JPS6114787A - Distributed feedback type semiconductor laser - Google Patents

Distributed feedback type semiconductor laser

Info

Publication number
JPS6114787A
JPS6114787A JP59134308A JP13430884A JPS6114787A JP S6114787 A JPS6114787 A JP S6114787A JP 59134308 A JP59134308 A JP 59134308A JP 13430884 A JP13430884 A JP 13430884A JP S6114787 A JPS6114787 A JP S6114787A
Authority
JP
Japan
Prior art keywords
diffraction grating
layer
distributed feedback
laser
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59134308A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kitamura
北村 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59134308A priority Critical patent/JPS6114787A/en
Publication of JPS6114787A publication Critical patent/JPS6114787A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/124Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts
    • H01S5/1243Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers incorporating phase shifts by other means than a jump in the grating period, e.g. bent waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the laser characteristic and the characteristic yield of an element by forming phase shifting regions of different thickness partly along a laser resonance axis direction and forming a diffraction grating over the entire laser resonance direction in a waveguide range, thereby reducing an oscillation threshold current. CONSTITUTION:A groove 2 of 0.2mum is formed on a substrate 1. A buffer 3, a non-doped active layer 4, and a light guide layer 5 corresponding to 1.3mum of light emitting wavelength is sequentially laminated 0.1mum at approx. 0.2mum, 0.2mum and 0.1mum at the groove 2 at the flat part. A diffraction grating 6 is formed on the surface of the layer 5, and a P type InP clad layer 7 is grown thereon. The thus formed double hetero structure (DH) semiconductor wafer is mesa etched, buried in normal step to form a DFB-BHLD. This phase shifting region 8 is formed to alter the wavelength of the light wave in the region 8 to vary the equivalent refractive index.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は分布帰還型半導体レーザに関する。[Detailed description of the invention] (Technical field of invention) The present invention relates to a distributed feedback semiconductor laser.

(従来技術とその問題点) 高速変調時にも安定な単一軸モード発振を示し光フアイ
バ通信の伝送帯域を大きくとることのできる半導体光源
として分布帰還型半導体レーザ(DPE3−LD)の開
発が進められている。 D FB −LDは適尚なピッ
チの回折格子による波長選択機構を有しており、Gl)
/S  レベルの高速度で変調しても単一波長で発振す
るという結果が得られている。
(Prior art and its problems) The development of a distributed feedback semiconductor laser (DPE3-LD) is underway as a semiconductor light source that exhibits stable single-axis mode oscillation even during high-speed modulation and can widen the transmission band of optical fiber communications. ing. DFB-LD has a wavelength selection mechanism using a diffraction grating with an appropriate pitch, and Gl)
The results show that even when modulated at a high speed of /S level, oscillation occurs at a single wavelength.

ところで通常のDF’13−LDにおいてはn:面反射
がない場合にはブラッグ波長をはさんだ2つの軸モード
に対するしきい値利得が等しくなるため、基本的にけ2
軸モ一ド発振することが知られている。少なくとも一方
の出力端面が反射端面とηっている場合にはブラッグ波
長をはさんだ発振波長としきい値利得との関係が非対称
になってきて、1本の軸モードで発振することになる。
By the way, in a normal DF'13-LD, if there is no n: plane reflection, the threshold gain for the two axial modes sandwiching the Bragg wavelength is equal, so basically the
It is known that axial mode oscillation occurs. If at least one of the output end faces is at an angle η with the reflecting end face, the relationship between the oscillation wavelength sandwiching the Bragg wavelength and the threshold gain becomes asymmetrical, resulting in oscillation in one axial mode.

その場合にもH側の端面反射率が0のとき、反射端面に
おける回折格子位相かに/ 、  3./  の場合2
つの軸モードに対するしきい値利得が等しくなる。この
ような位相に近い状態でも、やはり両者のしきい値利得
差は小さくなるので2軸モ一ド発振しゃすく、注入電流
を増加して光出力を増してゆくとそれら2つの軸モード
間でモードのとびが生じたりする。しかも回折格子周期
は240OA程度でありへきかいによって形成する反射
端面において上述の回折格子位相を制御することは不可
能といえる。
In that case, when the H-side end face reflectance is 0, the diffraction grating phase at the reflecting end face is /. / Case 2
The threshold gains for the two axial modes are equal. Even in a state where the phases are close to each other, the threshold gain difference between the two becomes small, so biaxial mode oscillation occurs, and as the injected current is increased and the optical output is increased, the difference between the two axial modes increases. Mode skipping may occur. Furthermore, since the period of the diffraction grating is about 240 OA, it is impossible to control the phase of the diffraction grating as described above at the reflective end face formed by the cleavage.

(発明の目的) 本発明の目的は上述の観点に!5九って、安定に単一軸
モード発振が得られ、特性の向上した分布帰還型半導体
レーザを提供することにある。
(Object of the invention) The object of the invention is the above-mentioned viewpoint! 59. It is an object of the present invention to provide a distributed feedback semiconductor laser which can stably obtain single-axis mode oscillation and has improved characteristics.

(発明の構成) 本発明による分布帰還型半導体レーザの構成は半導体基
板上に、少なくとも活性層と、前記活性層よりもエネル
ギーギャップが大きく、かつ一方の面に回折格子が形成
された光ガイド層とを有する積層構造を備えている分布
帰還型半導体レーザにおいて、少なくとも前記活性層、
前記光力イト層よりなる導波領域が、レーザ共振軸方向
に沿って部分的に厚さの異なる位相シフト領域を有し、
前記導波領域内で、レーザ共振軸方向全体にわたって前
記回折格子が形成されていることを特徴としている。
(Structure of the Invention) The structure of the distributed feedback semiconductor laser according to the present invention includes at least an active layer and an optical guide layer having a larger energy gap than the active layer and having a diffraction grating formed on one surface on a semiconductor substrate. In a distributed feedback semiconductor laser having a laminated structure having at least the active layer;
The waveguide region made of the optical power layer has a phase shift region having a partially different thickness along the laser resonance axis direction,
It is characterized in that the diffraction grating is formed within the waveguide region throughout the laser resonance axis direction.

(本発明の作用・原理) 従来のような分布帰還型半導体レーザ(DPB−LD)
に対して本発明は素子内部に回折格子の位相をずらす領
域を形成することにより、適当な位相ずれ量に対しては
ブラック波長において単一軸モード発振させている。こ
の場合そのしきい値利得も通常の場合と比べて大幅に下
げることができる。
(Operation and principle of the present invention) Conventional distributed feedback semiconductor laser (DPB-LD)
In contrast, in the present invention, by forming a region inside the element that shifts the phase of the diffraction grating, single-axis mode oscillation is achieved at the black wavelength for an appropriate amount of phase shift. In this case, the threshold gain can also be significantly lowered compared to the normal case.

本発明では回折格子は通常どおりに形成しておいて、部
分的に導波領域の等側屈折率を変化させ光波の位相をず
らしている。すなわち導波領域内に層厚の異々る領域を
形成して位相シスト領域を設けている。
In the present invention, the diffraction grating is formed in the usual manner, and the isolateral refractive index of the waveguide region is partially changed to shift the phase of the light wave. That is, regions having different layer thicknesses are formed within the waveguide region to provide a phase cyst region.

通常のDPB−LDにおいては、 ブラッグ波長におい
て、光波の位相は一往復でπだけずれるために互いに打
ち消しあう。すなわちブラッグ波長でけ発振し得ないわ
けで、これが所謂ストップバンドとがる。そこで前述の
ようにレーザ共振軸方向にそって部分的に等側屈折率の
異なる部分を形成することによって光波の位相をπだけ
ずらしてやれば、ブラッグ波長において一往復で2πず
れることになり、したがってブラッグ波長発振しうる。
In a normal DPB-LD, at the Bragg wavelength, the phases of the light waves shift by π in one round trip, so they cancel each other out. In other words, it cannot oscillate at the Bragg wavelength, which is the so-called stop band. Therefore, if the phase of the light wave is shifted by π by forming portions with different equilateral refractive indexes along the laser resonance axis direction as described above, the Bragg wavelength will be shifted by 2π in one round trip. Can oscillate at Bragg wavelength.

このときKは同時に、しきい値利得も低減する。At this time, K simultaneously reduces the threshold gain.

(実施例) 以下実施例を示す図面を用いて本発明をより詳細に説明
する。第1図に本発明による一実施例を示fo ’jず
n−InP基板1上1clHOμm、深さ0.2μmの
溝2を形成する。そのうえにn−InPバッファ層3、
発光波長1.55μmに相当するノンドーグI no、
ie ()a O,4+ ABo会o P O,10活
性層4、発光波長1.3 pmに相当するr)  In
 ayt 4 Ga 118 ASo、atpo、ss
光ガイド層5を平坦部でそれぞれ0.1μm。
(Example) The present invention will be described in more detail below using drawings showing examples. FIG. 1 shows an embodiment of the present invention, in which a groove 2 of 1 clHO .mu.m and a depth of 0.2 .mu.m is formed on an n-InP substrate 1. As shown in FIG. In addition, an n-InP buffer layer 3,
Non-Dogue I no, which corresponds to an emission wavelength of 1.55 μm,
ie ()a O,4+ ABokai o P O,10 active layer 4, corresponding to emission wavelength 1.3 pm r) In
ayt 4 Ga 118 ASo, atpo, ss
The thickness of the light guide layer 5 is 0.1 μm in each flat part.

溝2部分で、それぞれ約0.2ttm、  0.2μm
n 、 0.IAtn程度ずつ順次積層する。幅10μ
m程度だと、溝2内部での成長速度がやや大きくなるの
で、全5一 体としてはほぼ平坦な表面が得られる。この部分では多
少のくぼみができることもあるが、以後の製造過程にお
いては問題がない。光ガイド層5の表面に周期240O
A、深さ700A程度の回折格子6をレーザ干渉露光法
によって形成し、そのうえにp −InPクラッド層7
を成長させた。p −InPクラッド層の成長は、回折
格子6の熱的劣化を防止するために550℃程度の低い
i度で行なった。このようKして作製した2重へテロ構
造(DH)半導体ウェファをメサエッチングし、通常の
工程で埋め込み成長することによりDFB−BHLDを
作製した。このような位相シフト領域8を形成すること
により1等価屈折率が変化するため導波領域8内の光波
の波長が変わる。本実施例の場合には位相シフト領域8
において活性層膜厚が大きくなっているので、そこで波
長は短かくなり位相シフト領域8がない場合と比べて適
当な位相ずれが生ずる。上述のパラメータを選んでやる
ことにより、光波の位相はブラッグ波長に対して約π変
化すること釦なり、ブラッグ波長付近におい6一 て安定な単一軸モード発振が認められた。そのようなり
FB−BHLD において長さ25 Q pm程HC両
面へきかいで素子を切り出し、室温CWでの発損しきい
値電流20 tyt A 、片面からの9分量子効率2
5%、最高単一軸モード出力3 QmW、 最高単一軸
モードCW発振温度100’Ca度の素子が再現性よく
得られた。
Approximately 0.2 ttm and 0.2 μm in the two groove parts, respectively.
n, 0. The layers are sequentially stacked by about IAtn. Width 10μ
When the diameter is around m, the growth rate inside the groove 2 becomes a little high, so that a substantially flat surface can be obtained as a whole as a whole. Although some depressions may be formed in this part, there will be no problem in the subsequent manufacturing process. The surface of the light guide layer 5 has a period of 240O.
A. A diffraction grating 6 with a depth of about 700 A is formed by laser interference exposure, and a p-InP cladding layer 7 is formed on top of the diffraction grating 6.
grew. The p-InP cladding layer was grown at a low i degree of about 550° C. to prevent thermal deterioration of the diffraction grating 6. The double heterostructure (DH) semiconductor wafer thus produced was subjected to mesa etching, and a DFB-BHLD was produced by performing buried growth using a normal process. By forming such a phase shift region 8, the 1-equivalent refractive index changes, so the wavelength of the light wave within the waveguide region 8 changes. In the case of this embodiment, the phase shift region 8
Since the thickness of the active layer is increased in , the wavelength is shortened there, and an appropriate phase shift occurs compared to the case where the phase shift region 8 is not provided. By selecting the above parameters, the phase of the light wave changes by approximately π with respect to the Bragg wavelength, and stable single-axis mode oscillation was observed near the Bragg wavelength. In this way, in the FB-BHLD, an element was cut out by cutting both sides of the HC to a length of 25 Q pm, and the loss threshold current at room temperature CW was 20 tyt A, and the 9-minute quantum efficiency from one side was 2.
5%, a maximum single-axis mode output of 3 QmW, and a maximum single-axis mode CW oscillation temperature of 100'Ca degrees were obtained with good reproducibility.

さらKこのような位相シフト機構を有するDI’i”B
−LD においては、反射端面における回折格子6の位
相の影響も小さい。通常のDFB−IJにおいては反射
端面における位相条件によってモードとびを生ずる素子
が少なくなかった。−例として、1枚のウェファから任
意に切り出して特性歩留りを調べたところ、通常のDF
B−LDでは35チの素子がlomW以内の出力レベル
で反射端面位相条件によるモードとびを示し九が、実施
例に示した位相シフ)DFB−LDにおいてはその割合
は5チに減少し、単一軸モード発振の等性歩留りが大幅
に向上した。
Additionally, DI'i''B with such a phase shift mechanism
-LD, the influence of the phase of the diffraction grating 6 on the reflective end face is also small. In ordinary DFB-IJ, there are many elements in which mode skipping occurs due to phase conditions at the reflective end face. -As an example, when we arbitrarily cut out a single wafer and investigated the characteristic yield, we found that a normal DF
In the B-LD, a 35-chi element exhibits mode skipping due to the phase condition of the reflective end face at an output level within lomW, but in the DFB-LD, the proportion decreases to 5 chips, and a single mode skip occurs due to the phase shift shown in the example. The homogeneity yield of uniaxial mode oscillation has been significantly improved.

なお本発明の実施例においてはInPを基板、InGa
AsPを活性層および光ガイド層としたが、用いる半導
体材料はもちろんこれに限るものではなく、GaAA’
As / GaAs系、 In0aAs/ InAlA
、S系等他の半導体材料を用いて何ら差しつかえ存い。
In the embodiments of the present invention, InP is used as the substrate, and InGa is used as the substrate.
Although AsP is used as the active layer and the optical guide layer, the semiconductor material used is of course not limited to this, and GaAA'
As/GaAs system, In0aAs/InAlA
There is no problem in using other semiconductor materials such as , S-based, etc.

また実施例においては主として活性JVj4の膜厚の差
によって等価屈折率差を生じさせる位相シフト領域7全
形成したが、活性層は平坦にし、ガイド層4の膜厚差を
生じさせる方法を用いてもよい。
In addition, in the embodiment, the entire phase shift region 7 was formed to cause an equivalent refractive index difference mainly due to the difference in the film thickness of the active JVj4, but the active layer was flattened and a method was used to create a difference in the film thickness of the guide layer 4. Good too.

さらに溝のかわりにメサを利用して、その部分で膜厚を
小さくする方法も有効である。
Furthermore, it is also effective to use a mesa instead of a groove and reduce the film thickness in that area.

実施例においては位相シフト領域8において膜厚が大き
くなるようKしたが、この逆に膜厚が小さくなるように
形成しても同様の効果が得られる。
In the embodiment, the film thickness is increased in the phase shift region 8, but the same effect can be obtained even if the film thickness is formed to be decreased.

(発明の効果) 本発明の特徴は分布帰還型半導体レーザにおいて、位相
シフト領域を形成し、かつ導波領域内全体にわたって均
一に回折格子を形成したことである。それによってブラ
ッグ波長付近で安定に単一モード発掘させることが可能
となり、発振しきい値電流の低減化が達成され、レーザ
特性、素子の特性歩留りが大幅に向上したDFB−LD
を得ることができた。
(Effects of the Invention) A feature of the present invention is that in a distributed feedback semiconductor laser, a phase shift region is formed and a diffraction grating is uniformly formed throughout the waveguide region. This makes it possible to stably excavate a single mode near the Bragg wavelength, achieving a reduction in the oscillation threshold current, and greatly improving the laser characteristics and device characteristic yield of the DFB-LD.
was able to obtain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による一実施例であるDFB −LDの
断面図を示す。 図中1はn−InP基板、  2は溝、 3けn−In
Pバッファ層、  4け活性層、 5は光ガイド層、 
 6け回折格子、 7はp −InPクラッド層、  
8け位相シフト領竣をそれぞれあられす。 71−1  図
FIG. 1 shows a sectional view of a DFB-LD which is an embodiment of the present invention. In the figure, 1 is an n-InP substrate, 2 is a groove, and 3 is an n-InP substrate.
P buffer layer, 4 active layers, 5 optical guide layer,
6-digit diffraction grating, 7 is p-InP cladding layer,
Each of the 8 phase shift areas is completed. 71-1 Figure

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、少なくとも活性層と、前記活性層より
もエネルギーギャップが大きく、かつ一方の面に回折格
子が形成された光ガイド層とを有する積層構造を備えて
いる分布帰還型半導体レーザにおいて、少なくとも前記
活性層、前記光ガイド層よりなる導波領域が、レーザ共
振軸方向に沿って部分的に厚さの異なる位相シフト領域
を有し、前記導波領域内で、レーザ共振軸方向全体にわ
たって前記回折格子が形成されていることを特徴とする
分布帰還型半導体レーザ。
A distributed feedback semiconductor laser having a laminated structure on a semiconductor substrate, including at least an active layer and an optical guide layer having a larger energy gap than the active layer and having a diffraction grating formed on one surface, A waveguide region consisting of at least the active layer and the optical guide layer has a phase shift region partially different in thickness along the laser resonance axis direction, and within the waveguide region, the entire laser resonance axis direction is A distributed feedback semiconductor laser characterized in that the above-mentioned diffraction grating is formed.
JP59134308A 1984-06-29 1984-06-29 Distributed feedback type semiconductor laser Pending JPS6114787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59134308A JPS6114787A (en) 1984-06-29 1984-06-29 Distributed feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59134308A JPS6114787A (en) 1984-06-29 1984-06-29 Distributed feedback type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6114787A true JPS6114787A (en) 1986-01-22

Family

ID=15125254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134308A Pending JPS6114787A (en) 1984-06-29 1984-06-29 Distributed feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6114787A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259489A (en) * 1986-05-06 1987-11-11 Hitachi Ltd Semiconductor laser and light amplifier
JPH0269983A (en) * 1988-09-06 1990-03-08 Toshiba Corp Distributed feedback-type laser
JPH0411869A (en) * 1990-05-01 1992-01-16 Sugiyo:Kk Crab's leg-like fish cake and production thereof
US5272714A (en) * 1991-12-12 1993-12-21 Wisconsin Alumni Research Foundation Distributed phase shift semiconductor laser
FR2713350A1 (en) * 1993-12-06 1995-06-09 Delorme Franck Optical component with a plurality of bragg gratings and method for manufacturing this component.
US5821570A (en) * 1994-01-20 1998-10-13 France Telecom Etablissement Autonome De Droit Public Semiconductor structure having a virtual diffraction grating
CN111398177A (en) * 2020-04-01 2020-07-10 武汉理通微芬科技有限公司 Photoacoustic spectrum detection chip sensor and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62259489A (en) * 1986-05-06 1987-11-11 Hitachi Ltd Semiconductor laser and light amplifier
JPH0269983A (en) * 1988-09-06 1990-03-08 Toshiba Corp Distributed feedback-type laser
JPH0411869A (en) * 1990-05-01 1992-01-16 Sugiyo:Kk Crab's leg-like fish cake and production thereof
US5272714A (en) * 1991-12-12 1993-12-21 Wisconsin Alumni Research Foundation Distributed phase shift semiconductor laser
FR2713350A1 (en) * 1993-12-06 1995-06-09 Delorme Franck Optical component with a plurality of bragg gratings and method for manufacturing this component.
US5553091A (en) * 1993-12-06 1996-09-03 France Telecom Etablissement Autonome De Droit Public Optical component having a plurality of bragg gratings and process for the production of said components
US5821570A (en) * 1994-01-20 1998-10-13 France Telecom Etablissement Autonome De Droit Public Semiconductor structure having a virtual diffraction grating
CN111398177A (en) * 2020-04-01 2020-07-10 武汉理通微芬科技有限公司 Photoacoustic spectrum detection chip sensor and manufacturing method thereof
CN111398177B (en) * 2020-04-01 2021-01-08 武汉理通微芬科技有限公司 Photoacoustic spectrum detection chip sensor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7009216B2 (en) Semiconductor light emitting device and method of fabricating the same
US4901321A (en) Optical waveguide made solid state material laser applying this waveguide
JP2624279B2 (en) Slab waveguide light emitting semiconductor laser
EP0125608B1 (en) Single longitudinal mode semiconductor laser
JP2008113041A (en) Waveguide
US5675601A (en) Semiconductor laser device
JPH02205092A (en) Semiconductor device laser and its manufacture
EP0484923A2 (en) Semiconductor wavelength conversion device
JPH06338659A (en) Laser element
JPH06244503A (en) Distributed feedback semiconductor laser structure
JPS6114787A (en) Distributed feedback type semiconductor laser
US20020136255A1 (en) Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element
JP3354106B2 (en) Semiconductor laser device and method of manufacturing the same
JPH04287389A (en) Integrated type semiconductor laser element
US6259718B1 (en) Distributed feedback laser device high in coupling efficiency with optical fiber
JPS59119783A (en) Semiconductor light emitting device
JPS63166281A (en) Distributed feedback semiconductor laser
JPH0716079B2 (en) Semiconductor laser device
JPS63228795A (en) Distributed feedback type semiconductor laser
JPH0147031B2 (en)
JP3595677B2 (en) Optical isolator, distributed feedback laser and optical integrated device
JPS6373683A (en) Distributed feedback semiconductor laser
JP3154244B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6177381A (en) Integrated distributed feedback type semiconductor laser
KR20040034351A (en) Semiconductor laser and element for optical communication