JPS61153842A - Recording and reproducing method of optical recording medium - Google Patents

Recording and reproducing method of optical recording medium

Info

Publication number
JPS61153842A
JPS61153842A JP59274095A JP27409584A JPS61153842A JP S61153842 A JPS61153842 A JP S61153842A JP 59274095 A JP59274095 A JP 59274095A JP 27409584 A JP27409584 A JP 27409584A JP S61153842 A JPS61153842 A JP S61153842A
Authority
JP
Japan
Prior art keywords
light
absorption
fine particles
film
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59274095A
Other languages
Japanese (ja)
Inventor
Shin Fukushima
福島 伸
Masashi Sahashi
政司 佐橋
Shuichi Komatsu
小松 周一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59274095A priority Critical patent/JPS61153842A/en
Priority to US06/804,527 priority patent/US4757492A/en
Priority to DE8585115570T priority patent/DE3577611D1/en
Priority to EP85115570A priority patent/EP0186017B1/en
Publication of JPS61153842A publication Critical patent/JPS61153842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To carry out high-density recording with high sensitivity by irradiating light on an optical recording medium using a thin film wherein fine particles showing a metal-insulator transition are dispersed as the recording film, and utilizing the change in the optical characteristic at that time. CONSTITUTION:Mass movement of electrons of fine particle is caused, when light is irradiated on a film wherein the fine particles are dispersed in a medium. Consequently, plasma resonance absorption is produced, and the light absorption results. The absorption wavelength and absorption coefficient of the light absorption depend on the property of the medium, the space occupation ratio of the fine particles, the diameter of the fine particle, the concn. of free electrons, the effective mass, etc. Accordingly, the film contg. fine particles is fixed to a substrate, light is irradiated on the film to generate a metal-insulator transition at the irradiated site by the heating effect, the absorption wavelength and absorption coefficient of the plasma resonance absorption are changed to record a signal, the light of wavelength of the plasma resonance absorption is transmitted to read the presence and absence of the light absorption, and the reproduction of the recorded information is carried out.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は光記録媒体の記録・再生方法に関し、更に詳し
くは、光照射により記録膜で生起するプラズマ共鳴吸収
現象を利用して光記録媒体に記録し、記録を再生し、ま
た消去することもできる方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a recording/reproducing method for an optical recording medium, and more specifically, a method for recording and reproducing an optical recording medium by using a plasma resonance absorption phenomenon that occurs in a recording film due to light irradiation. It relates to a method that allows recording, reproducing recordings, and also erasing them.

[発明の技術的背景とその問題点] 各種の無機材料の微粒子は化学反応性に富み。[Technical background of the invention and its problems] Fine particles of various inorganic materials are highly chemically reactive.

熱拡散が悪く熱の集中が起こり易く、また光吸収率も高
いという特性を備えているので、これら竺粒子を基板上
に、膜7として固定した高感度な光記録媒体が提案され
ている0例えば、特開昭57−94944号公報には、
基板上に各種無機材料の微粒子を分散含有せしめた記録
用SSを形成し。
Since these particles have the characteristics of poor thermal diffusion, easy concentration of heat, and high light absorption, a highly sensitive optical recording medium in which these particles are fixed as a film 7 on a substrate has been proposed. For example, in Japanese Patent Application Laid-open No. 57-94944,
A recording SS containing fine particles of various inorganic materials dispersed on a substrate is formed.

ここにレーザービーム、電子線ビームなどの木ビームを
照射して、薄膜に変形部、変質部、又は変色部を形成し
て情報を記録しかつ再生する方法賞開示されて0゛°゛
る・ また、特開昭58−74392号公報には、金属又は半
金属の微粒子の島状凝集膜にレーザ光を照射して、照射
部位を溶融又は蒸発せしめて陥没凹部にするという方法
が開示さ−れている。
Here, a method of recording and reproducing information by forming deformed, altered, or discolored parts in a thin film by irradiating it with a wood beam such as a laser beam or an electron beam is disclosed. Furthermore, Japanese Patent Laid-Open No. 58-74392 discloses a method in which a laser beam is irradiated onto an island-like agglomerated film of fine metal or metalloid particles, and the irradiated area is melted or evaporated to form a depression. It is.

しかしながら、これらの光記録媒体にあっては、上記の
微粒子又はそれを含有する記録膜の記録前後における変
化は不可逆変化であるため、光照射によってひとたび情
報を記録すると、その情報を消去することができない、
すなわち、光記録媒体の反復利用が不可能であるという
問題を有している。
However, in these optical recording media, the changes in the fine particles or the recording film containing them before and after recording are irreversible, so once information is recorded by light irradiation, it is impossible to erase the information. Can not,
That is, there is a problem in that the optical recording medium cannot be used repeatedly.

[発明の目的] 本発明は、従来の先行技術における上記した問題点を解
消し、光照射時における変化が可逆的な金属′−′−縁
体転移i示す物質の微粒子を記録膜に分散含有させるこ
とにより、記録時の感度が高く再生時の信号/雑音比(
S/N比)が大きく。
[Object of the Invention] The present invention solves the above-mentioned problems in the conventional prior art, and provides a recording film containing dispersed fine particles of a substance whose change upon irradiation with light exhibits a reversible metal '-'-edge body transition. By doing so, the sensitivity during recording is high and the signal/noise ratio during playback (
S/N ratio) is large.

しかも記録消去が可能である光記録媒体の記録、再生、
消去方法の提供を目的とする。
In addition, recording and reproduction of optical recording media that can be erased,
The purpose is to provide an erasure method.

[発明の概要1 本発明者らは上記目的を達成すべく鋭意研究を重ねる過
程で、媒体に金属等の微粒子が分散している膜又は基板
の上に微粒子が不連続に付着して成る島状微粒子膜にお
いては、ここに光を照射すると微粒子の電子が集団運動
を起し、その結果。
[Summary of the Invention 1 In the course of intensive research to achieve the above object, the present inventors discovered an island formed by discontinuously adhering fine particles to a film or substrate in which fine particles such as metal are dispersed in a medium. In a film of microparticles, when light is irradiated here, the electrons of the microparticles cause collective movement, resulting in

分散した微粒子によるプラズマ共鳴吸収現象を生じて光
吸収が起こること、そしてまた、この光吸収における吸
収波長、吸収係数は、上記媒体の性質、微粒子の空間占
有率、全粒子の粒径、全粒子の電気的性質とくに自由電
子濃度及びその有効質量などに依存するとの事実に着目
した。
Light absorption occurs due to the plasma resonance absorption phenomenon caused by dispersed fine particles, and the absorption wavelength and absorption coefficient in this light absorption are determined by the properties of the medium, the space occupancy rate of fine particles, the particle size of all particles, and the total particle size. We focused on the fact that it depends on the electrical properties of the electrons, especially the free electron concentration and their effective mass.

更に、また、微粒子が金属−絶縁体転移を示す物質で構
成されている場合、その物質が金属相の状態にあってし
かも自由電子濃度大、有効質量小のときには、その膜−
光照射するとプラズマ共鳴吸収現象が起こり赤外域から
可視光の波長で大きな吸収が起こること、そしてその物
質が絶縁体相状態にあると、自由電子濃度小、有効質量
大であるため光照射してもプラズマ共鳴吸収は起こらな
いこと、すなわち、金属−絶縁体転移を示す物質の微粒
子を含有する膜は、微粒子物質の相の状態により光照射
時にプラズマ共鳴吸収を起こしたり又は起こさなかった
りするという事実に着目した。
Furthermore, when the fine particles are composed of a substance that exhibits a metal-insulator transition, when the substance is in a metallic phase and has a high free electron concentration and a small effective mass, the film-
When irradiated with light, a plasma resonance absorption phenomenon occurs and large absorption occurs at wavelengths from the infrared to visible light.If the material is in an insulator phase, the free electron concentration is small and the effective mass is large, so when irradiated with light, In other words, a film containing fine particles of a substance exhibiting a metal-insulator transition may or may not cause plasma resonance absorption when irradiated with light, depending on the state of the phase of the fine particle material. We focused on

したがって発明者らは、このような微粒子を含有する薄
膜を基板に固定し、ここに光照射してその光エネルギー
による加熱効果によって照射部位の微粒子に金属−絶縁
体転移を生じさせそのときの薄膜のプラズマ共鳴吸収の
吸収波長、吸収係数を変化させれば信号の記−が可能で
あり、またこのプラズマ共鳴吸収の波長の光を透過して
その光吸収の有無を読み取れば記録情報の再生が可能に
なり、更には、光照射部位を冷却すれば上記した場合の
逆の相転移が起こって記録信号は消去されて微粒子物質
は光照射前の元の状態に復元するとの着想を得、該着想
に基づいて本発明方法を開発するに到った。
Therefore, the inventors fixed a thin film containing such fine particles on a substrate, irradiated it with light, and caused a metal-insulator transition in the fine particles at the irradiated site due to the heating effect of the light energy, thereby changing the thin film. Signals can be recorded by changing the absorption wavelength and absorption coefficient of plasma resonance absorption, and recorded information can be reproduced by transmitting light at the wavelength of plasma resonance absorption and reading whether or not the light is absorbed. Furthermore, he came up with the idea that if the light irradiated area is cooled, a phase transition opposite to the above case will occur, the recorded signal will be erased, and the particulate matter will be restored to its original state before the light irradiation. Based on this idea, we have developed the method of the present invention.

すなわち本発明の光記録媒体の記録・再生方法は、金属
−絶縁体転移を示す物質の微粒子が分散されている61
19を記録膜とする光記録媒体に光照射してその加熱効
果により該物質の金属−絶縁体転移を生ぜしめ、そのと
きの、該薄膜のプラズマ共鳴吸収に基づく光学特性の変
化を利用することを特徴とする。
That is, the method for recording and reproducing an optical recording medium of the present invention is based on a method for recording and reproducing an optical recording medium in which fine particles of a substance exhibiting a metal-insulator transition are dispersed.
irradiating light onto an optical recording medium having No. 19 as a recording film to cause a metal-insulator transition of the substance due to the heating effect, and utilizing changes in optical properties based on plasma resonance absorption of the thin film at that time. It is characterized by

まず、本発明方法を適用する光記録媒体において、その
記録膜は金属−絶縁体転移を示゛す物質の微粒子が媒体
中に分散している微粒子分散膜であって基板の上に固定
されているもの、または。
First, in the optical recording medium to which the method of the present invention is applied, the recording film is a fine particle dispersion film in which fine particles of a substance exhibiting metal-insulator transition are dispersed in the medium, and is fixed on a substrate. Something that is or.

基板の上に微粒子を不連続に付着して形成したいわゆる
島状微粒子膜である。
This is a so-called island-like particulate film formed by discontinuously depositing particulates on a substrate.

これらの膜を構成する微粒子たる金属−絶縁体転移を示
す物質としては、転移に際して自由電子濃度及び有効質
量が大きく変化するものが望ましいが、実用に際しては
その転移温度が室温付近にあるものが更に好ましい。
The fine particles that make up these films, which exhibit a metal-insulator transition, are preferably those whose free electron concentration and effective mass change greatly during the transition, but for practical use, it is even more desirable to have a transition temperature near room temperature. preferable.

このような物質としては1次式=(V 1− X A 
! ) 02(AはNo、Wの少なくとも1種を表わし
、XはO≦x<0.1を満足する数を表わす)で示され
る物質、又は次式: (VlyBy)2O3  (Bは
Cr’、AnO’)少なくとも1種を表わし、yはO<
 Y < 0.03を満足する数を表わす)で示される
物質をあげることができる。
For such a substance, the linear formula = (V 1-
! ) 02 (A represents at least one of No and W, and X represents a number satisfying O≦x<0.1), or the following formula: (VlyBy)2O3 (B is Cr', AnO') represents at least one species, and y is O<
(representing a number satisfying Y < 0.03) can be mentioned.

前者は転移温度が70℃付近にあり、低温側力く絶縁体
相、高温側が金属相である。したがって、これに光照射
して照射部位を加熱すると、その部位は金属相になって
プラズマ共鳴吸収を示し、絶縁体相にはその現象は生起
しな17%、MO,W1士この物質の相転移の温度を低
温側にシフトさせる成分であって、後述する室温域での
記録状態の保持にとって有効である。
The former has a transition temperature around 70°C, with the low temperature side being an insulating phase and the high temperature side being a metal phase. Therefore, when this material is irradiated with light and the irradiated area is heated, that area becomes a metal phase and exhibits plasma resonance absorption, whereas this phenomenon does not occur in the insulator phase. It is a component that shifts the transition temperature to the lower temperature side, and is effective for maintaining the recording state in the room temperature range, which will be described later.

後者は、yの値によってその転移温度が−20〜 15
0℃の範囲内を変化する。y=o+7≧0.03のとき
には金属−絶縁体転移を起こさなl/)、そして低温側
では金属相、高温側では絶縁体相である。Cr、Anの
含有量が少量であってもその効果tま発揮されるが、実
用上はX≧0.0001であること力ζ好ましい。
The latter has a transition temperature of −20 to 15 depending on the value of y.
Varies within a range of 0°C. When y=o+7≧0.03, no metal-insulator transition occurs (l/), and the metal phase is on the low temperature side and the insulator phase is on the high temperature side. Even if the content of Cr and An is small, the effect can still be exhibited, but it is practically preferable that X≧0.0001.

このような物質で記録膜を形成するためにtよ。In order to form a recording film with such a substance,

常用されてい8各種の成膜技術を基板に適用すればよい
。例えば、後者の膜の場合、低酸素分圧下テ所定fil
 ti、 (7) V−Cr合金、V−A 1合金、V
−Or−^交合金を真空蒸着する方法;低酸素分圧下に
おけるVの反応茄着、スパッタを適用することができる
Eight types of commonly used film forming techniques may be applied to the substrate. For example, in the case of the latter membrane, a given filtration under low oxygen partial pressure
ti, (7) V-Cr alloy, V-A 1 alloy, V
A method for vacuum-depositing the -Or-^ alloy; reactive deposition of V under low oxygen partial pressure and sputtering can be applied.

また、この成膜過程で蒸発源、ターゲットの組成、雰囲
気、基板温度とその配置などの条゛件を適宜に選択する
こにより、微粒子が島状に不゛連続に存在する薄膜、又
は各種ガラス、5n02、CaF2゜あるいは、 PM
A等の有機物のような物質(分散媒)を蒸発源若しくは
ターゲットとしてそれを(Vl−yB、)203の物質
lと交互に芝着若しくはスパッタリングすること、ある
いは気相法による重合を組合せることにより、分散媒の
中に(VlyBy)2O3の物質の微粒子が分散して存
在する薄膜を形成することができる。更には条件設定に
よっては両者が積層した薄膜を形成することもできる。
In addition, by appropriately selecting conditions such as the evaporation source, target composition, atmosphere, substrate temperature, and arrangement during this film formation process, thin films in which fine particles exist discontinuously in the form of islands or various types of glass can be formed. , 5n02, CaF2゜ or PM
Using a substance (dispersion medium) such as an organic substance such as A as an evaporation source or target, alternately applying or sputtering it with the substance 1 of (Vl-yB,) 203, or combining polymerization by a vapor phase method. Accordingly, a thin film in which fine particles of the substance (VlyBy)2O3 are dispersed and present in the dispersion medium can be formed. Furthermore, depending on condition settings, it is also possible to form a thin film in which both are laminated.

このような島状の微粒子凝集膜及び微粒子分散膜の場合
には、va粒子の薄膜内空間占有率が小さいので薄膜の
熱伝導率は小さくなる。その結果、記録時の光照射によ
る昇温の際に光照射に対する感度が大きくなるため半導
体レーザのような低出力光源の使用も可能となる。また
、同様の理由により光照射された部位が熱拡散によって
拡大するという事態が抑制されるので高密度記録が可能
になる。
In the case of such island-shaped fine particle aggregation films and fine particle dispersed films, the space occupation rate of the VA particles in the thin film is small, so the thermal conductivity of the thin film is low. As a result, the sensitivity to light irradiation increases when the temperature rises due to light irradiation during recording, making it possible to use a low-output light source such as a semiconductor laser. Furthermore, for the same reason, the expansion of the irradiated area due to thermal diffusion is suppressed, making high-density recording possible.

このような薄膜において、微粒子の大きさは再生に用い
る光の散乱を抑制するためその波長より小さい粒径を有
することが望ましいことからして、50〜7000人、
好ましくは 100〜800人、とくに好ましくは20
0〜700人の範囲に設定され、また薄膜内における該
微粒子の体積占有率は10〜80%、好ましくは20〜
70%、とくに好ましくは30〜80%の範囲に設定さ
れる。
In such a thin film, it is desirable that the particle size be smaller than the wavelength of the light used for reproduction in order to suppress the scattering of the light, so 50 to 7000 people,
Preferably 100 to 800 people, particularly preferably 20
0 to 700 people, and the volume occupancy of the fine particles in the thin film is 10 to 80%, preferably 20 to 80%.
It is set to 70%, particularly preferably in the range of 30 to 80%.

また膜厚は、再生に用いる光源の波長、また光の検出に
際して該薄膜を透過した光を光源の反対側から門出する
か、あるいは該薄膜と基板の間に反射層を設け、光源側
で膜透過後の反射光を検出するか等の方法や該微粒子の
粒径、および体積占有率の差異により、適当な値を選定
することができるが、一般には0.5〜50用1好まし
くは1〜20.口の範囲に設定される。
The film thickness also depends on the wavelength of the light source used for reproduction, and whether the light transmitted through the thin film is emitted from the opposite side of the light source during light detection, or whether a reflective layer is provided between the thin film and the substrate and the film is formed on the light source side. An appropriate value can be selected depending on the method of detecting the reflected light after transmission, the particle size of the fine particles, and the difference in volume occupancy, but in general, it is 0.5 to 50, preferably 1. ~20. Set to the mouth range.

記録、再生は上記したような光記録媒体を用いて次のよ
うに行なうことができる。すなわち。
Recording and reproduction can be performed as follows using the optical recording medium as described above. Namely.

まず上記薄膜を光照射する。光照射された部位は加熱さ
れて温度上昇し転移温度で金属−絶縁体転移を起こす、
つまり、このとき、記録が微粒子の相転移として記憶さ
れたことになる。
First, the thin film is irradiated with light. The area irradiated with light is heated and its temperature rises, causing a metal-insulator transition at the transition temperature.
In other words, at this time, the record was stored as a phase transition of the microparticles.

つぎに光照射を停止し光記録媒体を室温にまで冷却する
。しかし、上記物質の金属−絶縁体転移においては、昇
温時の転移温度と冷却時における転移温度が同一ではな
い、すなわち相転移の温喰ヒステリシスが存在し、冷却
時のそれは昇温時のそれに比べて低温側にシフトしてい
るため、この冷却時にあっても記録すなわち光照射部位
は依然として光照射によって転移した相のままであるた
め記録状態が保持されている。
Next, the light irradiation is stopped and the optical recording medium is cooled to room temperature. However, in the metal-insulator transition of the above substances, the transition temperature during heating is not the same as the transition temperature during cooling, that is, there is warm-eating hysteresis of the phase transition, and the transition temperature during cooling is different from that during heating. Since the temperature has shifted to the lower temperature side in comparison, even during this cooling, the recorded state, that is, the light irradiated area, remains in the phase transformed by the light irradiation, so that the recorded state is maintained.

記録再生は、例えば光照射部位の微粒子が金属相であっ
た場合、その部位ではプラズマ共鳴吸収が生ずるので、
そこにそのプラズマ共鳴吸収の吸収波長を有する光を照
射し、そのときの透過光の吸収の有無を検知することに
よって行なうことができる。
In recording and reproducing, for example, if the fine particles at the light irradiation site are in a metal phase, plasma resonance absorption occurs at that site.
This can be done by irradiating light having an absorption wavelength of the plasma resonance absorption thereon and detecting whether or not the transmitted light is absorbed at that time.

なお、冷却時に、その冷却温度を微粒子物質の冷却時の
転移温度以下にすれば、光照射部位は光照射前の相の状
態に戻るので記録はそれに応じて消去される。つまり、
記録情報の書き換え、記録・再生の反復に備えることが
できる。
Note that if the cooling temperature is lowered to below the transition temperature of the particulate matter during cooling, the light irradiated area returns to the state of the phase before the light irradiation, and the record is erased accordingly. In other words,
It is possible to prepare for rewriting recorded information and repeating recording and reproduction.

また、微粒子物質の冷却時における転移温度は、その冷
却速度に依存する。すなわち、光照射されて記録状態に
ある部位を急冷すると、その記録状態は通常の冷却時の
転移温度より低い温度にまで保持されいわば凍結される
。このことは、光照射時のレーザスポットを極めて小さ
く絞れば、そのスポット部位が冷却時にはその周囲との
関係で急冷状態になる場合に生起する現象と考えること
ができるふ この現象を利用すれば、徐冷時の転移温度が室温直上に
ある組成の物質を選定し、記録時に急冷して光照射部位
の記録状態を保持し消去時には再び昇温して徐冷し通常
冷却の転移温度で相転移を行なわせることができる。す
なわち、特別の冷却装置を用いることなく、記録−再生
−消去の操作を進めることができる。
Furthermore, the transition temperature during cooling of particulate matter depends on its cooling rate. That is, when a region in a recorded state is rapidly cooled by light irradiation, the recorded state is maintained at a temperature lower than the transition temperature during normal cooling, so to speak, and is frozen. This can be explained by using the Funo phenomenon, which can be thought of as a phenomenon that occurs when the laser spot during light irradiation is narrowed down to an extremely small size, and when that spot cools down, it becomes rapidly cooled in relation to its surroundings. Select a substance with a composition whose transition temperature during slow cooling is just above room temperature. During recording, it is rapidly cooled to maintain the recorded state of the light irradiated area, and when erasing, the temperature is raised again and slowly cooled, resulting in a phase transition at the transition temperature of normal cooling. can be made to do so. That is, recording, reproducing, and erasing operations can be performed without using a special cooling device.

[発明の実施例] 実施例1 酸素分圧2 X 10−” Torrのアルゴン雰囲気
中において、金属バナジウムを蒸発源として液体窒素で
冷却した石英基板に20秒間蒸着処理を施した。
[Examples of the Invention] Example 1 In an argon atmosphere with an oxygen partial pressure of 2 x 10-'' Torr, a quartz substrate cooled with liquid nitrogen was subjected to evaporation treatment for 20 seconds using metal vanadium as an evaporation source.

ついで、三酸化ボロン(B203)を蒸発源とし60秒
秒間性処理を施した0以上の操作を12回反復して石英
基板に厚み 1.5終曽の薄膜を形成した。この薄膜を
電子顕微鏡によって観察したところ、粒径200〜40
0人のVO2微粒子が400〜eoo入の間隔で820
3の中に分散している微粒子分散膜であることが判明し
た。
Subsequently, a thin film having a thickness of 1.5 mm was formed on the quartz substrate by repeating 12 times 0 or more operations in which a 60-second sexual treatment was performed using boron trioxide (B203) as an evaporation source. When this thin film was observed using an electron microscope, the particle size was 200 to 40.
0 people's VO2 particles are 820 at intervals of 400 to eoo
It turned out to be a fine particle dispersed film dispersed in 3.

この薄膜に波長1.061Lmの光を照射し、そのとき
の光吸収率と温度との関係を測定してその結果を第1図
に示した0図から明らかなように、昇温時には約70℃
で金属相への移転が起こり。
This thin film was irradiated with light with a wavelength of 1.061 Lm, and the relationship between the light absorption rate and temperature was measured. ℃
transfer to the metallic phase occurs.

冷却時には約43℃で逆の転移が起こってその光吸収率
が大きく変化している。
During cooling, a reverse transition occurs at about 43° C., and the light absorption rate changes significantly.

つぎに、この薄膜に直径3ル麿のスポットサイズを有す
る出力10mWの半導体レーザ(波長830 n 會)
を照射した。この光照射部位(記録部)と光照射を行な
わなかった部位(未記録部)と、更に上記記録部を10
″9にまで冷却した部位(消去、部)とに波長t、oe
IL腸、出力0.1−一のレーザ光でそれぞれの光吸収
率を測定した。なお、測定は50℃で行、午:9た。記
録部、未配一部、消去部の光吸収率はり住、ぞれ53.
2%、11.2%、11.5%であった。すなわ(i、
光照射によって生起した金属−絶縁体相転移に伴ない光
吸収率が太きく変化して記録が行なわれ、冷却によって
消去されることが判明した。
Next, a semiconductor laser (wavelength: 830 nm) with an output of 10 mW and a spot size of 3 mm in diameter was attached to this thin film.
was irradiated. This light irradiated area (recorded area), the area that was not irradiated with light (unrecorded area), and the above recorded area were
The wavelength t, oe is applied to the part (erasure, part) cooled to 9.
The light absorption rate of each IL intestine was measured using a laser beam with an output of 0.1-1. The measurements were conducted at 50° C. at 9:00 p.m. The light absorption rate of the recorded part, undistributed part, and erased part is 53.
They were 2%, 11.2%, and 11.5%. Sunawa (i,
It has been found that recording is performed with a sharp change in light absorption due to metal-insulator phase transition caused by light irradiation, and is erased by cooling.

実施例2 酸素分圧がI X 1(1’、Torr、蒸発源がそれ
ぞれVo、990Cro、olo及び8203であった
ことを除いては実施例1と同様にして厚み 1.5IL
mの薄膜を形成し、た、この薄膜は、粒径200〜30
0 Aの(V(1,990”rO,olo)203の微
粒子が、400〜800人の間隔でE!7Q3の中に分
散している微粒子分散膜であった。
Example 2 The thickness was 1.5IL in the same manner as in Example 1 except that the oxygen partial pressure was I x 1 (1', Torr) and the evaporation sources were Vo, 990Cro, olo, and 8203, respectively.
A thin film with a grain size of 200 to 30 m was formed.
It was a fine particle dispersed film in which 203 fine particles of 0 A (V (1,990"rO,olo) were dispersed in E!7Q3 at intervals of 400 to 800 people.

この薄膜に波長1.0[1g■の半導体レーザ光を照射
し、そのときの光吸収率と温度との関係を調べその結果
を第2図に示した。
This thin film was irradiated with semiconductor laser light with a wavelength of 1.0 [1 gm], and the relationship between the light absorption rate and temperature was investigated, and the results are shown in FIG.

この薄膜上に直径3終■のスポットサイズを有する出力
jo*Wの半導体レーザ光(波長830nm)を照射し
て記録部を形成した。また、この記録部を含む部位にス
ポット径20ト■の半導体レーザ光(出力10mW、波
長830nm)を照射してそのまま徐冷し消去部とした
。実施例1と同様の条件で各部の光吸収率を測定した。
A recording section was formed by irradiating this thin film with a semiconductor laser beam (wavelength: 830 nm) having an output of jo*W and having a spot size of 3 mm in diameter. Further, the area including this recording area was irradiated with semiconductor laser light (output 10 mW, wavelength 830 nm) with a spot diameter of 20mm and was then slowly cooled to form an erased area. The light absorption rate of each part was measured under the same conditions as in Example 1.

ただし測定時の温度は25℃であった。記録部968%
、未記録部58.2%、消去部57.9%。
However, the temperature at the time of measurement was 25°C. Recording section 968%
, unrecorded portion 58.2%, erased portion 57.9%.

すなわち、記録部では絶縁体相が室温にまで凍結されて
プラズマ共鳴吸収が起こらないので光吸収率は小さく、
また金属相である消去部ではプラズマ共鳴吸収によって
光吸収率が大きくなっている。
In other words, in the recording section, the insulator phase is frozen to room temperature and no plasma resonance absorption occurs, so the light absorption rate is small.
In addition, in the erasing part, which is a metal phase, the light absorption rate is increased due to plasma resonance absorption.

[発明の効果J 以上の説明で明らかなように1本発明方法は金属−絶縁
体転移を示す物質の微粒子の薄膜のプラズマ共鳴吸収を
利用する記録・再生方法である。そして高感度の記録を
高密度に行なうことができ、また再生時には信号/雑音
比の高い記録再生が可能である。
[Effects of the Invention J] As is clear from the above description, the method of the present invention is a recording/reproducing method that utilizes plasma resonance absorption of a thin film of fine particles of a substance exhibiting metal-insulator transition. High-sensitivity recording can be performed at high density, and recording and reproduction with a high signal/noise ratio is possible during reproduction.

しかも、この光記録媒体は微粒子物質の可逆的な金属−
絶縁体転移を利用しているので記録を消去して再び記録
・再生に備えることができるイレーザブル光記録媒体で
あって有用である。
Moreover, this optical recording medium is a reversible metal-based material made of fine particles.
Since it utilizes insulator transition, it is an erasable optical recording medium that can erase recordings and prepare for recording/reproducing again, and is therefore useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ、実施例1、実施例2のS膜
の光吸収率の温度依存性を示す図である。 第1図 第2図  ′烹“°°”− 3LL(@Cl−
FIG. 1 and FIG. 2 are diagrams showing the temperature dependence of the light absorption rate of the S films of Example 1 and Example 2, respectively. Figure 1 Figure 2 '°°'- 3LL (@Cl-

Claims (1)

【特許請求の範囲】 1、金属−絶縁体転移を示す物質の微粒子が分散されて
いる薄膜を記録膜とする光記録媒体に光照射してその加
熱効果により該物質の金属−絶縁体転移を生ぜしめ、そ
のときの、該薄膜内に分散している微粒子によるプラズ
マ共鳴吸収に基づく光学特性の変化を利用することを特
徴とする光記録媒体の記録・再生方法。 2、該物質が、次式:(V_1_−_xA_x)O_2
(式中、AはMo、Wの少なくとも1種を表わし、xは
0≦x<0.1の関係を満足する数を表わす)で示され
る物質である特許請求の範囲第1項記載の方法。 3、該物質が、次式:(V_1_−_yB_y)_2O
_3(式中、BはCr、Alの少なくとも1種を表わし
、yは0<y<0.03の関係を満足する数を表わす)
で示される物質である特許請求の範囲第1項記載の方法
[Claims] 1. Light is irradiated onto an optical recording medium whose recording film is a thin film in which fine particles of a substance exhibiting metal-insulator transition are dispersed, and the metal-insulator transition of the substance is induced by the heating effect. 1. A method for recording and reproducing an optical recording medium, which utilizes changes in optical properties based on plasma resonance absorption by fine particles dispersed within the thin film. 2. The substance has the following formula: (V_1_−_xA_x)O_2
(In the formula, A represents at least one of Mo and W, and x represents a number satisfying the relationship 0≦x<0.1) The method according to claim 1 . 3. The substance has the following formula: (V_1_−_yB_y)_2O
_3 (In the formula, B represents at least one of Cr and Al, and y represents a number that satisfies the relationship 0<y<0.03)
The method according to claim 1, wherein the substance is a substance represented by:
JP59274095A 1984-12-26 1984-12-27 Recording and reproducing method of optical recording medium Pending JPS61153842A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59274095A JPS61153842A (en) 1984-12-27 1984-12-27 Recording and reproducing method of optical recording medium
US06/804,527 US4757492A (en) 1984-12-26 1985-12-04 Method for recording and reproducing information on or from an optical recording medium
DE8585115570T DE3577611D1 (en) 1984-12-26 1985-12-06 METHOD FOR RECORDING AND PLAYING BACK AN OPTICAL RECORDING MEDIA.
EP85115570A EP0186017B1 (en) 1984-12-26 1985-12-06 Recording and reproducing method of optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59274095A JPS61153842A (en) 1984-12-27 1984-12-27 Recording and reproducing method of optical recording medium

Publications (1)

Publication Number Publication Date
JPS61153842A true JPS61153842A (en) 1986-07-12

Family

ID=17536913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59274095A Pending JPS61153842A (en) 1984-12-26 1984-12-27 Recording and reproducing method of optical recording medium

Country Status (1)

Country Link
JP (1) JPS61153842A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697322B2 (en) * 2000-01-26 2004-02-24 Seiko Instruments Inc. Recording medium, optical recording device utilizing recording medium, and method of manufacturing recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697322B2 (en) * 2000-01-26 2004-02-24 Seiko Instruments Inc. Recording medium, optical recording device utilizing recording medium, and method of manufacturing recording medium

Similar Documents

Publication Publication Date Title
JP3292890B2 (en) Phase change type optical recording medium using light reflection and heat dissipation material
JPS63200331A (en) Recording medium and recording and reproducing method
TW200419178A (en) Optical switch
TW200401283A (en) Recording medium with high melting point recording layer, information recording method for the recording medium, and information reproducing device
US4757492A (en) Method for recording and reproducing information on or from an optical recording medium
JPS61153842A (en) Recording and reproducing method of optical recording medium
US7758941B2 (en) Optical data storage medium with super resolution layer
JPS6126949A (en) Optical information recording member
JPS634166B2 (en)
JPS61151851A (en) Optical recording medium
JPH01256036A (en) Information recording medium and production thereof
JPS62226445A (en) Optical recording medium
JP3034497B2 (en) Information recording / reproducing / erasing device
JP3109927B2 (en) Magneto-optical recording medium
JP3118554B2 (en) Method for manufacturing magneto-optical recording medium
JPS6256583B2 (en)
JPH03153389A (en) Optical recording medium
JPH0375940B2 (en)
JPS59208706A (en) Thermomagnetic recording material
JPH04105986A (en) Optical recording medium and recording and erasing method using the same
JPH03160634A (en) Optical recording medium
JP2903970B2 (en) Optical recording medium and recording / reproducing method using the same
JPH02147393A (en) Information recording medium
JPS62227050A (en) Material for optical recording medium
JPH0371034B2 (en)