JPS61144735A - Optical recording device - Google Patents

Optical recording device

Info

Publication number
JPS61144735A
JPS61144735A JP59265645A JP26564584A JPS61144735A JP S61144735 A JPS61144735 A JP S61144735A JP 59265645 A JP59265645 A JP 59265645A JP 26564584 A JP26564584 A JP 26564584A JP S61144735 A JPS61144735 A JP S61144735A
Authority
JP
Japan
Prior art keywords
recording
peripheral part
layer
thickness
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59265645A
Other languages
Japanese (ja)
Inventor
Shigeru Kogure
木暮 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP59265645A priority Critical patent/JPS61144735A/en
Publication of JPS61144735A publication Critical patent/JPS61144735A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To equalize the pitch of a disk between the inner peripheral part and inner peripheral part by making a successively laminated recording layer constant in thickness and decreasing the thickness of a highly heat-conductive layer from the inner periphery to the outer periphery. CONSTITUTION:Rectangular recording laser light 5a or step-shaped recording laser light 5b is projected on the optical disk which rotates at a constant rotating speed through a lens 4. The optical disk consists of a transparent substrate 1, the recording layer 2, and the highly heat-conductive layer 3. When information is recorded with the recording laser light 5, the linear speed is low at the inner peripheral part, so its temperature rises as compared with the outer peripheral part. For the purpose, the highly heat-conductive layer 3 having high heat conductivity like metal is made thick at the inner peripheral part and then heat conducted from the recording layer 2 to the highly heat-conductive layer 3 is large in value at the inner peripheral part, so the inner peripheral part and outer peripheral part become equal in temperature. The temperature when the step-shaped laser light 5b is used is a little bit lower than that when the rectangular laser light 5a is used, so the precision of pit size is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光記録装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an optical recording device.

〔従来の技術〕[Conventional technology]

近年、大容量メモリの一つとして光記録装置、とりわけ
光デイスク装置の商品化、開発が活発である。光記録媒
体としては、今のところ、■穴明は記録、■パルプ形成
記録、■相変態記録、■光磁気記録が、商品化もしくは
開発中である。商品化された光デイスク装置においては
、これらの記録材料を基板上に1厚みむら”や“物性値
のむら”の無いように形成し、この光記録媒体に矩形の
レーザ・パルスを照射して記録している。しかし、矩形
パルスで記録するとレーザ光移動方向に熱が片寄るため
、実際に記録されたビットと理想的ビットとが長さ方向
にずれてしまう。また、0AV(角速度一定)の場合に
は、レーザ光とディスクの相対速度が、外周部で大きく
内周部で小さいために1照射部分の温度は内周部の方が
高くなる。そのため、内周部のビットは外周部のビット
に比べ幅が大きくなると同時に長さ方向のずれも大きく
なる。ビット幅が大きくなると隣接トラック間でクロス
トークが生じS / Nが劣化する。S/N劣化は読み
取りエラーの原因になる。一方、ビットずれも読み取り
エラーの原因になる。光ディスクをコンビエータ用デー
タ・メモリとして使用する場合には、読み取りエラーは
大きな問題になる。
2. Description of the Related Art In recent years, commercialization and development of optical recording devices, especially optical disk devices, as a type of large-capacity memory have been active. Currently, the following optical recording media are being commercialized or under development: (1) perforation recording, (2) pulp forming recording, (2) phase transformation recording, and (2) magneto-optical recording. In commercialized optical disk devices, these recording materials are formed on a substrate so that there is no unevenness in thickness or unevenness in physical properties, and recording is performed by irradiating this optical recording medium with rectangular laser pulses. However, when recording with rectangular pulses, the heat is biased in the direction of laser beam movement, so the actual recorded bits and ideal bits deviate in the length direction.Also, in the case of 0AV (constant angular velocity) Because the relative speed between the laser beam and the disk is greater at the outer periphery and smaller at the inner periphery, the temperature of one irradiated area is higher at the inner periphery.Therefore, the bits on the inner periphery are higher than the bits on the outer periphery. As the width increases, the deviation in the length direction also increases.As the bit width increases, crosstalk occurs between adjacent tracks and the S/N deteriorates.S/N deterioration causes read errors.On the other hand, Bit misalignment also causes read errors, which are a big problem when using optical discs as data memory for combinators.

この問題を解決するための特許が、フィリップス社から
出願されている(特開昭59−116946)。この特
許の主旨は第2図(α)I(j5)に示すように、ビッ
トが形成されると光ディスクからの反射光100の強度
が低下するため、この反射光100を記録中に検出し、
この値を比較器により予め決めた値と比較し、この値以
下になると記録レーザ光101の強度を自動的に小さく
するものである。即ち、ディスク全面にわたり、記録レ
ーザ光の時刻Yを調整する方式である。
A patent to solve this problem has been filed by Philips Corporation (Japanese Patent Laid-Open No. 116946/1983). The gist of this patent is that as shown in FIG. 2(α)I(j5), when a bit is formed, the intensity of the reflected light 100 from the optical disk decreases, so this reflected light 100 is detected during recording,
This value is compared with a predetermined value using a comparator, and when the value falls below this value, the intensity of the recording laser beam 101 is automatically reduced. That is, this is a method in which the time Y of the recording laser beam is adjusted over the entire surface of the disk.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述のフィリップス社の特許では、記録レーザ
光のパワーP及びP′がディスク全面で一定であるため
、照射時間’rpの長いときにビット幅の不均一、ビッ
トずれが生じる傾向がある。
However, in the above-mentioned Philips patent, since the powers P and P' of the recording laser beam are constant over the entire surface of the disk, nonuniform bit width and bit shift tend to occur when the irradiation time 'rp is long.

この理由を第3図(W)、(A)I(C)により説明す
る。102は外周部での記録レーザ光、103は内1局
部での記録レーザ光である。記録レーザ光の後半部は1
04で示した矩形波と等価である。なぜなら先端部のパ
ワーPによる熱の影響は′rpの後半部ではほとんど無
いからである。矩形波で記録する場合には内周部の方が
速度が遅いため温度が高くなる。その結果、ビットの後
半部でピッF幅の不均一、ビットずれが生じる。反射光
強度に応答して記録レーザ光強度を減少させる方式にお
いては、記録位置の半径に応じてp/も変えない限り、
どうしてもビット寸法の不正確さが残らざるを得ない。
The reason for this will be explained with reference to FIGS. 3(W), (A)I(C). Reference numeral 102 indicates a recording laser beam at the outer circumference, and reference numeral 103 indicates a recording laser beam at one local area. The second half of the recording laser beam is 1
This is equivalent to the rectangular wave shown in 04. This is because there is almost no influence of heat due to the power P at the tip in the latter half of 'rp. When recording with a rectangular wave, the temperature is higher in the inner circumference because the speed is slower. As a result, nonuniform pitch F width and bit deviation occur in the latter half of the bit. In the method of reducing the recording laser light intensity in response to the reflected light intensity, unless p/ is also changed according to the radius of the recording position,
Inaccuracies in bit dimensions inevitably remain.

しかし、反射光を検出しても記録位置の半径は判定しに
くい。そこで別の工夫を要することになる。
However, even if reflected light is detected, it is difficult to determine the radius of the recording position. Therefore, another method will be required.

また、記録レーザ光をディスク全面にわたり調整するた
めに、比較器及び比較器の出力に応じてレーザ光の強度
を減少させるレーザ駆動回路を必要とし、回路的に複雑
となるため、コストアップにならざるを得ない。
In addition, in order to adjust the recording laser beam over the entire surface of the disk, a comparator and a laser drive circuit that reduces the intensity of the laser beam according to the output of the comparator are required, making the circuit complex and increasing costs. I have no choice but to.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、光ディスクにおいて外周部と内
周部でビット幅が等しく、ビットずれも無く、シかも安
価な光記録装置を提供することである。
SUMMARY OF THE INVENTION The present invention is intended to solve these problems, and its purpose is to provide an inexpensive optical recording device in which the bit width is equal between the outer circumference and the inner circumference of an optical disc, there is no bit shift, and there is no bit shift. It is to be.

〔問題点を解決するための手段〕[Means for solving problems]

透明基板上に光照射により光学特性もしくは髄何学的形
状が変化する記録層と、高伝熱層が順次積層された元デ
ィスクにおいで、前記記録層の厚みが一定であることと
、前記高伝熱層の厚みが内周から外周へ向けて減少して
いることと、更に記録レーザ光において、照射時間の始
端のパワーが終端のパワーよりも大きい前記記録レーザ
光を用いて記録することを特徴とする光記録装置。
In the original disc, in which a recording layer whose optical properties or myelinological shape change upon irradiation with light and a high heat transfer layer are sequentially laminated on a transparent substrate, the thickness of the recording layer is constant, and the thickness of the recording layer is The thickness of the heat transfer layer decreases from the inner circumference to the outer circumference, and furthermore, recording is performed using the recording laser beam in which the power at the beginning of the irradiation time is greater than the power at the end. Characteristic optical recording device.

〔作用〕[Effect]

本発明の上記の構成によれば、外周部と内周部でビット
幅を等しくシ、ビットずれを無くすことができる。その
原理を第1図(α)、(A)、(C)、(d)、(gi
(f)により説明する。
According to the above-described configuration of the present invention, the bit width can be made equal between the outer circumferential portion and the inner circumferential portion, thereby eliminating bit misalignment. The principle is shown in Figure 1 (α), (A), (C), (d), (gi
This will be explained using (f).

第1図(α−1)は本発明になる光ディスクの断面図で
ある。また第1図(α−2)(イ)、(ロ)にレーザ光
の照射強度との関係を示す。1は透明基板、2は記録層
、3は高伝熱層、4は対物しンズ、5はレーザ光、5α
は矩形の記録レーザ光、5bステツプ形の記録レーザ光
である。この光ディスクは一定回転数で回転していると
する。先ず、矩形の記録レーザ光5αで記録する場合を
考える。内周部では速度が遅いため温度は外周部に比べ
高くなる。従って、金属の如き熱伝導度の高い高伝熱層
3の厚みを内周部で厚くしておけば、内周部においては
、記録層2から高伝熱層5へ流れる熱量は外周部よりも
大きくなる。即ち、外周部と内周部では温度が同等にな
るのである。第1図(b)は理想的ビット6と実際に記
録されたビット7の位置関係を示す。8はレーザ光移動
方向である。ΔXは先端のずれ世、Δyは末端のずれ鼠
である。第1図(C)は、矩形の記録レーザ光の照射時
間Tpに対して、ビット幅(イ)、ずれ社ΔX(ロ)、
Δy()・)を描いたものである。
FIG. 1 (α-1) is a sectional view of an optical disc according to the present invention. Further, FIG. 1 (α-2) (a) and (b) show the relationship with the irradiation intensity of the laser beam. 1 is a transparent substrate, 2 is a recording layer, 3 is a high heat transfer layer, 4 is an objective lens, 5 is a laser beam, 5α
is a rectangular recording laser beam and a 5b step type recording laser beam. It is assumed that this optical disk is rotating at a constant rotation speed. First, consider the case of recording with a rectangular recording laser beam 5α. Since the speed is slow in the inner circumference, the temperature is higher than that in the outer circumference. Therefore, if the thickness of the high heat transfer layer 3, which has high thermal conductivity such as metal, is made thicker at the inner circumference, the amount of heat flowing from the recording layer 2 to the high heat transfer layer 5 at the inner circumference will be smaller than that at the outer circumference. also becomes larger. In other words, the temperature at the outer circumferential portion and the inner circumferential portion are the same. FIG. 1(b) shows the positional relationship between ideal bit 6 and actually recorded bit 7. 8 is the laser beam moving direction. ΔX is the displacement of the tip, and Δy is the displacement of the end. FIG. 1(C) shows the bit width (A), the deviation angle ΔX (B), and the irradiation time Tp of the rectangular recording laser beam.
It depicts Δy()・).

ΔX、Δyの符号は第1図Cb)で右方にずれたときを
正とした。9,9′はそれぞれ外周部、内周部でのビッ
ト幅、10.10’はそれぞれ外周部、内周部でのΔ!
、11.11’はそれぞれ外周部、内周部でのΔyを示
している。同一の照射時間に対してビット幅は外周部、
内周部で同等になること、また、照射時間がある値以上
になるとビット幅は一定になることが判る。ビットずれ
ΔX、Δyは生じているが、従来の光ディスクに記0し
た場合に比べれば小さい。また同一の照射時間に対して
、ずれ量は外周部、内周部で同等である。同一の照射時
間に対して、ディスク全面でビット幅が一定で、ずれ量
も一定であるということは、ディスクの熱特性か全面に
渡りて均一であることを示している。即ち、記録すると
きに記録位置の半径が判らなくてもよいのである。従っ
て、ステップ形の記録レーザ光5hで記録すると、第1
図(d)の如き特性となる。12.12’はそれぞれ外
周部、内周部でのΔX(ロ)、1’#14′はそれぞれ
外周部、内周部でのΔy()・)を示す。同一照射時間
に対してビット幅はディスク全面で一定であり、しかも
、どの照射時間でもΔX、Δyはディスク全面で小さい
ことが判る。
The signs of ΔX and Δy are positive when they shift to the right in FIG. 1Cb). 9 and 9' are the bit widths at the outer and inner circumferences, respectively, and 10.10' are the Δ! at the outer and inner circumferences, respectively.
, 11.11' indicate Δy at the outer circumference and the inner circumference, respectively. For the same irradiation time, the bit width is
It can be seen that the values are the same at the inner circumference, and that the bit width becomes constant when the irradiation time exceeds a certain value. Although bit deviations ΔX and Δy occur, they are smaller than when zero is written on a conventional optical disc. Furthermore, for the same irradiation time, the amount of deviation is the same at the outer and inner circumferences. The fact that the bit width is constant over the entire surface of the disk and the amount of deviation is also constant for the same irradiation time indicates that the thermal characteristics of the disk are uniform over the entire surface. That is, when recording, it is not necessary to know the radius of the recording position. Therefore, when recording with the step-type recording laser beam 5h, the first
The characteristics are as shown in figure (d). 12.12' indicates ΔX(b) at the outer circumference and inner circumference, respectively, and 1'#14' indicates Δy()·) at the outer and inner circumference, respectively. It can be seen that the bit width is constant over the entire disk surface for the same irradiation time, and that ΔX and Δy are small over the entire disk surface at any irradiation time.

ΔXが小さくなるのは、照射し始める部分のレーザ光強
度が矩形のレーザ光強度よりも大きく、温度がより高く
なるからである。Δyが小さくなるのは、照射時間の中
間部から後半部にかけてのレーザ光強度が矩形のレーザ
光強度より°も小さく、温度t:多少低くなるからであ
る。こうしてビット寸法の精度が向上する。第1図(i
はステップ形の記録レーザ光を示す。本発明になる光デ
ィスクは、全面に渡って熱特性が均一だから、Tpの大
きさ、及び記録位置の半径に依らず、PI  *’!、
Toは一定値をとる。従って反射光強度を検出し、この
強度に応答して記録レーザ光の強度を減少させる必要が
無く、回路構成が容易になる。これはコストダウンにつ
ながる。第1図(1)は記録レーザ光の他の例で、Fl
*’tは一定値である。
The reason why ΔX becomes smaller is that the laser light intensity at the part where irradiation starts is greater than the rectangular laser light intensity and the temperature becomes higher. The reason why Δy is small is that the laser light intensity from the middle to the latter half of the irradiation time is less than the rectangular laser light intensity by degrees, and the temperature t is somewhat lower. This improves the precision of the bit dimensions. Figure 1 (i
indicates a step-shaped recording laser beam. Since the optical disc according to the present invention has uniform thermal characteristics over the entire surface, PI*'! is independent of the size of Tp and the radius of the recording position. ,
To takes a constant value. Therefore, there is no need to detect the intensity of the reflected light and reduce the intensity of the recording laser beam in response to this intensity, which simplifies the circuit configuration. This leads to cost reduction. FIG. 1 (1) shows another example of the recording laser beam, with Fl
*'t is a constant value.

〔実施例1〕 第4図に本発明の一実施例を示す。これは相変態型光デ
ィスクである。15はPMMA基板、16は厚み10Q
smのTeOx、17はAAで内周部の厚み200am
、外周部の厚み100゛%mである。
[Embodiment 1] FIG. 4 shows an embodiment of the present invention. This is a phase change optical disc. 15 is a PMMA substrate, 16 is a thickness of 10Q
sm TeOx, 17 is AA, inner circumference thickness 200am
, the thickness of the outer peripheral portion is 100% m.

〔実施例2〕 第5図に′本発明の他の実施例を示す。これは光磁気デ
ィスクである。18はpc基板、19は厚み80%溝の
AtN、2Gは厚み100%溝のGdTb?e、21は
Atで四周部の厚み20011外周部の厚み100%溝
である。htM層によるエンハンスメント効果により、
磁気光学回転角(L7@ 、反射率21%である。尚、
()+ITI)1eの厚みが厚いためエンハンスメント
に7アラデ一回転は加わりていない。基板と記録層の間
の層は、atN、Bias、、 SiO、Sin、等の
誘電体、ZnS、α−81等9半導体、クリスタル・バ
イオレット・チクトン、PMMA 、テフロン等の有機
物であり、光磁気記録以外の媒体では反射率の調整に使
える。
[Embodiment 2] FIG. 5 shows another embodiment of the present invention. This is a magneto-optical disk. 18 is a PC board, 19 is AtN with a groove of 80% thickness, and 2G is GdTb with a groove of 100% thickness? e and 21 are At grooves with a thickness of 20011 on the four circumferences and a thickness of 100% on the outer circumference. Due to the enhancement effect of the htM layer,
Magneto-optical rotation angle (L7@, reflectance 21%. Furthermore,
()+ITI) Since the thickness of 1e is thick, 7 Alade rotation is not added to the enhancement. The layer between the substrate and the recording layer is a dielectric material such as atN, Bias, SiO, or Sin, a semiconductor such as ZnS, α-81, or an organic material such as crystal violet chikton, PMMA, or Teflon. It can be used to adjust reflectance for media other than recording.

r発明の効果〕 以上述べたように本発明によれば、回転数一定の光ディ
スクにおいて記録層に高伝熱層を密着させ、高伝熱層の
厚みを外周へ向けて減少させることによりディスク全面
の熱特性を均一にすることができた。
[Effects of the Invention] As described above, according to the present invention, in an optical disc whose rotational speed is constant, the high heat conductive layer is brought into close contact with the recording layer, and the thickness of the high heat conductive layer is decreased toward the outer periphery. We were able to make the thermal characteristics uniform over the entire surface.

本発明の第1の効果は、矩形レーザ光で記録したとき、
外周部、内周部でビット幅を等しくできることである。
The first effect of the present invention is that when recording with a rectangular laser beam,
This means that the bit width can be made equal at the outer and inner peripheries.

これにより隣接トラックからのクロストークが無くなり
s / Nが向上する。これだけでも読み取りエラーが
減少する。読み取りエラーをそれほど問題にしなくてよ
い文書9画像ファイル、メモリ等の応用に際しても、こ
の効果は大きい。
This eliminates crosstalk from adjacent tracks and improves S/N. This alone will reduce reading errors. This effect is also significant in applications such as document 9 image files, memory, etc., where reading errors do not have to be much of a problem.

本発明の第2の効果は、ステップ形のレーザ光、又は時
間とともに減少するレーザ光で記録したとき、ディスク
全面において照射時間に依らずビットずれが極めて小さ
く、ビット幅も均一になることである。この効果は従来
例では充分に得られなかったものである。ビットずれが
無くなり、ビット幅も均一になり、ビット寸法の精度が
向上する。この結果、読み取りエラーがなくなり、ビッ
ト・エラー骨レートが向上し、コンピュータ用テータ・
メモリへの光ディスクの応用が可能となる本発明の第3
の効果は、ディスクの熱特性が均一であるため、記録レ
ーザ・パワーの変化のさせ方をディスク全面において一
定にしてよいことである。即ち、反射光強度に応答して
記録レーザ光の強度を減少させる必要がない。このため
回路構成が簡単になり、安価な光記録装置が可能になる
The second effect of the present invention is that when recording with a step laser beam or a laser beam that decreases over time, bit deviation is extremely small and the bit width is uniform over the entire disk surface regardless of the irradiation time. . This effect could not be sufficiently achieved in the conventional example. Bit misalignment is eliminated, the bit width becomes uniform, and the accuracy of bit dimensions is improved. This results in no read errors, improved bit error rate, and
Third aspect of the present invention that enables application of optical disks to memory
The advantage of this method is that since the thermal characteristics of the disk are uniform, the recording laser power can be changed in a constant manner over the entire surface of the disk. That is, there is no need to reduce the intensity of the recording laser beam in response to the intensity of the reflected light. This simplifies the circuit configuration and enables inexpensive optical recording devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(α−1) t (8−2)−(イ)(α−2)
−(ロ)は本発明の詳細な説明するための図第1図<b
>は理想的ビットと実際に記録されたビットとの位置関
係を示す図。 第1図(c)、−(イ)、(ロ)、(ハ)は矩形レーザ
光の照射時間に対するビット幅、ずれ量ΔX、Δyを示
す図。 第1図(d)−(イ)、(ロ)、(ハ)はステップ形レ
ーザ光の照射時間に対するビット幅、ずれ量ΔX、Δy
を示す図。 第[1(a)はステップ形レーザ光を示す図。 第1図(1)は時間とともにパワーが減少するレーザ光
を示す図。 第2図(α)は従来例で、記録中に検出した反射光を示
す図。 第2図(J)は従来例で、反射光強度に応答してパワー
が減少された記録レーザ光を示す図。 第3図(α)、(A)、(c)は従来例の問題点を説明
するための図。 第4図は本発明の一実施例を示す図。 第5図は本発明の他の実施例を示す図。 1・・・・・・・・・透明基板 2・・・・・・・・・記録層 3・・・・・・・・・高伝熱層 4・・・・・・・・・対物レンズ 5・・・・・・・・・レーザ光 5α・・・・・・矩形の記録レーザ光 5b・・・・・・ステップ形の記録レーザ光6・・・・
・・・・・理想的ビット 7・・・・・・・・・実際に記録されたビット8・・・
・・・・・・レーザ光移動方向9・・・・・・・・・外
周部でのビット幅9′・・・・・・内周部でのピッ)I
llilo・・・・・・外周部でのビットずれΔX10
′・・・内周部でのビットず−れΔX11・・・・・・
外周部でのビットずれΔy11′・・・内周部でのビッ
トずれΔy12・・・・・・外周部でのピッ)Illi
11′・・・・・・内周部でのピッ)11%11S・・
・・・・外周部でのビットずれΔX15/・・・内周部
でのビットずれΔX14・・・・・・外周部でのビット
ずれΔy14′・・・内周部でのビットずれΔy15・
・・・・・PMMA基板 16・・・・・・Te0X記録層 17・・・・・−hl高伝熱層 1B・・・・・・pc基板 19・・・・・・AtM層 20・・・・・・GdTbFe記録層 21・・・・・・At高伝熱層 100・・・反射光 101・・・記録レーザ光 102・・・外周部での記録レーザ光 105・・・内周部での記録レーザ光 104・・・照射時間後半部での等両市な矩形波以  
Figure 1 (α-1) t (8-2) - (a) (α-2)
-(B) is a diagram for explaining the present invention in detail.
> is a diagram showing the positional relationship between ideal bits and actually recorded bits. FIGS. 1(c), -(a), (b), and (c) are diagrams showing the bit width and deviation amounts ΔX and Δy with respect to the irradiation time of a rectangular laser beam. Figure 1(d)-(a), (b), and (c) show the bit width, deviation amount ΔX, and Δy with respect to the irradiation time of the step laser beam.
Diagram showing. [1(a) is a diagram showing a step type laser beam. FIG. 1 (1) is a diagram showing a laser beam whose power decreases over time. FIG. 2 (α) is a diagram showing reflected light detected during recording in a conventional example. FIG. 2(J) is a diagram showing a conventional recording laser beam whose power is reduced in response to the intensity of reflected light. FIGS. 3(α), (A), and (c) are diagrams for explaining the problems of the conventional example. FIG. 4 is a diagram showing an embodiment of the present invention. FIG. 5 is a diagram showing another embodiment of the present invention. 1...Transparent substrate 2...Recording layer 3...High heat transfer layer 4...Objective lens 5... Laser beam 5α... Rectangular recording laser beam 5b... Step-shaped recording laser beam 6...
...Ideal bit 7...Actually recorded bit 8...
・・・・・・Laser beam movement direction 9・・・・・・Bit width at outer periphery 9′・・・・・・Pips at inner periphery)I
llilo・・・Bit deviation ΔX10 at the outer periphery
'...Bit deviation ΔX11 at the inner circumference...
Bit deviation at the outer circumference Δy11'... Bit deviation at the inner circumference Δy12... Pit at the outer circumference) Illi
11'...Pick at inner circumference) 11%11S...
...Bit deviation at the outer circumference ΔX15/...Bit deviation at the inner circumference ΔX14...Bit deviation at the outer circumference Δy14'...Bit deviation at the inner circumference Δy15・
...PMMA substrate 16 ... Te0X recording layer 17 ... -hl high heat transfer layer 1B ... PC board 19 ... AtM layer 20 ... ...GdTbFe recording layer 21...At high heat transfer layer 100...Reflected light 101...Recording laser beam 102...Recording laser beam 105...at outer circumference part Recording laser beam 104...Equivalent rectangular wave in the latter half of the irradiation time
Up

Claims (6)

【特許請求の範囲】[Claims] (1)透明基板上に光照射により光学特性もしくは幾何
学的形状が変化する記録層と、高伝熱層が順次積層され
た光ディスクにおいて、前記記録層の厚みが一定である
ことと、前記高伝熱層の厚みが内周から外周へ向けて減
少していることを特徴とする光記録装置。
(1) In an optical disc in which a recording layer whose optical properties or geometrical shape changes upon irradiation with light and a high heat transfer layer are sequentially laminated on a transparent substrate, the thickness of the recording layer is constant, and the thickness of the recording layer is constant. An optical recording device characterized in that the thickness of the heat transfer layer decreases from the inner circumference to the outer circumference.
(2)記録レーザ光において、照射時間の始端のパワー
が終端のパワーよりも大きい前記記録レーザ光を用いて
記録することを特徴とする特許請求の範囲第1項記載の
光記録装置。
(2) The optical recording apparatus according to claim 1, wherein recording is performed using a recording laser beam whose power at the beginning of the irradiation time is greater than the power at the end.
(3)高伝熱層が金属で形成されていることを特徴とす
る特許請求の範囲第1項記載の光記録装置。
(3) The optical recording device according to claim 1, wherein the high heat transfer layer is made of metal.
(4)透明基板上に誘電体、半導体、有機物のいずれか
1つで形成された厚み一定の層と、光照射により光学特
性もしくは幾何学的形状が変化する記録層と、高伝熱層
が順次積層された光ディスクにおいて、前記記録層の厚
みが一定であることと、前記高伝熱層の厚みが内周から
外周へ向けて減少していることを特徴とする光記録装置
(4) A layer with a constant thickness formed of one of dielectric, semiconductor, or organic material on a transparent substrate, a recording layer whose optical properties or geometric shape change when irradiated with light, and a high heat transfer layer. What is claimed is: 1. An optical recording device in which the thickness of the recording layer is constant, and the thickness of the high heat transfer layer decreases from the inner circumference to the outer circumference in an optical disk in which the recording layers are sequentially stacked.
(5)記録レーザ光において、照射時間の始端のパワー
が終端のパワーよりも大きい前記記録レーザ光を用いて
記録することを特徴とする特許請求の範囲第4項記載の
光記録装置。
(5) The optical recording apparatus according to claim 4, characterized in that recording is performed using a recording laser beam in which the power at the beginning of the irradiation time is greater than the power at the end.
(6)高伝熱層が金属で形成されていることを特徴とす
る特許請求の範囲第4項記載の光記録装置。
(6) The optical recording device according to claim 4, wherein the high heat transfer layer is made of metal.
JP59265645A 1984-12-17 1984-12-17 Optical recording device Pending JPS61144735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59265645A JPS61144735A (en) 1984-12-17 1984-12-17 Optical recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59265645A JPS61144735A (en) 1984-12-17 1984-12-17 Optical recording device

Publications (1)

Publication Number Publication Date
JPS61144735A true JPS61144735A (en) 1986-07-02

Family

ID=17420010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59265645A Pending JPS61144735A (en) 1984-12-17 1984-12-17 Optical recording device

Country Status (1)

Country Link
JP (1) JPS61144735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465248A (en) * 1992-12-22 1995-11-07 Sharp Kabushiki Kaisha Deflecting a light beam in the same direction and speed of a recording medium by a rotating polygon or a holographic disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465248A (en) * 1992-12-22 1995-11-07 Sharp Kabushiki Kaisha Deflecting a light beam in the same direction and speed of a recording medium by a rotating polygon or a holographic disk

Similar Documents

Publication Publication Date Title
KR100212369B1 (en) An optical information recording medium
EP0038499B1 (en) Optical recording and reproducing system
US5404345A (en) Optical recording medium and tracking servo circuit adapted therefor using wobbled pits
KR100796327B1 (en) Optical recording medium and optical disk device
US5477528A (en) Magneto-optical disk and the reproducing method thereof
JP2004362718A (en) Optical information recording medium, recording method using same, reproducing method, optical information recording device, and optical information reproducing device
JP2004220747A (en) Optical information recording medium, recording method and reproducing method using the same, optical information recording device, and optical information reproducing device
US5640377A (en) Rotation information detecting apparatus and method
JPS61144735A (en) Optical recording device
JPS5830656B2 (en) magneto-optical recording medium
JPS61144736A (en) Optical recording device
JPH02146120A (en) Optical recording medium
JPH0628711A (en) Optical recording carrier and optical recording method
JPH0383238A (en) Magneto-optical disk
JPS63146257A (en) Magneto-optical recording medium
JP2637825B2 (en) Phase change optical disk
JP2001266405A (en) Phase change type optical disk medium and method of manufacturing the same
JPS6344332A (en) Optical disk and its manufacture
JPH04362523A (en) Optical recording medium
JPS63124249A (en) Magneto-optical disk
JPH04238124A (en) Optical recording medium
JPS62298947A (en) Information carrier disk
JPS5940336A (en) Information recording medium
JPS62298948A (en) Information carrier disk
JPH01253848A (en) Information recording carrier