JPS61138527A - Water supply system for cooling reactor - Google Patents

Water supply system for cooling reactor

Info

Publication number
JPS61138527A
JPS61138527A JP25938284A JP25938284A JPS61138527A JP S61138527 A JPS61138527 A JP S61138527A JP 25938284 A JP25938284 A JP 25938284A JP 25938284 A JP25938284 A JP 25938284A JP S61138527 A JPS61138527 A JP S61138527A
Authority
JP
Japan
Prior art keywords
water
reaction
temperature
shell
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25938284A
Other languages
Japanese (ja)
Inventor
Toshikazu Shinkawa
新川 利和
Daisaku Shozen
少前 大作
Hiroshi Makihara
牧原 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP25938284A priority Critical patent/JPS61138527A/en
Publication of JPS61138527A publication Critical patent/JPS61138527A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00256Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles in a heat exchanger for the heat exchange medium separate from the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To diminish the load of the titled plant by mixing the replenished water in accordance with the generated amount of steam with the pressurized water of saturated temp. which is introduced through a downcast pipe of boiler, regulating the temp. and thereafter supplying it to a water inlet nozzle of reaction unit in a rear flow side. CONSTITUTION:The temp. of water fed to the inside of a shell 14 through a nozzle 16 which is provided to a lower part of the shell 14 of a reaction unit B in a rear flow side is regulated to the temp. lower by about 10-100 deg.C than the temp. (satd. temp.) of water incorporated in a steam drum 17 in the position of the nozzle 16. Thereby it is remarkably valuable industrially that the concn. of reaction product in a lower end of the reaction tubes 7 (plural numbers) i.e. in the gas after finishing the reaction is increased. Still more a feeding method of the replenished water and a heat exchanger 23 are provided owing to preset the temp. of water which is fed to the inside of the shell 14 through the water inlet nozzle 16 provided to the low part of the shell 14 to the some conditions.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水素と一酸化炭素(および二酸化炭素)混合
ガスを用いたメタノール合成の如(、固体粒状触媒の存
在下で複数の元素からなる混合ガスの発熱反応を行なわ
させる目的で使用される改善された反応器冷却用給水設
備を提供するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to methanol synthesis using a mixed gas of hydrogen and carbon monoxide (and carbon dioxide) (from multiple elements in the presence of a solid particulate catalyst). The present invention provides an improved water supply facility for cooling a reactor used for the purpose of carrying out an exothermic reaction of a mixed gas.

(従来の技術) この種用途に使用される反応器は、運転中の発熱反応に
よるガス温度の上昇を制御する手段、構造に種々のもの
が提案されているが、これは、第5図の例、即ち、メタ
ノール合成反応のメタノール平衡濃度に対する温度の効
果で明らかな如く、温度の上昇と共(メタノール平向濃
度が低下し、工業的プラントの経済性が損なわれるため
である。(第5図は、HlとCOのモル比が4の場合で
ある。) しかし、反応温度を低くし過ぎると、触媒を
使用しても、反応速度が充分に大きい状態に達しないた
め、工業的には、触媒性能、空間速度(ガスと触媒の接
触時間)等乞考慮したある適正温度範囲で運転すること
が好ましく、本発明者等は、銅系触媒χ用いて、水素、
−酸化炭素、二酸化炭素を有意物質とした混合ガスを用
いて工業的にメタノールを合成する場合は、220〜2
80℃が適正温度範囲であると考えており、また、ガス
の圧力(全圧力)とし℃は、50〜300kg/cIf
12Gが経済的な適正範囲であると考え℃いる。但し、
これらの条件範囲は、将来の触媒の改良等で変り得るも
のであって、特に特定しない。
(Prior Art) For reactors used in this type of applications, various means and structures have been proposed for controlling the rise in gas temperature due to exothermic reactions during operation, but these are as shown in Figure 5. For example, as evidenced by the effect of temperature on the equilibrium concentration of methanol in the methanol synthesis reaction, as the temperature increases, the horizontal concentration of methanol decreases, impairing the economics of industrial plants. (The figure shows the case where the molar ratio of Hl and CO is 4.) However, if the reaction temperature is too low, even if a catalyst is used, the reaction rate will not reach a sufficiently high state, so it is not suitable for industrial use. It is preferable to operate within a certain appropriate temperature range, taking into consideration catalyst performance, space velocity (contact time of gas and catalyst), etc., and the present inventors have proposed that hydrogen,
- When industrially synthesizing methanol using a mixed gas containing carbon oxide and carbon dioxide as significant substances, 220 to 2
We believe that 80℃ is the appropriate temperature range, and the gas pressure (total pressure) is 50 to 300 kg/cIf.
We believe that 12G is an economically appropriate range. however,
These condition ranges may change due to future catalyst improvements, etc., and are not particularly specified.

この温度調節の方法構造の公知例に、特公昭57−58
568号がある。第6図における各記号は、次の通りで
ある。
A known example of this temperature control method structure is
There is No. 568. Each symbol in FIG. 6 is as follows.

101:未反応ガス入口、102:下部腕、103+上
部管板、104:水蒸気出口、105:反応管、106
:触媒、107+シエル、108!水、109:補給水
入口、11〇二下部管板、111:下部腕、 112:反応終了ガス出口 この公知例は、第6図に示す如く、予め適正温度に加熱
した水素、−酸化炭素、二酸化炭素等からなる加圧混合
ガスを、触媒106を充填した反応管105を上方から
下方へ槻動させ℃メタノール合成反応を行なわさせると
共に、その反応熱を該反応管105外表面に接しさせた
適正圧力の飽和温度の水10日の蒸発潜熱によって取り
除くことにより、該反応管105内部のガス温度を適正
な条件範囲に維持せんとするものである。当然ながら、
反応管105の管長方向の空間速度は一定となるように
している0尚、反応管105は、多数設けられているが
、第6図では、省略されている。
101: Unreacted gas inlet, 102: Lower arm, 103 + upper tube sheet, 104: Steam outlet, 105: Reaction tube, 106
: Catalyst, 107 + Ciel, 108! Water, 109: Make-up water inlet, 1102 lower tube plate, 111: Lower arm, 112: Reaction completed gas outlet This known example, as shown in FIG. A pressurized mixed gas consisting of carbon dioxide, etc. was passed through a reaction tube 105 filled with a catalyst 106 from above to below to perform a °C methanol synthesis reaction, and the reaction heat was brought into contact with the outer surface of the reaction tube 105. The purpose is to maintain the gas temperature inside the reaction tube 105 within an appropriate range of conditions by removing water at an appropriate pressure and saturation temperature using the latent heat of vaporization for 10 days. Naturally,
The space velocity of the reaction tubes 105 in the tube length direction is kept constant.Although a large number of reaction tubes 105 are provided, they are omitted in FIG.

この第6図の如(、触媒106を充填した反応管105
の管内く反応させようとするガスを流動させ、該反応管
105の外表面に飽和温度の加圧した水10日を接触さ
せた反応器において、反応器出口112の反応生成物濃
度を高める方法構造として、本発明者等は、先に反応器
を前流側と後流側に分離させ℃、各々の空間速度音質え
た反応器を提案した(特願昭59−144162号およ
び同59−180727号)0この後流側反応器の反応
管内の接触反応は、第5図の平向メタノール濃度の見地
から、温度を低目に維持することが、反応生成物濃度を
高める点で好ましく、本発明者等は、先に後に側反応器
の反応管外表面に接する飽和温度の加圧水の圧力を、前
流側反応器のそれに比し低い値に設定する方法も提案し
た(特願昭59−21875号)。
As shown in FIG. 6 (reaction tube 105 filled with catalyst 106
A method of increasing the concentration of reaction products at the reactor outlet 112 in a reactor in which a gas to be reacted is made to flow through the tube, and the outer surface of the reaction tube 105 is brought into contact with pressurized water at a saturation temperature for 10 days. As for the structure, the present inventors previously proposed a reactor in which the reactor was separated into upstream and downstream sides, and the temperature and space velocity of each were improved (Japanese Patent Application Nos. 59-144162 and 59-180727). No.)0 Regarding the contact reaction in the reaction tube of the downstream reactor, from the viewpoint of the flat methanol concentration in Figure 5, it is preferable to maintain the temperature at a low level in order to increase the reaction product concentration. The inventors also proposed a method in which the pressure of the pressurized water at the saturation temperature in contact with the outer surface of the reaction tube in the rear reactor is set to a lower value than that in the upstream reactor (Japanese Patent Application No. 1983- No. 21875).

しかし、反応ユニット4、第7図の反応器の如く、前流
側反応ユニットAと後流側反応ユニットBK分離させた
場合、反応管外表面に接しさせた加圧水の圧力を異なる
ようにすることは、発生した水蒸気圧力が異なるため、
この水蒸気を蒸気タービン駆動用などの目的で利用する
場合に好ましくなく、かつ、気水ドラムの数が増すなと
運転上からも好ましくない。
However, when the upstream side reaction unit A and the downstream side reaction unit BK are separated, as in reaction unit 4 and the reactor shown in FIG. Because the generated water vapor pressure is different,
This is undesirable when this steam is used for purposes such as driving a steam turbine, and it is also undesirable from an operational point of view as the number of steam-water drums increases.

なお、第7図におい℃、104’、104”は水蒸気出
口、105’、105”は反応管、109’。
In addition, in FIG. 7, 104' and 104'' are steam outlets, 105' and 105'' are reaction tubes, and 109'.

IC19”は補給求人−口、115,114は管板であ
り、その他は、第6図のものと共通である。
IC 19'' is a supply port, 115 and 114 are tube plates, and the other parts are the same as those in FIG.

(発明が解決しようとする問題点) 本発明の目的を工、上記従来装置の問題点を解消させた
反応器冷却用給水装置を提供することである。
(Problems to be Solved by the Invention) It is an object of the present invention to provide a water supply system for cooling a reactor, which eliminates the problems of the conventional device described above.

(問題点を解決するための手段) 本発明は、粒状固形触媒?充填した複数個の反応管を上
下の管仮に固定させた複数個の反応ユニット’に前流側
と後流[111に分離して同一のシェルあるいは別体の
シェル内に位置させ、該反応管内に反応させようとする
加圧混合ガスを前流側反応↓ニットへ導入して、後流側
反応ユニットへ移動させるようにすると共に、後流側反
応ユニットの空間速度を前流側反応ユニットのそれに比
し℃小とし、かつ該反応管内で反応しつつあるガスの温
度よりも低い飽和温度の加圧水を該反応管外表面に接触
させるようにした反る器に於いて、後流側反応ユニット
のシェル下端に設げた水入口ノズルから供給する水の温
度を飽和温度よりも低い温度とするため、水蒸気発生量
に対応した補給水をボイラ降水管より導入した飽和温度
の加圧水に混合し、これt熱交換器で所望温度1cy4
節した後、後流側反応ユニットのシェル下端の水入口ノ
ズルへ供給するようにしたことを特徴とする反応器冷却
用給水装置に関する。
(Means for Solving the Problems) Does the present invention provide a granular solid catalyst? A plurality of filled reaction tubes are placed in a plurality of reaction units' in which the upper and lower tubes are temporarily fixed. The pressurized mixed gas to be reacted with is introduced into the upstream reaction ↓ unit and transferred to the downstream reaction unit, and the space velocity of the downstream reaction unit is adjusted to the upstream reaction unit. A downstream reaction unit is installed in a curving vessel in which pressurized water whose saturation temperature is lower than that of the gas reacting in the reaction tube is brought into contact with the outer surface of the reaction tube. In order to keep the temperature of the water supplied from the water inlet nozzle installed at the lower end of the boiler shell lower than the saturation temperature, make-up water corresponding to the amount of steam generated is mixed with pressurized water at saturation temperature introduced from the boiler downcomer pipe. Desired temperature 1cy4 with t heat exchanger
The present invention relates to a water supply device for cooling a reactor, characterized in that the water is supplied to a water inlet nozzle at the lower end of a shell of a downstream reaction unit after the water has been cut.

(作用) 以下に、本発明装置を図面に基づき説明する0第1図及
び第2図は、本発明に係る反応器冷却用給水装置の実施
態様を示す概要図である。
(Function) Below, the apparatus of the present invention will be explained based on the drawings. FIGS. 1 and 2 are schematic diagrams showing embodiments of the water supply apparatus for cooling a reactor according to the present invention.

このうち、第2図は、前後流側反応ユニット?夫々別体
のシェルに収納独立させた態様を示す。
Of these, Figure 2 is the upstream and downstream reaction units? This shows an embodiment in which they are housed independently in separate shells.

図中の各記号は、次の通りである。Each symbol in the figure is as follows.

1.2:前流側反応ユニットの管板 3:前流側反応ユニットの反応管(複数個)4:前流側
反応ユニットの反応管内触媒5.6:後流側反応ユニッ
トの管板 7:後流側反応ユニットの反応管(複数個)8:後流側
反応ユニットの反応管内触媒9 、9’ :鏡 +o、+o’:鏡 11;前流−反応ユニットのシェル 12:前流側反応ユニットのシェルの気水出口ノズル 13:前流側反応ユニットのシェルの水入口ノズル 14:後流側反応ユニットのシェル 15+後流側反応ユニットのシェルの気水出口ノズル 16:後流側反応ユニットのシェルの水入口ノズル 17:気水ドラム 18.20 :降水管 21:補給水ポンプ 22:補給水ポンプ出口管 23:熱交換器 19.24 i水入口管 25.26 :気水上昇管 27:ガス配管 28:前i側反応ユニットシェル11内の水29:後流
側反応ユニットシェル14内の水30;気水ドラム17
内の水 この第1,2図において、前流側反応ユニットAの反応
管5の外表面に位置させる水28は、気水ドラム17で
分離した飽和温度の水を、降水管18と入口管19Y経
由し℃ノズル15から飽和温度でシェル11内に供給さ
れ、反応管5内の反応熱を受は取ることにより発生した
水蒸気を含む気水温合流体は、ノズル12からシェル1
1外の気水上昇管26′ft経由して気水ドラム17へ
還流して行く。気水ドラム17で水蒸気を分離した水は
、再び降水管18内へ流入し1行(という循環サイクル
を繰返す。この前流側反応ユニットAの水(および水蒸
気)の挙動は、通常の自然循環型蒸気発生器に近似して
いるが、補給水を気水ドラム17に供給しな(・点が異
なっている。
1.2: Tube plate of the upstream reaction unit 3: Reaction tubes (multiple pieces) of the upstream reaction unit 4: Catalyst in the reaction tube of the upstream reaction unit 5.6: Tube plate 7 of the downstream reaction unit : Reaction tube (plurality) of downstream reaction unit 8: Catalyst 9, 9' in reaction tube of downstream reaction unit: Mirror +o, +o': Mirror 11; Shell 12 of upstream-reaction unit: Upstream side Air/water outlet nozzle 13 of the shell of the reaction unit: Water inlet nozzle 14 of the shell of the upstream reaction unit: Shell 15 of the downstream reaction unit + air/water outlet nozzle 16 of the shell of the downstream reaction unit: downstream reaction Unit shell water inlet nozzle 17: Air-water drum 18.20: Down pipe 21: Make-up water pump 22: Make-up water pump outlet pipe 23: Heat exchanger 19.24 i Water inlet pipe 25.26: Air-water riser pipe 27: Gas piping 28: Water in the front i-side reaction unit shell 11 29: Water 30 in the downstream reaction unit shell 14; Air-water drum 17
In FIGS. 1 and 2, the water 28 located on the outer surface of the reaction tube 5 of the upstream reaction unit A is the water at a saturated temperature separated by the air-water drum 17, which is passed through the downcomer pipe 18 and the inlet pipe. The air/water temperature mixture containing water vapor generated by receiving and removing the reaction heat in the reaction tube 5 is supplied into the shell 11 from the °C nozzle 15 via 19Y at a saturation temperature, and is supplied to the shell 11 from the nozzle 12.
The air and water are returned to the air and water drum 17 via the outside air and water rising pipe 26'ft. The water from which steam has been separated in the air-water drum 17 flows into the downcomer pipe 18 again and repeats the circulation cycle. It is similar to a type steam generator, but the difference is that make-up water is not supplied to the steam-water drum 17.

後流側反応ユニットBに於いては、反応管7の外表面に
位置させた水29は、気水ドラム17で・分離した飽和
温度の水を降水管18.20で補給水ポンプ出口管22
まで移動させ、これに、補給水ポンプ21を経由して供
給される新らしい補給水(水量は気水ドラム17の水蒸
気発生量に相当するもの)を混合した後、熱交換器26
で適正温度に温度Y、11節し、水入口管24を経由し
てシェル14の下部に設けた水入口ノズル16からシェ
ル14内へ供給される。このシェル14内に供給された
水は、反応管7の内部で進行する発熱反応の反応熱を受
は取ることにより、水蒸気を発生し、水蒸気と水の混合
流体とし℃、シェル14上部のノズル15から気水上昇
管25を経由して気水ドラム17へ流入して行く。気水
ドラム17で水蒸気を分離した水は、降水管18へ流入
して行く。かくの如く、後流fill 反応ユニットB
のシェル14に供給する水は、その圧力は、前流側反応
ユニソ)Aのシェル11、気水ドラム17と同一である
が、シェル14の下部に設けた水入口ノズル16からシ
ェル14内に供給する水の温度tあろ条件に設定するた
め、補給水の供給方法と熱交換器25fj!:有させた
点に本発明の特徴があり、以下に、その効果を示す。
In the downstream reaction unit B, the water 29 located on the outer surface of the reaction tube 7 is supplied to the air-water drum 17, and the separated water at saturated temperature is sent to the downcomer pipe 18.20 to the make-up water pump outlet pipe 22.
After mixing this with new make-up water supplied via the make-up water pump 21 (the amount of water corresponds to the amount of steam generated in the air-water drum 17), the water is moved to the heat exchanger 26.
The temperature is set to an appropriate temperature at node 11, and the water is supplied into the shell 14 from the water inlet nozzle 16 provided at the bottom of the shell 14 via the water inlet pipe 24. The water supplied into the shell 14 receives and removes the reaction heat of the exothermic reaction proceeding inside the reaction tube 7, thereby generating water vapor and turning it into a mixed fluid of water vapor and water. 15, the air flows into the air and water drum 17 via the air and water rising pipe 25. The water from which steam has been separated in the air-water drum 17 flows into the downcomer pipe 18. Like this, downstream fill reaction unit B
The pressure of the water supplied to the shell 14 is the same as that of the shell 11 and air-water drum 17 of the upstream reaction unit A, but water is supplied into the shell 14 from the water inlet nozzle 16 provided at the bottom of the shell 14. In order to set the supplied water temperature t, the make-up water supply method and heat exchanger 25fj! : The present invention is characterized by having the following properties, and the effects thereof will be shown below.

本発明の反応器に於いては、後流側反応ユニットBのシ
ェル14の下部に設けたノズル16からシェル14内に
供給する水の温度を、ノズル16の位置におい工、気水
ドラム17内の水の温度(飽和温度)よりも10〜10
0℃低い温度にすることにより反応管7(複数)の下端
、即ち、反応終了ガス中の反応生成物濃度を高めたこと
に工業的に大ぎい価値を有するものである。当然ながら
、シェル14内の水29とシェル11内の水28の圧力
を変えることによっても、同様な効果が得られるが、前
述の如く、異なる圧力の水蒸気を取出すことは、工業的
なプラントでは好ましくなく、本発明装置では、同一の
水蒸気圧力を得ることが可能であって、本発明はこの点
に特徴を有する。
In the reactor of the present invention, the temperature of the water supplied into the shell 14 from the nozzle 16 provided at the lower part of the shell 14 of the downstream reaction unit B is controlled by an odor at the position of the nozzle 16, and an air-water drum 17. 10 to 10 lower than the water temperature (saturation temperature)
It is of great industrial value that by lowering the temperature by 0° C., the concentration of reaction products at the lower ends of the reaction tubes 7 (plurality), that is, in the reaction-completed gas, can be increased. Naturally, the same effect can be obtained by changing the pressures of the water 29 in the shell 14 and the water 28 in the shell 11, but as mentioned above, extracting steam at different pressures is difficult in industrial plants. However, with the apparatus of the present invention, it is possible to obtain the same water vapor pressure, and the present invention is characterized in this point.

本発明に於い℃は、シェル14内の水の温度は、第3図
の如き分布を有する。図において、シェル14の下端の
水温は、aで示される。水は、シェル14内を上昇する
に従つく温度が上昇し、b点で飽和温度に達し、この温
度でC点ニ達シ、シェル14の上端のノズル15から流
出させられる。このa点からb点までは、反応管7内の
反応熱が水側へ管壁を介し℃移動し、水の顕熱として熱
を受は取り、b点から0点までは、水の蒸発潜熱とし℃
熱を受は取る0当然ながら、a点からb点までは、管外
表面に接する水の温度が低いため、反応管7内のガス温
度は、b点から0点に到る範囲よりも低い温度にさせら
れ、これが、反応管7の下端ガス中の反応生成物濃度を
高める点で有効な効果を有するのである。
In the present invention, the temperature of water in the shell 14 has a distribution as shown in FIG. In the figure, the water temperature at the lower end of the shell 14 is indicated by a. As the water rises inside the shell 14, its temperature increases, reaching a saturation temperature at point b, reaching point C at this temperature, and flowing out from the nozzle 15 at the upper end of the shell 14. From point a to point b, the reaction heat in the reaction tube 7 moves to the water side via the tube wall by °C, receiving and taking heat as sensible heat of the water, and from point b to point 0, the water evaporates. latent heat ℃
Naturally, from point a to point b, the temperature of the water in contact with the outer surface of the tube is low, so the gas temperature inside the reaction tube 7 is lower than the range from point b to point 0. This has the advantageous effect of increasing the concentration of reaction products in the gas at the lower end of the reaction tube 7.

第4図は、第5図を圧カ一定の定性図に書き直し、それ
に前流側反応管3と後流側反応管7の管内のガス温度と
反応生成物濃度を記入したものである。前流側反応管3
内では、管上端a点から未反応ガスGが送入されるが、
反応生成物a度が小さく、平衡濃度との差が大きいため
、大きい反応速度で反応が進行し、発生熱量も太きいた
め、空間速度χ大にし、単位管長当りの熱発生量を小さ
くシ、ガス温度の上昇を抑制させるため、ガス温度は、
b点で最大となり、その後は、温度は若干低下し、0点
で前流側反応管5下端から流出する。後流側反応管Z内
では、管上端の0点から前流側反応管3下端流出ガスが
供給される。後流側反応管7内ガスの空間速度は、前流
側反応管6に比して小にしているため、そのガス温度は
、若干上昇してd点に達し、その後、次第に低下して行
くが、管内で発熱反応が継続しているため、該反応管Z
外の水温よりも若干高い温度となる。従来公知技術では
、前流側反応器と後流側反応器のシェル内の水の圧力を
一定とした時、ガス温度と反応生成物は、a、b、C,
d、e、fとい5軌線に従って変化して行き、f点の温
度と反応生成物濃度で反応生成物濃度で反応器の外へ流
出させられる。
FIG. 4 is a redrawing of FIG. 5 into a qualitative diagram with a constant pressure, and the gas temperature and reaction product concentration in the upstream reaction tube 3 and the downstream reaction tube 7 are entered therein. Upstream reaction tube 3
Inside, unreacted gas G is fed from point a at the upper end of the tube,
Since the reaction product a degree is small and the difference from the equilibrium concentration is large, the reaction proceeds at a high reaction rate and the amount of heat generated is large, so the space velocity χ is increased and the amount of heat generated per unit pipe length is reduced. In order to suppress the rise in gas temperature, the gas temperature is
The temperature reaches a maximum at point b, after which the temperature decreases slightly and flows out from the lower end of the upstream reaction tube 5 at point 0. In the downstream reaction tube Z, the gas flowing from the lower end of the upstream reaction tube 3 is supplied from the zero point at the upper end of the tube. Since the space velocity of the gas in the downstream reaction tube 7 is smaller than that in the upstream reaction tube 6, the gas temperature rises slightly to reach point d, and then gradually decreases. However, since the exothermic reaction continues in the tube, the reaction tube Z
The temperature will be slightly higher than the water temperature outside. In the conventionally known technology, when the pressure of water in the shells of the upstream reactor and the downstream reactor is constant, the gas temperature and reaction products are a, b, C,
It changes along five trajectories: d, e, and f, and at the temperature and reaction product concentration at point f, the reaction product concentration flows out of the reactor.

一方、本発明では、第3図の如(、後流側反応ユニット
のシェル14内の水温を変化させているため、ガス温度
と反応生成物濃度は、第4図のa、b、c、d、e、g
という軌線に従って変化し℃行き、g点の温度と反応生
成物濃度で反応器の外へ流出させられる。
On the other hand, in the present invention, the gas temperature and the reaction product concentration are changed as shown in FIG. d, e, g
It changes according to the trajectory of ℃ and flows out of the reactor at the temperature and reaction product concentration of point g.

かくの如(、本発明に於いては、反応器出口の反応生成
物濃度は、g点という高い値が得られるが、これは、温
度の低下と共に平向濃度が上昇するため、管内反応生成
物濃度と平衡濃度との差が犬となり、反応を進行させる
駆動力が生じるためである。但し、触媒と接触させても
、反応速度は、温度の低下と共に減少するので、ガス温
度を大巾に低下させても、大きい効果がなく、f点のシ
ェル側の水の温度は、本発明に於いては、飽和温度より
も10〜100℃低い条件に設定することが、工業的に
有効なのである0 本発明を工業的に実施する場合、第1,2図のポンプ2
1を経由して供給する補給水の温度は、飽和温度よりも
低いことが好ましいが、降水管18.20から供給され
る水の温度が飽和温度であり、かつポンプ21を経由し
て供給される水の量を常に一定とすることは不可能であ
る(プラント負荷、気水ドラム17の液面制御法九より
、供給水量は一定となし得ない)。従つ℃、水供給ノズ
ル16からシェル14内へ供給する水の温度を適正条件
に設定するため、熱交換器25を有させたことは、本発
明の大きい特徴である。この熱交換器23は、定常運転
では、冷却器として機能させるが1、この冷却に要する
熱エネルギーは、ガス等の流体の予熱用として有効に利
用し得るものであるが、上記の如く、補給水の温度を低
い条件に設定することも、この熱交換器23の負荷の軽
減に有効である。
As described above, in the present invention, the concentration of reaction products at the outlet of the reactor is as high as the g point, but this is because the horizontal concentration increases as the temperature decreases, so the concentration of reaction products in the tube increases. This is because the difference between the gas concentration and the equilibrium concentration acts as a driving force that causes the reaction to proceed.However, even if it comes into contact with a catalyst, the reaction rate decreases as the temperature decreases, so if the gas temperature is Even if the water temperature is lowered to 10 to 100 °C lower than the saturation temperature, there is no significant effect, and in the present invention, it is industrially effective to set the water temperature on the shell side at point f to 10 to 100 °C lower than the saturation temperature. Yes 0 When the present invention is implemented industrially, the pump 2 of FIGS. 1 and 2
Preferably, the temperature of the make-up water supplied via downcomer 18.20 is lower than the saturation temperature, but if the temperature of the water supplied from downcomer pipe 18. It is impossible to always keep the amount of water supplied constant (due to plant load and liquid level control method 9 of the air-water drum 17, the amount of water supplied cannot be kept constant). Therefore, it is a major feature of the present invention that a heat exchanger 25 is provided in order to set the temperature of water supplied from the water supply nozzle 16 into the shell 14 to an appropriate condition. During steady operation, this heat exchanger 23 functions as a cooler1, and the thermal energy required for this cooling can be effectively used for preheating fluids such as gas. Setting the water temperature to a low condition is also effective in reducing the load on the heat exchanger 23.

かくの如く、本発明は、工業的に有効な反応器を提供し
得るものであるが、本発明は、メタノール合成用反応器
を主たる適用範囲とするものの、その他の用途における
ガスの接触反応用反応器として使用することも妨げない
。また、反応管内に中心管?設けた構造を有する反応器
に適用することも妨げない。
As described above, the present invention can provide an industrially effective reactor. Although the present invention is mainly applicable to a reactor for methanol synthesis, it is also applicable to gas catalytic reactions in other applications. It is also possible to use it as a reactor. Also, is there a center tube inside the reaction tube? It is also possible to apply the present invention to a reactor having the above structure.

(発明の効果) 本発明装置により、後流側反応ユニット内の温度を低い
状態で、反応生成物濃度を高めることができるので、プ
ラントの負荷を@減できる。
(Effects of the Invention) With the apparatus of the present invention, the concentration of reaction products can be increased while keeping the temperature in the downstream reaction unit low, so that the load on the plant can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明に係る反応器冷却用給水装
置の実施態様を示す概要図である。 第3図は、本発明に係る反応ユニットの後流側シェル内
の水の温度分布を示す。第4図は、反応ガス温度と反応
生成物(メタノール)濃度の関係を示す。第5図は、メ
タノール平衡濃度に対する圧力と温度の関係を示す。第
6図及び第7図は、従来装置の概要図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 第3図 シェルの高さ方向長さ 温度□ 圧7](α猟)
FIG. 1 and FIG. 2 are schematic diagrams showing embodiments of a water supply device for cooling a reactor according to the present invention. FIG. 3 shows the temperature distribution of water in the downstream shell of the reaction unit according to the invention. FIG. 4 shows the relationship between reaction gas temperature and reaction product (methanol) concentration. FIG. 5 shows the relationship between pressure and temperature for methanol equilibrium concentration. FIGS. 6 and 7 are schematic diagrams of conventional devices. Sub-agent 1) Clearance agent Ryo Hagiwara - Figure 3 Shell height direction length Temperature □ Pressure 7] (α hunting)

Claims (1)

【特許請求の範囲】[Claims] 粒状固形触媒を充填した複数個の反応管を上下の管板に
固定させた複数個の反応ユニットを前流側と後流側に分
離して同一のシェルあるいは別体のシェル内に位置させ
、該反応管内に反応させようとする加圧混合ガスを前流
側反応ユニットへ導入して、後流側反応ユニットへ移動
させるようにすると共に、後流側反応ユニットの空間速
度を前流側反応ユニットのそれに比して小とし、かつ該
反応管内で反応しつつあるガスの温度よりも低い飽和温
度の加圧水を該反応管外表面に接触させるようにした反
応器に於いて、後流側反応ユニットのシェル下端に設け
た水入口ノズルから供給する水の温度を飽和温度よりも
低い温度とするため、水蒸気発生量に対応した補給水を
ボイラ降水管より導入した飽和温度の加圧水に混合し、
これを熱交換器で所望温度に調節した後、後流側反応ユ
ニットのシェル下端の水入口ノズルへ供給するようにし
たことを特徴とする反応器冷却用給水装置。
A plurality of reaction units each having a plurality of reaction tubes filled with a granular solid catalyst fixed to upper and lower tube sheets are separated into a frontstream side and a downstream side and placed in the same shell or separate shells, The pressurized mixed gas to be reacted in the reaction tube is introduced into the upstream side reaction unit and moved to the downstream side reaction unit, and the space velocity of the downstream side reaction unit is adjusted to the upstream side reaction unit. In a reactor that is smaller than that of the reaction tube and has a saturation temperature lower than the temperature of the gas undergoing reaction in the reaction tube, pressurized water is brought into contact with the outer surface of the reaction tube. In order to keep the temperature of the water supplied from the water inlet nozzle installed at the lower end of the unit shell lower than the saturation temperature, make-up water corresponding to the amount of steam generated is mixed with pressurized water at the saturation temperature introduced from the boiler downcomer pipe.
A water supply device for cooling a reactor, characterized in that the water is adjusted to a desired temperature using a heat exchanger and then supplied to a water inlet nozzle at the lower end of a shell of a downstream reaction unit.
JP25938284A 1984-12-10 1984-12-10 Water supply system for cooling reactor Pending JPS61138527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25938284A JPS61138527A (en) 1984-12-10 1984-12-10 Water supply system for cooling reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25938284A JPS61138527A (en) 1984-12-10 1984-12-10 Water supply system for cooling reactor

Publications (1)

Publication Number Publication Date
JPS61138527A true JPS61138527A (en) 1986-06-26

Family

ID=17333354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25938284A Pending JPS61138527A (en) 1984-12-10 1984-12-10 Water supply system for cooling reactor

Country Status (1)

Country Link
JP (1) JPS61138527A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112125A (en) * 1993-10-15 1995-05-02 Agency Of Ind Science & Technol Catalytic reaction method and device therefor
US6582667B1 (en) 1998-09-18 2003-06-24 Nippon Shokubai Co., Ltd. Shell-and-tube reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112125A (en) * 1993-10-15 1995-05-02 Agency Of Ind Science & Technol Catalytic reaction method and device therefor
US6582667B1 (en) 1998-09-18 2003-06-24 Nippon Shokubai Co., Ltd. Shell-and-tube reactor

Similar Documents

Publication Publication Date Title
US6331283B1 (en) Low-temperature autothermal steam reformation of methane in a fluidized bed
KR100397268B1 (en) Sludge phase reactor and its use
JPH0638906B2 (en) Exothermic reaction processes and equipment
KR20020070291A (en) METHOD FOR CONTROLLING THE PRODUCTION OF AMMONIA FROM UREA FOR NOx SCRUBBING
EA038258B1 (en) Oxidative dehydrogenation (odh) of ethane
US4767791A (en) Process for synthesizing methanol with an optimal temperature profile using a concentric pipe reactor
US4938930A (en) Reaction vessel
US2751756A (en) Cooling walls with fluidized solids and liquid vaporization
JPS61138527A (en) Water supply system for cooling reactor
JPS6154229A (en) Reactor
JPS5816933B2 (en) fluidized bed reactor
GB787123A (en) Apparatus for the catalytic gas reactions in liquid media
JP2008155178A (en) Method for controlling reaction temperature and reaction apparatus
US5286884A (en) Thermosyphonic reaction of propylene with tertiary butyl hydroperoxide and reactor
JPH0125615B2 (en)
JP2817236B2 (en) Methanol reforming reactor
JP3924039B2 (en) Reactor
RU2380149C2 (en) Method of regulating temperature of exorthermic catalytic reactions
JP3924040B2 (en) Reactor
KR20010049967A (en) Isothermal Operation of Heterogeneously Catalyzed Three Phase Reactions
CN114605222B (en) Method for efficiently synthesizing chloromethane
CN213160719U (en) Continuous production reactor gets thermal system
US3510523A (en) Exothermic catalytic reactions with thermosyphon flow
JPS5939701A (en) Method for reforming methanol with steam
JPH0673625B2 (en) Reactor