JPS61144078A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element

Info

Publication number
JPS61144078A
JPS61144078A JP59265771A JP26577184A JPS61144078A JP S61144078 A JPS61144078 A JP S61144078A JP 59265771 A JP59265771 A JP 59265771A JP 26577184 A JP26577184 A JP 26577184A JP S61144078 A JPS61144078 A JP S61144078A
Authority
JP
Japan
Prior art keywords
layer
type
gap
conductive layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59265771A
Other languages
Japanese (ja)
Other versions
JPH077847B2 (en
Inventor
Nobuhiro Motoma
信弘 源間
Yasuo Ashizawa
芦沢 康夫
Atsushi Kurobe
篤 黒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26577184A priority Critical patent/JPH077847B2/en
Publication of JPS61144078A publication Critical patent/JPS61144078A/en
Publication of JPH077847B2 publication Critical patent/JPH077847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To constitute an excellent P-N junction, and to enable to make blue light- emission at high luminance by forming a P type conductive layer constituting the P-N junction in a light-receiving element in superlattice structure in which III-V group compound semiconductors and II-VI group compound semiconductors are laminated alternately. CONSTITUTION:Element structure is shaped by an N type GaP crystal substrate 1, an N type layer 2, which is grown on the substrate 1 in an epitaxial manner and to which Al is added as a doner impurity, and a P type conductive layer 3 having superlattice structure. With the P type conductive layer 3 having superlattice structure. With the P type conductive layer 3, non-doped GaP layers 31i as III-V group compound semiconductors and ZnS layers 32i as II-VI group compound semiconductors are laminated alternately and a superlattice is constituted. When a P-N junction is forward-biassed in a light-emitting element having such constitution, electrons are injected, and generate radiative recombination with holes in the GaP layers 31i in the P type conductive layer 3. Light emission in the GaP layer has two peak structure, and luminescent colors are divided into blue in Lz of approximately 15Angstrom and purple in approximately 10Angstrom at a mean wavelength at two peaks. The thickness of the GaP layers is changed, thus displaying light-emitting characteristics having high efficiency extending over purple from green.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、緑色から紫色にかけての発光を示す。[Detailed description of the invention] [Technical field of invention] The present invention exhibits light emission ranging from green to violet.

発光ダイオードやレーザダイオードなどの半導体発光素
子に関する。
It relates to semiconductor light emitting devices such as light emitting diodes and laser diodes.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

光の三原色である赤、緑、青の中で、赤色と緑色に関し
ては■−v族化合物半導体を用いた発光素子が開発され
、既に量産が行われている。残る青色発光素子について
は、開発への要望が強いにも拘らず依然商品化されてい
ない。
Among the three primary colors of light, red, green, and blue, light-emitting elements using ■-V group compound semiconductors have been developed for red and green, and are already being mass-produced. The remaining blue light-emitting elements have not yet been commercialized, despite strong demand for their development.

青色発光素子の半導体材料としては、広い禁制帯幅を有
するIF−VI族化合物のzns、znse。
Semiconductor materials for blue light-emitting elements include zns and znse, which are IF-VI group compounds having a wide forbidden band width.

■−v族化合物のGaN、IV族化合物のSiCなどが
従来より検討されている。これらの材料のうちZnS、
Zn5eは、■−v族化合物のGaP。
(2) GaN, which is a group V compound, and SiC, which is a group IV compound, have been studied in the past. Among these materials, ZnS,
Zn5e is GaP, which is a ■-v group compound.

GaASと格子定数が近く、これらGaPまたはGaA
S結晶を基板として大面積かつ良質の結晶層が得られる
こと、更に容易に青色発光が得られること等から、特に
有望視されている。ところが、ZnS、Zn5eは共に
n型導電性は得られるが、n型導電性が得られない、と
いう問題を抱えている。このため、pn接合が得られな
いことが、青色発光素子の実用化を遅らせている主因と
な、つている。
These GaP or GaA have similar lattice constants to GaAS.
It is viewed as particularly promising because a large-area, high-quality crystal layer can be obtained using S crystal as a substrate, and blue light emission can be easily obtained. However, both ZnS and Zn5e have the problem that although they can provide n-type conductivity, they cannot provide n-type conductivity. Therefore, the inability to obtain a pn junction is the main reason for delaying the practical application of blue light emitting devices.

ZnS、Zn5eにおいて何故n型導電性が得られない
か、その原因については未だ確かな説はないが、おおむ
ね次のような理由が考えられる。
Although there is still no definite theory as to why n-type conductivity cannot be obtained in ZnS and Zn5e, the following reasons are generally considered.

第1は、zns、Zn5eにおいては、アクセプタ不純
物の中で価電子帯に空孔を生じるに充分浅い不純物準位
を作るものが少ないとと、第2は、たとえ浅い不純物準
位を作るアクセプタ不純物が存在しても、それが結晶中
に添加されると、いわゆる自己補償効果によってドナー
型の欠陥生成を誘発してしまうことである。
The first is that in Zns and Zn5e, there are few acceptor impurities that create an impurity level shallow enough to create a vacancy in the valence band, and the second is that even if there are acceptor impurities that create a shallow impurity level, Even if it exists, if it is added to the crystal, it will induce the formation of donor-type defects due to the so-called self-compensation effect.

〔発明の目的〕[Purpose of the invention]

本発明は上記した問題を解決して、禁制帯幅の広い■−
■族化合物半導体を用いて良好なpn接合を構・成し、
以て高輝度の青色発光を可能とした半導体発光素子を提
供することを目的とする。
The present invention solves the above-mentioned problems and provides a wide forbidden band.
Construct and form a good pn junction using a group compound semiconductor,
An object of the present invention is to provide a semiconductor light emitting device that can emit blue light with high brightness.

〔発明の概要〕[Summary of the invention]

本発明は、発光素子のpn接合を構成するp型環電層を
、■−v族化合物半導体とII−VI族化合物半導体と
を交互に積層した超格子構造としたことを骨子とする。
The gist of the present invention is that the p-type ring conductive layer constituting the pn junction of a light emitting device has a superlattice structure in which group ■-V compound semiconductors and group II-VI compound semiconductors are alternately laminated.

このとき、p型環電層を構成するためのアクセプタ不純
物は、II−VI族化合物半導体または■−v族化合物
半導体のいずれか少なくとも一方に添加されていればよ
い。
At this time, the acceptor impurity for forming the p-type ring conductive layer may be added to at least one of the II-VI group compound semiconductor or the ■-V group compound semiconductor.

(発明の効果) 本発明によれば、超格子構造の導入により、広いバンド
ギャップを有する化合物半導体からなるp型環電層が得
られ、これにより緑色から紫色にわたって高輝度の発光
を示す発光素子が得られる。
(Effects of the Invention) According to the present invention, by introducing a superlattice structure, a p-type ring conductive layer made of a compound semiconductor having a wide bandgap can be obtained, and thereby a light-emitting element that emits high-intensity light in a range from green to violet can be obtained. is obtained.

(発明の実施例) 以下本発明の詳細な説明する。(Example of the invention) The present invention will be explained in detail below.

第1図は一実施例の素子構造を示す。図において、1は
n型GaP結晶基板であり、2はこの基板1上にエピタ
キシャル成長された。ドナー不純物とI、、r/’lが
添加されたn型Zn5zSel−2層(0≦2≦1)で
あって、このn型zn3zSes−2層2上に超格子構
造を持つp型理電層3が形成されている。4はp側電極
、5はn側電極である。
FIG. 1 shows the device structure of one embodiment. In the figure, 1 is an n-type GaP crystal substrate, and 2 is epitaxially grown on this substrate 1. An n-type Zn5zSel-2 layer (0≦2≦1) doped with donor impurities and I,, r/'l, and a p-type physical electronic layer with a superlattice structure on this n-type Zn3zSes-2 layer 2. Layer 3 is formed. 4 is a p-side electrode, and 5 is an n-side electrode.

第2図はp型理電層3の部分を拡大して示す。FIG. 2 shows an enlarged view of the p-type physical layer 3. As shown in FIG.

即ちp型導電型層3は、■−v族化合物半導体であるノ
ンドープのGaP層sit  (t−1,2゜・・・、
N)と、アクセプタ不純物としてAgを1016〜10
”/33程度添加したII−VI族化合物半導体として
のZn3層32i  (i=1゜2、・・・、N)が交
互に積層されて超格子を構成している。Zn3層32i
の厚みLBおよびGaP層311の厚みLzはそれぞれ
5〜40人程度とする。このような超格子構造は例えば
、有機金属化合物を用いた気相成長法(MOCVD)に
より得られる。
That is, the p-type conductivity type layer 3 is a non-doped GaP layer sit (t-1, 2°...,
N) and Ag as an acceptor impurity at 1016-10
Zn3 layers 32i (i=1°2, . . . , N) doped with about 1/33 as a II-VI group compound semiconductor are alternately stacked to form a superlattice.Zn3 layers 32i
The thickness LB of the GaP layer 311 and the thickness Lz of the GaP layer 311 are each about 5 to 40 people. Such a superlattice structure can be obtained, for example, by a chemical vapor deposition method (MOCVD) using an organometallic compound.

第3図はこの様な超格子構造をもつp型理電層3のバン
ド構造を示す。Zn3層32iの1illi電子帯の頂
上は、GaP層31iの価電子帯の頂上がら0.9〜1
.2eV程度低いところに位置する。
FIG. 3 shows the band structure of the p-type physical electronic layer 3 having such a superlattice structure. The top of the 1illi electron band of the Zn3 layer 32i is 0.9 to 1 from the top of the valence band of the GaP layer 31i.
.. It is located at a low level of about 2 eV.

一方、AQアクセプタの不純物準位は、Zn8層321
の価電子帯の頂上から0.55〜0.70eV高いとこ
ろに位置する。従ってZn3層32iに添加するAQ不
純物の濃度を101”/α3以上と高くしておけば、こ
の超格子構造部の平均的なフェルミ・レベルEFは、第
3因に示すようにGaP層31iの価電子帯の頂上より
低い位置になる。これによりGaP層31iには、AQ
不純物濃度と同程度の空孔が形成される。この空孔は超
格子の積層方向に移動する時ZnS層321が障壁とな
るが、Zn8層321の厚さLBを5〜30人の範囲に
選べば、障壁をトンネルで扱けてい〜く確率が充分高く
なり、超格子積層方向に高い伝導度をもつn型導電性が
得られることになる。第4図は、GaP層31iの厚み
Lzを20人とし、708層32iのAQ添加濃度を1
0”/(:II3として、Zn3層32iの厚みLeを
変えた時の超格子構造の導電率特性を示している。
On the other hand, the impurity level of the AQ acceptor is
It is located 0.55 to 0.70 eV higher than the top of the valence band. Therefore, if the concentration of AQ impurity added to the Zn3 layer 32i is increased to 101''/α3 or more, the average Fermi level EF of this superlattice structure will be lower than that of the GaP layer 31i, as shown in the third factor. The position is lower than the top of the valence band.As a result, the GaP layer 31i has AQ
Vacancies are formed at the same level as the impurity concentration. When these vacancies move in the stacking direction of the superlattice, the ZnS layer 321 becomes a barrier, but if the thickness LB of the Zn8 layer 321 is selected in the range of 5 to 30 layers, the probability that the barrier can be treated as a tunnel increases. becomes sufficiently high, and n-type conductivity with high conductivity in the superlattice stacking direction is obtained. In FIG. 4, the thickness Lz of the GaP layer 31i is 20 layers, and the AQ concentration of the 708 layer 32i is 1.
0''/(:II3) indicates the conductivity characteristics of the superlattice structure when the thickness Le of the Zn3 layer 32i is changed.

この様に、ZnSあるいはZn5eバルク結晶では深い
不純物準位を形成してキャリアを生成しない不純物が、
本実施例の超格子構造においては有効的に浅いアクセプ
タ不純物準位として働き、正のキャリアを生成して、バ
ルク結晶では得られないp型導電層が得られる。なお本
実施例において、発光再結合を有効に行なわせるために
は、超格子構造からなるp型導電層3の厚みを0.2〜
3μm程度とすることが望ましい。
In this way, in ZnS or Zn5e bulk crystals, impurities that form deep impurity levels and do not generate carriers,
In the superlattice structure of this example, it effectively functions as a shallow acceptor impurity level, generates positive carriers, and provides a p-type conductive layer that cannot be obtained with bulk crystals. In this example, in order to effectively perform radiative recombination, the thickness of the p-type conductive layer 3 having a superlattice structure is set to 0.2 to
It is desirable that the thickness be about 3 μm.

この様に構成された第1図の発光素子は、そのpn接合
に順方向バイアスをかけると、主としてn型Zn5zS
et−z層2からp型導電層3へと電子が注入される。
The light emitting device of FIG.
Electrons are injected from the et-z layer 2 to the p-type conductive layer 3.

この注入電子はp型環電層3内のGaP層311におい
て空孔と発光再結合を起す。GaP層での発光は、重い
ホールのバンド(heavy  hole  band
 )と軽いホールのバンド(light  hole 
 band )が超格子において分離するために2ピー
ク構造となる。各々のピーク波長とGaP層の厚さLz
との関係を第5図に示す。
These injected electrons cause radiative recombination with vacancies in the GaP layer 311 within the p-type ring conduction layer 3. The light emission in the GaP layer is caused by the heavy hole band (heavy hole band).
) and light hole band (light hole)
band ) are separated in the superlattice, resulting in a two-peak structure. Each peak wavelength and GaP layer thickness Lz
Figure 5 shows the relationship between

51がheavy  hole  bandによるもの
、52が+;ght  hole  bandによるも
のである。Lzが小さくなるにつれて、量子効果のため
に発光は短波圧側にシフトし、発光色は二つのピークの
平均的な波長となり、Lzが15人程度で青色、10人
程度で紫色となる。一方、GaP結晶はバルクの状態で
は間接遷移型であるが、超格子構造とすることによりプ
リルアン・ゾーンの折れ曲り効果(zone  fol
ding  e4fect )によって直接遷移型にな
る。このため発光の遷移確率が大きくなり、外部量子効
率が1%と高い値を示す。
51 is due to heavy hole band, and 52 is due to +;ght hole band. As Lz becomes smaller, the emission shifts to the short wave pressure side due to quantum effects, and the emission color becomes the average wavelength of the two peaks, becoming blue when Lz is about 15 people and purple when it is about 10 people. On the other hand, GaP crystal is of indirect transition type in the bulk state, but by forming a superlattice structure, the bending effect of the Prillouin zone (zone fol.
ding e4fect) makes it a direct transition type. Therefore, the transition probability of light emission increases, and the external quantum efficiency exhibits a high value of 1%.

次に本発明の他の実施例を説明する。基本的な素子構造
は第1図と同じであるが、本実施例ではp型導電層3の
部分を第6図のようにする。即ち、アクセプタ不純物と
してZnを 1Q1B〜10”/m3程度添加したGa
P層311 ′と、ノンドープのZn8層32i −を
交互に積層した超格子構造によりp型導電層3を構成し
ている。
Next, another embodiment of the present invention will be described. The basic device structure is the same as that shown in FIG. 1, but in this embodiment, the p-type conductive layer 3 is arranged as shown in FIG. That is, Ga to which Zn is added as an acceptor impurity at about 1Q1B~10"/m3
The p-type conductive layer 3 has a superlattice structure in which P layers 311' and non-doped Zn8 layers 32i- are laminated alternately.

この実施例の素子におけるp型導電層3のバンド構造を
第7図に示す。zn不純物はバルクのGaP結晶におい
ては浅いアクセプタ不純物としてp型導電層を形成する
。このようなバルク結晶において浅い位置に不純物レベ
ルを形成するものは、超格子においても、多少レベル位
置が変化するとしてもやはりバンド端近傍に浅い準位を
形成すると考えられる。従って第7図において、フェル
ミ・レベルはGaP層の1illi電子帯の頂上近傍に
位置し、GaP層内に7n不純物と同程度の空孔が生成
される。この空孔は先の実施例と同様に、各層の厚みを
選ぶことによりトンネルで抜けることができ、p型理電
性に寄与することになる。そしてこの超格子構造のバン
ドギャップは量子効果のためにGaP結晶のそれよりも
広いものとなり、GaP層の厚みを変化させることによ
って、先の実施例と同様の原理により緑色から紫色にか
けて効率の^い発光特性を示す。
FIG. 7 shows the band structure of the p-type conductive layer 3 in the device of this example. The zn impurity forms a p-type conductive layer as a shallow acceptor impurity in the bulk GaP crystal. It is thought that what forms an impurity level at a shallow position in such a bulk crystal also forms a shallow level near the band edge in the superlattice, even if the level position changes somewhat. Therefore, in FIG. 7, the Fermi level is located near the top of the 1illi electron band of the GaP layer, and vacancies of the same size as the 7n impurity are generated in the GaP layer. As in the previous embodiment, these holes can tunnel through by selecting the thickness of each layer, contributing to p-type physical conductivity. The bandgap of this superlattice structure is wider than that of the GaP crystal due to quantum effects, and by changing the thickness of the GaP layer, the efficiency can be increased from green to purple based on the same principle as in the previous example. It exhibits strong luminescent properties.

第8図は、p型基板を出発基板とした実施例の素子構造
である。即ちp型GaP結晶基Fi81を用いてこの上
に先の実施例と同様の超格子構造を持つp型環電層82
を形成し、この上にn型Zn5zSet−z層83を形
成したものである。
FIG. 8 shows the device structure of an example in which a p-type substrate is used as a starting substrate. That is, a p-type GaP crystal group Fi81 is used, and a p-type ring conductive layer 82 having a superlattice structure similar to that of the previous embodiment is formed thereon.
is formed, and an n-type Zn5zSet-z layer 83 is formed thereon.

GaP基板81側から光を取出すために、GaP基板8
1を裏面からエツチングして光取出し窓を設けている。
In order to extract light from the GaP substrate 81 side, the GaP substrate 8
1 is etched from the back side to provide a light extraction window.

84はn側電極、85はn側電極である。84 is an n-side electrode, and 85 is an n-side electrode.

この実施例によっても先の二つの実施例と同様の優れた
発光特性を示す。
This example also exhibits the same excellent light emitting characteristics as the previous two examples.

第9図は更に別の実施例の素子構造である。この実施例
では、n型Zn5zSe1−z基板91を用いてこの上
に先の実施例と同様に超格子構造を持つp型導電層92
を形成している。93はpIIJ電極、94はn(ll
i橿である。
FIG. 9 shows the element structure of yet another embodiment. In this embodiment, an n-type Zn5zSe1-z substrate 91 is used, and a p-type conductive layer 92 having a superlattice structure is formed thereon as in the previous embodiment.
is formed. 93 is pIIJ electrode, 94 is n(ll
It's i.

この実施例によっても同様に良好な青色発光特性を示す
ことができる。
This example also exhibits good blue light emission characteristics.

第10図はダブルへテロ接合構造を用いた実施例の素子
構造を示す。これは第1図におけるZn5zSet−z
層2の部分を、Zn3層21とZn5e層22の二層と
して、p型113とp型ZnS層21との間にダブルへ
テロ接合を構成している。
FIG. 10 shows the device structure of an embodiment using a double heterojunction structure. This is Zn5zSet-z in Figure 1
The layer 2 is made up of two layers, a Zn3 layer 21 and a Zn5e layer 22, and a double heterojunction is formed between the p-type 113 and the p-type ZnS layer 21.

この実施例によっても先の各実施例と同様に良好な青色
発光特性を示す。
This example also exhibits good blue light emission characteristics like the previous examples.

本発明は上記各実施例に限られるものではなく、更に以
下に列記するように種々変形実施することができる。
The present invention is not limited to the above embodiments, and can be further modified in various ways as listed below.

■ 超格子構造のII−VI族化合物半導体物半導体と
して、一般的にZn5ySet−y(0≦y≦1)を用
い得る。またZ n Y Cds −y S (0≦y
≦1)を用いることもできる。また超格子構造を構成す
る■−v族化合物半導体として、一般的にGaxARt
−xP(0≦x≦1)を用いることができる。
(2) Zn5ySet-y (0≦y≦1) can generally be used as a II-VI group compound semiconductor having a superlattice structure. Also, Z n Y Cds −y S (0≦y
≦1) can also be used. In addition, GaxARt is generally used as a ■-v group compound semiconductor that constitutes a superlattice structure.
−xP (0≦x≦1) can be used.

■ 超格子構造のI−VI族化合物半導体層のアクセプ
タ不純物として、AQの他、li、l’4a。
(2) In addition to AQ, li and l'4a are used as acceptor impurities in the I-VI group compound semiconductor layer having a superlattice structure.

Cuなどの王族元素あるいはP、ASなどのV族元素を
添加することができる。また■−v族化合物半導体のア
クセプタ不純物としてZnの他、Be、 Moなどの■
族元素または■族元素を添加してもよい。
A royal element such as Cu or a V group element such as P or AS can be added. In addition to Zn, Be, Mo, etc. can be used as acceptor impurities for ■-V group compound semiconductors.
A group element or a group Ⅰ element may be added.

また実施例では、超格子の■−v族化合物半導体または
II−VI族化合物半導体の一方にのみアクセプタ不純
物を添加したが、両方にそれぞれアクセプタ不純物が添
加されてもよい。
Further, in the embodiment, the acceptor impurity is added to only one of the ■-V group compound semiconductor and the II-VI group compound semiconductor of the superlattice, but the acceptor impurity may be added to both.

■ 超格子構造中のアクセプタ不純物準位は、外部から
の不純物元素添加によらず、Zn空孔が高濃度に存在す
るように結晶成長させることにより形成することもでき
る。これはZn空孔が、超格子構造においてGaP結晶
とZnS結晶の価電子帯の頂上の中間に位置するためで
ある。Zn空孔が高濃度に形成される結晶成長条件とし
ては、例えばMOCVD法を例にとれば、■族元素を供
給するガスの、■族元素を供給するガスに対するモル比
を充分大きく(例えば10倍以上)設定すればよい。
(2) The acceptor impurity level in the superlattice structure can also be formed by crystal growth so that Zn vacancies are present at a high concentration, without adding an impurity element from the outside. This is because the Zn vacancies are located between the tops of the valence bands of the GaP crystal and the ZnS crystal in the superlattice structure. For example, in the MOCVD method, the crystal growth conditions under which Zn vacancies are formed at a high concentration are such that the molar ratio of the gas supplying group Ⅰ elements to the gas supplying group Ⅰ elements is sufficiently large (for example, 10 (more than twice).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の発光素子構造を示す図、第
2図はそのp型環電層部の拡大図、第3図は同じくp型
環電層部のバンド構造を示す図、第4図は同じくp型環
電層部の導電率特性を示す図、第5図はこの発光素子の
発光のピーク位置と超格子構造中のGaP層の厚みの関
係を示す図、第6図は他の実施例のp型環電層部の構造
を示す図、第7図は同じくそのp型環電層部のバンド構
造を示す図、第8図は〜第10図は更に他の実施例の発
光素子構造を示す図である。 1・・・n型GaP結晶基板、2・・・n型Zn5zS
et−z層、2l−nlZn8層、22−Zn5e層、
3・・・p型理電層(超格子構造部)、4・・・n側電
極(Au)、5−n側電極(Au−Ge)、31i・G
aP層、32i−Ag添加zns層、31i ′・Zn
添加GaP層、32i−・・−ZnS層、81・・・p
型GaP基板、82・・・p型理電層(超格子構造部)
、83・n型Zn5zSet+z層、84 ・l) f
il電極(Au−Zn)、85・n側電極(In”Ga
) 、91・n型Zn5zSel−2基板、92・・・
p型理電層(超格子構造部)、93・・・n側電極(A
L+)、94・n側電極(In−Ga)。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 ZnS GaP ZnS GaP ZnS第4図 OTO203040 ZnS/l ’3 Lm (″A〕 第5図 GaP噌4Lz [λ〕 第6図 fJA7 図 zns  GaP ZnS GaP ZnS第8図 第10図
FIG. 1 is a diagram showing the structure of a light emitting device according to an embodiment of the present invention, FIG. 2 is an enlarged view of the p-type ring conductor layer, and FIG. 3 is a diagram showing the band structure of the p-type ring conductor layer. , FIG. 4 is a diagram showing the conductivity characteristics of the p-type ring conductive layer portion, FIG. 5 is a diagram showing the relationship between the peak position of light emission of this light emitting device and the thickness of the GaP layer in the superlattice structure, and FIG. The figure shows the structure of the p-type ring conductor layer of another embodiment, FIG. 7 shows the band structure of the p-type ring conductor layer, and FIGS. FIG. 2 is a diagram showing a light emitting device structure of an example. 1...n-type GaP crystal substrate, 2...n-type Zn5zS
et-z layer, 2l-nlZn8 layer, 22-Zn5e layer,
3...p-type physical layer (superlattice structure), 4...n-side electrode (Au), 5-n-side electrode (Au-Ge), 31iG
aP layer, 32i-Ag added zns layer, 31i'・Zn
Added GaP layer, 32i-...-ZnS layer, 81...p
type GaP substrate, 82... p-type physical layer (superlattice structure part)
, 83・n-type Zn5zSet+z layer, 84・l) f
il electrode (Au-Zn), 85/n side electrode (In”Ga
), 91 n-type Zn5zSel-2 substrate, 92...
p-type physical layer (superlattice structure), 93... n-side electrode (A
L+), 94/n-side electrode (In-Ga). Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 ZnS GaP ZnS GaP ZnS Figure 4 zns GaP ZnS GaP ZnSFigure 8Figure 10

Claims (3)

【特許請求の範囲】[Claims] (1)化合物半導体を用いてpn接合を構成した半導体
発光素子において、p型導電層を、少なくとも一方にア
クセプタ不純物準位を持つIII−V族化合物半導体とII
−VI族化合物半導体とを交互に積層した超格子により構
成したことを特徴とする半導体発光素子。
(1) In a semiconductor light emitting device in which a pn junction is constructed using a compound semiconductor, a p-type conductive layer is formed with a III-V compound semiconductor having an acceptor impurity level on at least one side and a II-V compound semiconductor having an acceptor impurity level on at least one side.
- A semiconductor light emitting device characterized in that it is constituted by a superlattice in which group VI compound semiconductors are alternately laminated.
(2)III−V族化合物半導体はGa_xAl_1_−
_xP(0≦x≦1)であり、II−VI族化合物半導体は
アクセプタ不純物として I 族またはV族元素を添加し
たZnS_ySe_1_−_y(0≦y≦1)であるこ
とを特徴とする特許請求の範囲第1項記載の半導体発光
素子。
(2) III-V group compound semiconductor is Ga_xAl_1_-
_xP (0≦x≦1), and the II-VI group compound semiconductor is ZnS_ySe_1_-_y (0≦y≦1) doped with a group I or V element as an acceptor impurity. A semiconductor light emitting device according to scope 1.
(3)III−V族化合物半導体はアクセプタ不純物とし
てII族またはIV族元素を添加した Ga_xAl_1_
−_xP(0≦x≦1)であり、II−VI族化合物半導体
はZnS_ySe_1_−_y(0≦y≦1)であるこ
とを特徴とする特許請求の範囲第1項記載の半導体発光
素子。
(3) Group III-V compound semiconductors include Group II or Group IV elements added as acceptor impurities.Ga_xAl_1_
-_xP (0≦x≦1), and the II-VI group compound semiconductor is ZnS_ySe_1_-_y (0≦y≦1), the semiconductor light emitting device according to claim 1.
JP26577184A 1984-12-17 1984-12-17 Semiconductor light emitting element Expired - Lifetime JPH077847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26577184A JPH077847B2 (en) 1984-12-17 1984-12-17 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26577184A JPH077847B2 (en) 1984-12-17 1984-12-17 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPS61144078A true JPS61144078A (en) 1986-07-01
JPH077847B2 JPH077847B2 (en) 1995-01-30

Family

ID=17421801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26577184A Expired - Lifetime JPH077847B2 (en) 1984-12-17 1984-12-17 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH077847B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416337A (en) * 1992-02-13 1995-05-16 International Business Machines Corporation Hetero-superlattice PN junctions
JP2003506244A (en) * 1999-07-30 2003-02-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Wiper blade for cleaning automotive window glass
WO2011008476A1 (en) * 2009-06-30 2011-01-20 3M Innovative Properties Company Cadmium-free re-emitting semiconductor construction
US8304976B2 (en) 2009-06-30 2012-11-06 3M Innovative Properties Company Electroluminescent devices with color adjustment based on current crowding
US8629611B2 (en) 2009-06-30 2014-01-14 3M Innovative Properties Company White light electroluminescent devices with adjustable color temperature
US8994071B2 (en) 2009-05-05 2015-03-31 3M Innovative Properties Company Semiconductor devices grown on indium-containing substrates utilizing indium depletion mechanisms
US9293622B2 (en) 2009-05-05 2016-03-22 3M Innovative Properties Company Re-emitting semiconductor carrier devices for use with LEDs and methods of manufacture
JP2016154244A (en) * 2010-02-09 2016-08-25 晶元光電股▲ふん▼有限公司 Photoelectric element and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131779A (en) * 1977-04-20 1978-11-16 Ibm Semiconductor superlattice structure
JPS6052067A (en) * 1983-08-31 1985-03-23 Nec Corp Structure of super lattice

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53131779A (en) * 1977-04-20 1978-11-16 Ibm Semiconductor superlattice structure
JPS6052067A (en) * 1983-08-31 1985-03-23 Nec Corp Structure of super lattice

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416337A (en) * 1992-02-13 1995-05-16 International Business Machines Corporation Hetero-superlattice PN junctions
JP2003506244A (en) * 1999-07-30 2003-02-18 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Wiper blade for cleaning automotive window glass
US8541803B2 (en) 2009-05-05 2013-09-24 3M Innovative Properties Company Cadmium-free re-emitting semiconductor construction
US8994071B2 (en) 2009-05-05 2015-03-31 3M Innovative Properties Company Semiconductor devices grown on indium-containing substrates utilizing indium depletion mechanisms
US9293622B2 (en) 2009-05-05 2016-03-22 3M Innovative Properties Company Re-emitting semiconductor carrier devices for use with LEDs and methods of manufacture
WO2011008476A1 (en) * 2009-06-30 2011-01-20 3M Innovative Properties Company Cadmium-free re-emitting semiconductor construction
CN102473817A (en) * 2009-06-30 2012-05-23 3M创新有限公司 Cadmium-free re-emitting semiconductor construction
US8304976B2 (en) 2009-06-30 2012-11-06 3M Innovative Properties Company Electroluminescent devices with color adjustment based on current crowding
US8629611B2 (en) 2009-06-30 2014-01-14 3M Innovative Properties Company White light electroluminescent devices with adjustable color temperature
JP2016154244A (en) * 2010-02-09 2016-08-25 晶元光電股▲ふん▼有限公司 Photoelectric element and manufacturing method of the same

Also Published As

Publication number Publication date
JPH077847B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
US7170097B2 (en) Inverted light emitting diode on conductive substrate
US8314415B2 (en) Radiation-emitting semiconductor body
EP1791189B1 (en) Semiconductor device and method of semiconductor device fabrication
EP2034530B1 (en) GaN based LED formed on a SiC substrate
US7084420B2 (en) Nitride based semiconductor device
US8513694B2 (en) Nitride semiconductor device and manufacturing method of the device
US5804834A (en) Semiconductor device having contact resistance reducing layer
JP3643665B2 (en) Semiconductor light emitting device
KR19990008420A (en) A double heterojunction light emitting diode having a gallium nitride active layer
US7915607B2 (en) Nitride semiconductor device
CN111864017A (en) micro-LED epitaxial structure and manufacturing method thereof
JPS61144078A (en) Semiconductor light-emitting element
US20230215977A1 (en) Single chip multi band led
EP4340050A1 (en) Multi-band light emitting diode
JP2001298215A (en) Light-emitting element
JPS61144079A (en) Semiconductor light-emitting element
US20130069035A1 (en) Semiconductor light emitting device
US7023024B2 (en) Diamond based blue/UV emission source
US20220254954A1 (en) Light-emitting element
JP3057547B2 (en) Green light emitting diode
WO2022109797A1 (en) Multi-wavelength led structure and manufacturing method therefor
RU60269U1 (en) LED HETEROSTRUCTURE ON A SUBSTRATE OF SINGLE-CRYSTAL SAPPHIRE
JP2597624B2 (en) Semiconductor light emitting device
JP3210071B2 (en) Semiconductor light emitting device
JPS6286773A (en) Semiconductor light emitting element