔、7・・・逆止弁。 出願人代理人 弁理士 鈴江武彦 第1 囚 (a) (b) l 第2図 第3図 第4図 (a) (a) (c) (b) (e)
FIGS. 1(a) and 1(b) show a first embodiment of the present invention. Distribution map showing the second
3 and 3 are schematic configuration diagrams showing the second and third embodiments of the present invention, respectively, and FIGS. 4(a) to (C) show the fourth embodiment of the present invention, and (a) ) is a schematic configuration diagram taken in a direction perpendicular to the shaft, (b) is a side view showing the rotating shaft with only the bearing body in cross section, (C) is a distribution diagram showing the state of pressure generation, and FIG. (a) to (C) are for explaining the case where only positive pressure is generated in a conventional journal sliding bearing, (a) is a schematic configuration diagram showing a cross section in a direction perpendicular to the axis, and (b) ) is a distribution diagram showing the state of pressure generation, (C) is a diagram showing the locus of the center of the rotating shaft that changes depending on the magnitude of the load, and Figures 5 (d) to (f) are diagrams showing the distribution of pressure in conventional journal plain bearings. This is to explain the case where both positive pressure and negative pressure are generated. (d) is a schematic configuration diagram showing a cross section in the direction perpendicular to the axis, and (e) is a distribution diagram showing the pressure generation state. , (f) are diagrams showing the locus of the center of the rotation axis that changes depending on the magnitude of the load. 1... Rotating shaft, 2... Bearing body, 3... Lubricating fluid,
4°8... recess, 5.6... hole, 7... check valve. Applicant's representative Patent attorney Takehiko Suzue 1st prisoner (a) (b) l Figure 2 Figure 3 Figure 4 (a) (a) (c) (b) (e)

Claims (4)

【特許請求の範囲】[Claims] (1)周囲圧力が大気圧と比較して高圧となる環境下に
設けられた回転機械に使用されるジャーナルすべり軸受
において、軸受本体の負圧が発生すると予測される部分
に軸受本体外部と連通する窪み又は孔を設けたことを特
徴とするジャーナルすべり軸受。
(1) In journal sliding bearings used in rotating machinery installed in environments where the ambient pressure is higher than atmospheric pressure, the portion of the bearing body where negative pressure is expected to be generated communicates with the outside of the bearing body. A journal sliding bearing characterized in that it is provided with a recess or hole.
(2)軸受本体外部と連通する孔は軸受本体全周に且つ
ラジアル方向に複数個設けたものである特許請求の範囲
第1項に記載のジャーナルすべり軸受。
(2) The journal sliding bearing according to claim 1, wherein a plurality of holes communicating with the outside of the bearing body are provided around the entire circumference of the bearing body in the radial direction.
(3)軸受本体外部と連通する孔は軸受本体内部に負圧
が発生した時のみ逆止弁により外部と連通するようにし
たものである特許請求の範囲第1項又は第2項に記載の
ジャーナルすべり軸受。
(3) The hole communicating with the outside of the bearing body is configured to communicate with the outside by means of a check valve only when negative pressure is generated inside the bearing body. Journal plain bearing.
(4)周囲圧力が大気圧と比較して高圧となる環境下に
設けられた回転機械に使用されるジャーナルすべり軸受
において、回転荷重が予測される部分の回転軸に軸受外
部に連通する窪みを設けたことを特徴とするジャーナル
すべり軸受。
(4) In journal sliding bearings used in rotating machines installed in environments where the ambient pressure is higher than atmospheric pressure, a recess that communicates with the outside of the bearing is installed on the rotating shaft in the area where rotational loads are expected. A journal sliding bearing characterized by:
JP27609484A 1984-12-28 1984-12-28 Journal slide bearing Pending JPS61157819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27609484A JPS61157819A (en) 1984-12-28 1984-12-28 Journal slide bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27609484A JPS61157819A (en) 1984-12-28 1984-12-28 Journal slide bearing

Publications (1)

Publication Number Publication Date
JPS61157819A true JPS61157819A (en) 1986-07-17

Family

ID=17564716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27609484A Pending JPS61157819A (en) 1984-12-28 1984-12-28 Journal slide bearing

Country Status (1)

Country Link
JP (1) JPS61157819A (en)

Similar Documents

Publication Publication Date Title
JP5069103B2 (en) Instability control method for fluid film bearings
Zeidan et al. Application Of High Speed And High Performance Fluid Film Bearings In Rotating Machinery.
US3395949A (en) Gas-bearing assembly
US20130028731A1 (en) Tilting pad journal bearing and steam turbine
US4527910A (en) Dual clearance squeeze film damper
US3357757A (en) Turbine bearing assembly
JPS58149415A (en) Anti-oscillation bearing
JP2002213450A (en) Floating bush bearing and turbocharger having the bearing
CA1201741A (en) Semi-floating bearing
US2226524A (en) Means for securing a bearing to a shaft
US4880320A (en) Fluid film journal bearings
KR20190008340A (en) Integrated journal bearing
JPS61157819A (en) Journal slide bearing
US4222617A (en) Self loading cylindrical autolubricated gas bearing
US3462204A (en) Shaft bearing
Martsynkovskyy et al. Thrust bearing with fluid pivot
US3781071A (en) Elastohydrodynamic bearing assembly
US3989258A (en) Shaft stiffness control apparatus
KR102166622B1 (en) Air foil journal bearing
Edney et al. Retrofitting A Large Steam Turbine With A Mechanically Centered Squeeze Film Damper.
US4624584A (en) Sliding journal bearing
Choy et al. Application of hydrostatic squeeze-film dampers
JPH10292817A (en) Journal baring having aligning mechanism
WO2021241042A1 (en) Journal bearing and rotating machine
Holmes et al. Large-amplitude vibrations in rotor assemblies