JPS61156736A - Exposing device - Google Patents

Exposing device

Info

Publication number
JPS61156736A
JPS61156736A JP59280572A JP28057284A JPS61156736A JP S61156736 A JPS61156736 A JP S61156736A JP 59280572 A JP59280572 A JP 59280572A JP 28057284 A JP28057284 A JP 28057284A JP S61156736 A JPS61156736 A JP S61156736A
Authority
JP
Japan
Prior art keywords
filter element
luminous flux
spectrum
filter
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59280572A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takahashi
和弘 高橋
Masakatsu Oota
太田 正克
Akiyoshi Suzuki
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59280572A priority Critical patent/JPS61156736A/en
Publication of JPS61156736A publication Critical patent/JPS61156736A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To reduce the adverse effect inflicted on a bright line spectrum and to obtain an exposing device having high resolving power by a method wherein a suitable filter is inserted into a part of the illumination system with which a projection optical system is illuminated, and a continuous spectrum is effectively cut. CONSTITUTION:The luminous flux emitted from a light source 2 is condensed on the field lens 3 arranged in the vicinity of the second focus by an oval mirror. The incidence angle of each luminous flux which is made incident on a filter element 5 is made small in such a manner that the center luminous flux in a field lens 3 becomes almost a parallel light by the first capacitor lens. After passing through a filter element 5, the luminous flux is introduced to an optical integrator 8. The filter element 5 is composed of a multilayer film which transmits the luminous flux having the narrow wavelength range of bright line spectrum necessary for projection and exposure, but it does not transmit other spectrum lights. As a result, a continuous spectrum can be cut effectively, and the adverse effect inflicting on the bright-line spectrum can be reduced.

Description

【発明の詳細な説明】 (技術分野) 本発明は半導体製造用の?1元装置に関し、特に回路パ
ターン等が形成されているマスクをシリコンウェハ等に
転写する0に好適な投影用の露光装置に関するものであ
る。
[Detailed Description of the Invention] (Technical Field) Is the present invention applicable to semiconductor manufacturing? The present invention relates to a one-dimensional device, and particularly to a projection exposure device suitable for transferring a mask on which a circuit pattern or the like is formed onto a silicon wafer or the like.

(従来技術) 従来より投影用の露光装置では照明用の光源として水銀
ランプが多用されている。この水銀ランプからは第2図
に示される様に輝線スペクトルが多数発光しており、通
常最とも拭く用いられるg線(436nm )付近では
h線(405nm )  とe 線(546nm )が
隣接して存在している。従来はg線より短かい波長はシ
ャープカットの色フィルターでカットし、g線より長い
波長はコールドミラーでカットしたりレジストの分光感
度そのものがzffMよりも長波長側で低下する事等を
利用していた。しかしながら色フィルターやゴールドミ
ラー、レジストの分光感度特性は波長対透過率あろいは
波長対反射率の分光特性がシャープでないのでh@やe
aはカットできてもta付近の連続スペクトルは焼付光
束中に残ってしまう。この連続スペクトルは強度は輝線
スペクトルに比べて小さいが、波長域が広い為、トータ
ルして、波長強度を積分して効果を考えた場合、焼付性
能(与える影響が大きい。即ち、露光装置に用いられて
いる投影光学系は輝線スペクトルの拡がシ内の波長成分
については色補正されているものの、連続スペクトル領
域の波長迄は色収差が補正されていない。従って連続ス
ペクトルを含んだ光音用いて焼付を行つと、ピントの合
った輝線スペクトル成分の光く、ピントの外れた連続ス
ペクトル成分の光が重なる事になり、焼付性能に悪影響
を与える事になる。
(Prior Art) Mercury lamps have traditionally been widely used as light sources for illumination in projection exposure apparatuses. As shown in Figure 2, this mercury lamp emits a large number of bright line spectra, with the H-line (405 nm) and E-line (546 nm) adjacent to each other near the G-line (436 nm), which is usually used most often. Existing. Conventionally, wavelengths shorter than the G-line are cut with a sharp-cut color filter, wavelengths longer than the G-line are cut with a cold mirror, and the spectral sensitivity of the resist itself decreases at wavelengths longer than zffM. was. However, the spectral sensitivity characteristics of color filters, gold mirrors, and resists are not sharp in terms of wavelength vs. transmittance or wavelength vs. reflectance, so h@ and e
Even if a can be cut, the continuous spectrum near ta remains in the printing light beam. Although the intensity of this continuous spectrum is smaller than that of the bright line spectrum, it has a wide wavelength range, so when considering the effect by integrating the wavelength intensity as a whole, it has a large effect on printing performance. Although the projection optical system used in the present invention is color-corrected for wavelength components within the spread of the emission line spectrum, chromatic aberration is not corrected for wavelengths in the continuous spectral region. When printing is performed, the in-focus bright line spectral component light and the out-of-focus continuous spectral component light overlap, which adversely affects the printing performance.

(本発明の目的) 本発明は照明系に輝線スペクトル以外に連続スペクトル
を放射する光源を用いても、高解像力の得られる半導体
製造用に好適な露光装置の提供を目的とする。
(Objective of the Present Invention) An object of the present invention is to provide an exposure apparatus suitable for semiconductor manufacturing that can obtain high resolution even when a light source that emits a continuous spectrum in addition to the bright line spectrum is used in the illumination system.

本発明の更なる目的は照明系の特定の位置に所定の分光
特性を有したフィルター素子を配装置することにより連
続スペクトルの影41に排除した高性能の露光装置の提
供にある。
A further object of the present invention is to provide a high-performance exposure apparatus that eliminates the shadow 41 of the continuous spectrum by arranging a filter element having a predetermined spectral characteristic at a specific position of the illumination system.

(本発明の目的を達成する為のg光装置の主たる特徴)
照明系に複数のスペクトルを放射する光源を用い九半導
体製造用の露光装置において、前記照明系の一部に前記
光源から放射される発光スペクトルのうち所定の波長の
光束のみを選択するフィルター素子を設けたことである
(Main features of the g-light device for achieving the purpose of the present invention)
9. In an exposure apparatus for semiconductor manufacturing using a light source emitting a plurality of spectra in the illumination system, a filter element for selecting only a luminous flux of a predetermined wavelength from among the emission spectrum emitted from the light source is provided in a part of the illumination system. This is what we have set up.

その他本発明に係る特徴は実施例において詳述されてい
る。
Other features of the invention are detailed in the Examples.

(実施例) 第1図は本発明の一実施例の光学系の概略図である。(Example) FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention.

図中1は橢円鏡、2は水銀ランプ等の光源、3はフィー
ルドレンズである。光源2とフィールドレンズ3は各々
橢円鏡1の第1焦点と第2焦点近傍に配置されている。
In the figure, 1 is a circular mirror, 2 is a light source such as a mercury lamp, and 3 is a field lens. The light source 2 and the field lens 3 are arranged near the first and second focal points of the rectangular mirror 1, respectively.

4は第1コンデンサーレンズでるり前側焦点近傍にフィ
ールドレンズ3が位置している。5はフィルター[−1
6,7は各々反射鏡、8はオプテイカルインテグレータ
、9は第2コンデンサーレンズで前側焦点近傍にオプテ
ィカルインテグレータ8が位置している。10は回路パ
ターンが形成されているレチクル面、1)は投影光学系
、12はウェハである。
4 is a first condenser lens, and a field lens 3 is located near the front focal point. 5 is the filter [-1
6 and 7 are reflecting mirrors, 8 is an optical integrator, 9 is a second condenser lens, and the optical integrator 8 is located near the front focal point. 10 is a reticle surface on which a circuit pattern is formed, 1) is a projection optical system, and 12 is a wafer.

光源2から放射された光束は橢円鏡1によって第2焦点
近傍に配置されたフィールドレンズ3に集光される。そ
して第1コンデンサーレンズ41Cよシフイールドレン
ズ3の中心光束が略平行光となるようにして各光束のフ
ィルター素子5への入射角金小さくしている。そしてフ
ィルp−=子st−透過させ良後オプティヵルインテグ
レーメ8に導光している。
The light beam emitted from the light source 2 is focused by the rectangular mirror 1 onto the field lens 3 arranged near the second focal point. The central light beams of the first condenser lens 41C and the shift field lens 3 are made to be substantially parallel lights, so that the angle of incidence of each light beam on the filter element 5 is made small. Then, the light is transmitted through the filter p-=child st- and then guided to the optical integrator 8.

ここでフィルター素子5は投影露光用に必要な輝線スペ
クトルの波長幅の狭い範囲を透過しその他のスペクトル
元をカットするものであり本実施例で用いるフィルター
素子は、多層膜で構成されている。この丸め、光線の入
射角度の違イによって分子t、特性がずれてしまうので
、フィルター素子への光線の入射角度が略一定となるよ
う即ち小さくなる様な位置に配置している。
Here, the filter element 5 transmits a narrow wavelength range of the bright line spectrum required for projection exposure and cuts out other spectral elements, and the filter element used in this embodiment is composed of a multilayer film. Because the molecule t and its characteristics shift due to this rounding and the difference in the angle of incidence of the light beam, the filter element is arranged at a position so that the angle of incidence of the light beam on the filter element is approximately constant, that is, it is small.

波ip択された光はオプテイカルインテグレータ8全通
し第2コンデンサーレンズ9によって集光されレチクル
面10t−均一に照明して−る。
The selected light passes through the optical integrator 8 and is focused by the second condenser lens 9, uniformly illuminating the reticle surface 10t.

そして所定の波長の光で照明されたレチクル面lO上の
回路パターンを投影光学系1)によりウニへ面12上に
投影している。
Then, the circuit pattern on the reticle surface 10 illuminated with light of a predetermined wavelength is projected onto the surface 12 by the projection optical system 1).

第2図、第3図は各々本発明に係る水銀ランプとフィル
ター素子の分光特性の貌明図である。
FIGS. 2 and 3 are diagrams showing the spectral characteristics of a mercury lamp and a filter element according to the present invention, respectively.

第2図において点線で示す曲線はフィルター素子6とし
て狭帯域透過フィルターの干渉フィルターを用いた場合
の分光透過率である。又第3図は透過帯域の異なる2つ
のシャープカットフィルターA及びBを組合わせて狭帯
域透過フィルターと同様の効果を得た本のであシ、フィ
ルターとして多層膜を用いるのであればフィルター素子
50両面に各々透過帯域の異なる多l−膜を蒸着するこ
とができる。又、フィルターA。
The curve shown by the dotted line in FIG. 2 is the spectral transmittance when an interference filter, which is a narrowband transmission filter, is used as the filter element 6. Also, Figure 3 is from a book that combines two sharp cut filters A and B with different transmission bands to obtain the same effect as a narrow band transmission filter.If a multilayer film is used as a filter, both sides of the filter element 50. Multiple l-films, each with a different transmission band, can be deposited. Also, filter A.

Bの一方が色素等により光の吸収を利用した所謂硝子フ
ィルターであればその片方の表面に)イルターA又はB
の特性を有する多層膜を蒸着しても同様の効果を得るこ
とができる。但しフィルターAの様に長波長側をクヤー
プにカットする硝子フィルターは実際には現存せず、こ
の様な特性は多層膜を用いる事が必要である。
If one side of B is a so-called glass filter that utilizes light absorption by dye etc., filter A or B is placed on one surface of it.
A similar effect can be obtained by depositing a multilayer film having the following characteristics. However, there is actually no glass filter that cuts the long wavelength side like filter A, and it is necessary to use a multilayer film to achieve this characteristic.

このように本実施例では所定の輝線スペクトルノ領域外
の連続スペクトルの光束をフィルター素子により効率良
く除去し、容易に高解像力の得られる露光装置を達成し
ている。
As described above, in this embodiment, the continuous spectrum light beam outside the predetermined bright line spectrum region is efficiently removed by the filter element, thereby achieving an exposure apparatus that can easily obtain high resolution.

第4図、第5図は各々本発明の好ましい他の実施例の光
学系の概略図である。第1図と同一の部材には同一の符
号を付けである。
FIGS. 4 and 5 are schematic diagrams of optical systems according to other preferred embodiments of the present invention. The same members as in FIG. 1 are given the same reference numerals.

第4図に示す実施例に従うフィルター素子5はオプテイ
カルインテグレータ8とレチクル100間に配置されて
いる。この場合重要なのはフィルター素子5のシェーデ
ィングの問題である。
A filter element 5 according to the embodiment shown in FIG. 4 is arranged between an optical integrator 8 and a reticle 100. What is important in this case is the problem of shading of the filter element 5.

フィルター素子5は前述の様にシャープカット特性を持
九せる為、誘電体の多層膜を用いて構成され、入射角に
従って特性が変化する。従ってレチクル10の各点を照
明する光束がフィルター素子5を遡る状態はすべて同一
である事が望ましい。第4図の実施例は投影光学系のレ
チクル面10側がテレセンドリンクである場合である。
The filter element 5 is constructed using a dielectric multilayer film in order to have sharp cut characteristics as described above, and its characteristics change according to the angle of incidence. Therefore, it is desirable that the state in which the light flux illuminating each point on the reticle 10 travels back through the filter element 5 is all the same. The embodiment shown in FIG. 4 is a case where the projection optical system on the reticle surface 10 side is a telescopic link.

同図で15で示した各光線がレチクル面10上の各点に
対する主光線である。主光線は投影光学系に従い平行と
なっている。従って第4図の場付、レチクル(filo
と照明糸のコンデンサーレンズ9の間にフィルター素子
5を配置すれば、フィルターの角度t¥j注はレチクル
面上の各点について全く同一でありシェーディングを起
こさない。
Each light ray indicated by 15 in the figure is a chief ray for each point on the reticle surface 10. The principal rays are parallel according to the projection optical system. Therefore, the location in Figure 4, the reticle (filo
If the filter element 5 is placed between the condenser lens 9 of the illumination thread and the condenser lens 9 of the illumination thread, the angle t\j of the filter will be exactly the same for each point on the reticle surface, and no shading will occur.

尚フィルター素子5は、レチクル面上の各点に対する照
明光束の主光線が平行になる所に設置すれは良く、必ず
しもレチクル面10とコンデンサーレンズ9との間に設
ける必要はない0第5図には、レチクル面101N+1
がテレセントリックでない投影光学系に対して木兄EJ
At適用した例である。レチクル面10に入射する主光
線15は平行ではないので第4図の様な位置にフィルタ
ー5を配置する事は適当でない。この場合には照明系内
に主光線が平行になる部分を作ってやれば良く、第5図
では正にその様な状態をオプティカルインテグレータ8
の後方に配置しt集光系21により作り出し、その位t
icフィルター系子5を配置している。勿論、レチクル
面10側がテレセントリックな投影系に対する照明系の
場合にも、照明系V′3IfI%に主光線が平行な所を
作ってやれば第4図の配置の代りに其拠にフィルターを
配置する事もできる。22は照明系の一部を構成する光
学部材である。
Note that the filter element 5 is preferably installed at a location where the principal rays of the illumination light beam for each point on the reticle surface are parallel, and it is not necessarily necessary to install it between the reticle surface 10 and the condenser lens 9. is reticle surface 101N+1
is a non-telecentric projection optical system.
This is an example in which At is applied. Since the principal rays 15 incident on the reticle surface 10 are not parallel, it is not appropriate to arrange the filter 5 at the position shown in FIG. In this case, it is sufficient to create a part in the illumination system where the principal rays are parallel, and in Figure 5, exactly such a situation is created using the optical integrator 8.
The light is generated by the condensing system 21 located behind the
An IC filter system 5 is arranged. Of course, even in the case of an illumination system for a projection system where the reticle surface 10 side is telecentric, if a place is created in the illumination system V'3IfI% where the principal ray is parallel, the filter can be placed there instead of the arrangement shown in Fig. 4. I can do things. 22 is an optical member constituting a part of the illumination system.

尚本実施例においてフィルター素子を配置する位置はフ
ィルター素子に入射する光束が厳密に平行でなくても所
定の4線スペクトルの光束が選択出来しかも不必要な連
続スペクトルの光束が除去出来る位置ならばどこに配置
しても艮いO (本発明の効果) 本発明によれば投影光学系を照明する照明系内の一部l
lC過当なフィルター素子を挿入し、それを用いて連続
スペクトルを効果的にカットし、14勝スペクトルに対
する悪影4gIを軽減させた高解像力の露を装置を達成
することができる。
In this embodiment, the filter element can be placed at a position where a predetermined 4-line spectrum light beam can be selected even if the light beams incident on the filter element are not strictly parallel, and unnecessary continuous spectrum light beams can be removed. (Effect of the present invention) According to the present invention, a part of the illumination system that illuminates the projection optical system
By inserting a filter element with an excess of 1C, it can be used to effectively cut the continuous spectrum and achieve a high resolution dew with reduced negative 4gI on the 14-win spectrum.

又従来の硝子フィルターではカットが困難であった焼付
光付近の連続スペクトルの光を容易にカットすることか
で春色収差の影響を除去し像のコントラストを向上させ
た露光装置を達成することができる。
Furthermore, by easily cutting continuous spectrum light near the printing light, which was difficult to cut with conventional glass filters, it is possible to achieve an exposure device that eliminates the effects of spring chromatic aberration and improves image contrast. .

ま危、積極的に照明光学系内にレチクル面の各点を照明
する光束の主光線が平行となる位置を設け、この位置に
フィルター素子を配置すれば、フィルター素子に入射す
る光線の入射角度を小さくすることができ、光線の入射
角のズレによるフィルター素子の透過光波長特性のシフ
トを僅少VCし7’c高解像力の得られる露光装置を達
成することができる。
However, if you proactively set up a position in the illumination optical system where the principal rays of the light flux that illuminate each point on the reticle surface are parallel, and place the filter element at this position, the angle of incidence of the light rays that enter the filter element can be adjusted. can be made small, and the shift in the wavelength characteristics of the transmitted light of the filter element due to the deviation of the incident angle of the light beam can be slightly VC, and an exposure apparatus that can obtain a high resolution of 7'c can be achieved.

表画面の簡単な説明 第1図、@4図、第5図は各々本発明の一実施例の光学
系の概略図、第2図、第3図は各々本発明に係る光源と
フィルター素子の分″/1%性の説明図である。
Brief explanation of the front screen Figures 1, 4, and 5 are schematic diagrams of an optical system according to an embodiment of the present invention, and Figures 2 and 3 are schematic diagrams of a light source and a filter element according to the present invention, respectively. It is an explanatory diagram of minute''/1% property.

図中1は梱円鏡、2は光源、3はフィールドレンズ、4
は第1コンデンサーレンズ、5はフィルター素子、6,
7は各々反射鏡、8はオプテイカルインテグレータ、9
は第2コンデンサーレンズ、10はレチクル面、1)は
投影光学系、12はウニへ面である。
In the figure, 1 is a round mirror, 2 is a light source, 3 is a field lens, and 4
is the first condenser lens, 5 is the filter element, 6,
7 is each a reflector, 8 is an optical integrator, 9
1 is a second condenser lens, 10 is a reticle surface, 1) is a projection optical system, and 12 is a surface.

Claims (3)

【特許請求の範囲】[Claims] (1)照明系に複数のスペクトルを放射する光源を用い
た半導体製造用の露光装置において、前記照明系の一部
に前記光源から放射される発光スペクトルのうち所定の
波長の光束のみを選択するフィルター素子を設けたこと
を特徴とする露光装置。
(1) In an exposure apparatus for semiconductor manufacturing using a light source that emits a plurality of spectra in the illumination system, only a luminous flux of a predetermined wavelength is selected from among the emission spectra emitted from the light source as part of the illumination system. An exposure apparatus characterized by being provided with a filter element.
(2)前記フィルター素子を前記照明系内の被照射面の
各点を照明する光束の主光線が略平行となる位置に設け
たことを特徴とする特許請求の範囲第1項記載の露光装
置。
(2) The exposure apparatus according to claim 1, wherein the filter element is provided at a position where principal rays of a luminous flux illuminating each point of the illuminated surface in the illumination system are substantially parallel. .
(3)前記フィルター素子は所定の輝線スペクトルの領
域外の連続スペクトルをカットするように構成されてい
ることを特徴とする特許請求の範囲第1項記載の露光装
置。
(3) The exposure apparatus according to claim 1, wherein the filter element is configured to cut a continuous spectrum outside a predetermined bright line spectrum.
JP59280572A 1984-12-27 1984-12-27 Exposing device Pending JPS61156736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59280572A JPS61156736A (en) 1984-12-27 1984-12-27 Exposing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59280572A JPS61156736A (en) 1984-12-27 1984-12-27 Exposing device

Publications (1)

Publication Number Publication Date
JPS61156736A true JPS61156736A (en) 1986-07-16

Family

ID=17626896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59280572A Pending JPS61156736A (en) 1984-12-27 1984-12-27 Exposing device

Country Status (1)

Country Link
JP (1) JPS61156736A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233914A (en) * 1988-07-25 1990-02-05 Ushio Inc Lighting optical apparatus
JPH02260412A (en) * 1989-03-31 1990-10-23 Ushio Inc Aligner
JP2004358854A (en) * 2003-06-06 2004-12-24 Process Lab Micron:Kk Manufacturing method for metal mask, metal mask and metal mask printing form plate
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532900B2 (en) * 1988-07-25 1993-05-18 Ushio Electric Inc
JPH0233914A (en) * 1988-07-25 1990-02-05 Ushio Inc Lighting optical apparatus
JPH02260412A (en) * 1989-03-31 1990-10-23 Ushio Inc Aligner
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
JP2004358854A (en) * 2003-06-06 2004-12-24 Process Lab Micron:Kk Manufacturing method for metal mask, metal mask and metal mask printing form plate
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
JP2655465B2 (en) Reflection type homogenizer and reflection type illumination optical device
US5357312A (en) Illuminating system in exposure apparatus for photolithography
US5615047A (en) Illumination apparatus and exposure apparatus using it
JPS5916249B2 (en) General-purpose illumination system for microscopes
KR20060102278A (en) Imaging system for projector and corresponding projector
JPS61156736A (en) Exposing device
JPH032284B2 (en)
JPH0721583B2 (en) Exposure equipment
JP3658209B2 (en) Arc illumination optical system and exposure apparatus using the same
US4375315A (en) Arc lamp illuminator
JP3208863B2 (en) Illumination method and apparatus, exposure method, and semiconductor element manufacturing method
US4215935A (en) Method and device for the projection printing of a mask onto a semiconductor substrate
KR950015638A (en) Step-and-repeat exposure system with improved resolution
JP2003207850A (en) Illumination device and projector using the illumination device
JP2692660B2 (en) Projection exposure apparatus and projection exposure method
JPH08139009A (en) Illumination optical apparatus
JPH05121290A (en) Fine pattern projection alighner
JP2002222756A (en) Illuminator, exposure apparatus, method of manufacturing device, and device
JPH02244708A (en) Projecting exposure method and device
JP3209220B2 (en) Exposure method and semiconductor element manufacturing method
JPH0769576B2 (en) Lighting optics
JP2002350620A (en) Optical member, and illuminator and exposure device using the optical member
JP2003264143A (en) Illuminator, method for projecting pattern, and method for manufacturing semiconductor element
JPH07244318A (en) Image acquiring device
KR0160857B1 (en) Exposure method for forming a fine resist pattern of semiconductor device