JPS61138188A - Radar equipment - Google Patents

Radar equipment

Info

Publication number
JPS61138188A
JPS61138188A JP59261515A JP26151584A JPS61138188A JP S61138188 A JPS61138188 A JP S61138188A JP 59261515 A JP59261515 A JP 59261515A JP 26151584 A JP26151584 A JP 26151584A JP S61138188 A JPS61138188 A JP S61138188A
Authority
JP
Japan
Prior art keywords
target
doppler frequency
signal
determined
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59261515A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Shinonaga
充良 篠永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59261515A priority Critical patent/JPS61138188A/en
Publication of JPS61138188A publication Critical patent/JPS61138188A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/449Combined with MTI or Doppler processing circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To make possible the direct measurement of the magnitude in a target cross range direction accompanying rotation motion by subjecting the demodulated signal of a sum channel signal and difference channel signal obtd. by using a monopulse antenna to Doppler frequency resolution. CONSTITUTION:The modulated signal of the sum channel signal and difference channel signal obtd. by using the monopulse antenna 41 and following up the target motion is subjected to the Doppler frequency resolution by Fourier transform circuits 711, 712. The incoming bearings of the reflected wave are determined for each of the same Doppler frequency components by measured angle processing circuits 721-72n. The distance of the cross range direction is then determined by multipliers 731-73n in accordance with the distance from the antenna 41 up to the target and the determined incoming bearings of the reflected wave. The factor to convert the coordinates of the Doppler frequency to the coordinate in the cross range direction is determined in a conversion factor setting circuit 740 by using at least two distances corresponding to the optional Doppler frequency component out of the distances in the cross range direction. The target is thus expressed with the coordinates in the distance direction and cross range direction, i.e., the coordinates indicating directly the size.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、レーダ装置に関し、特に回転運動を含む運
動を行う目標の物理的大きさを測定するに好適な装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a radar device, and particularly to a device suitable for measuring the physical size of a target that makes a motion including rotational motion.

〔発明の技術的背景〕[Technical background of the invention]

第3図に、一般的なレーダ装置の概略構成を示す。 FIG. 3 shows a schematic configuration of a general radar device.

このレーダ装置において、高安定発振器10は安定化し
た所定周波数の信号を発生する回路であり、この発生さ
れた信号は送信機20および受信機50にそれぞれ供給
される。送信機20ではこの入力された信号に基づいて
所要の繰り返し周期を有するパルス信号を発生し、これ
を送受切換器30を介して空中線40に供給する。これ
により空中線40からは同パルス信号が送信信号として
放射される。一方、目標からの反射波は、同空中線40
によって受信され、これが上記送受切換器30を介して
受信機50に供給される。この受信機50にも上述した
ように高安定発振器10の発振信号が供給されており、
上記受信信号はこの発振信号と混合されて復調される。
In this radar device, a highly stable oscillator 10 is a circuit that generates a stabilized signal of a predetermined frequency, and the generated signals are supplied to a transmitter 20 and a receiver 50, respectively. The transmitter 20 generates a pulse signal having a required repetition period based on this input signal, and supplies this to the antenna 40 via the transmitter/receiver switch 30. As a result, the same pulse signal is emitted from the antenna 40 as a transmission signal. On the other hand, the reflected wave from the target is
and is supplied to the receiver 50 via the transmitter/receiver switch 30. As described above, this receiver 50 is also supplied with the oscillation signal of the highly stable oscillator 10,
The received signal is mixed with this oscillation signal and demodulated.

この復調信号が表示器60に供給されて適宜に表示され
ることとなる。
This demodulated signal is supplied to the display 60 and displayed appropriately.

ところで、マイクロ波帯レーダは一般に天候等に左右さ
れ難いことで知られているが、このマイクロ波帯レーダ
によって目標の形状までも知ろうとすることは困難であ
るとされていた。これは該レーダ自身の空間分解能が目
標の大きさに比べて粗いためである。そこでこれを克服
する技術として合成開口レーク(以下SARと略称する
)が提案され実用されることとなった。周知のようにこ
のSARとは、アンテナおよび送受信装置を高速度で移
動するプラットホーム上に搭載し、これらアンテナおよ
び送受信装置の移動に伴なう空間上の多数の場所で目標
のエコーデータを収集するようにしたものであり、これ
によって大きな開口長をもつアンテナと同等の指向性を
作り出し、ひいては該レーダ装置としての分解能を高め
るものである。
Incidentally, microwave band radar is generally known to be unaffected by weather and the like, but it has been considered difficult to even know the shape of a target using this microwave band radar. This is because the spatial resolution of the radar itself is coarse compared to the size of the target. Therefore, as a technology to overcome this problem, synthetic aperture rake (hereinafter abbreviated as SAR) was proposed and put into practical use. As is well known, SAR is a system in which an antenna and a transmitting/receiving device are mounted on a platform that moves at high speed, and echo data of the target is collected at numerous locations in space as the antenna and transmitting/receiving device move. This creates directivity equivalent to that of an antenna with a large aperture length, thereby increasing the resolution of the radar device.

しかし、SARのこうした機能1こ鑑みれば、これとは
逆に、目標とする物体が動いてさえいれば、通常の固定
レーダ1こよっても上記SARと同等の高分解能が得ら
れるであろうことも推考できる。
However, if we take into account these functions of SAR, on the contrary, as long as the target object is moving, it is possible to obtain high resolution equivalent to that of SAR using ordinary fixed radar. It can also be inferred.

以下にこの一例として、回転運動する目標lこついて高
分解能の情報を得る方法を第4図を参照して説明する。
As an example of this, a method of obtaining high-resolution information from a rotating target will be described below with reference to FIG.

いま、目標上のある点Pが、角速度ω1、速度Vをもっ
て同第4図に示すような態様で回転運動しているとする
と、レーダ側には、次式で与えられるドツプラー周波数
fdをもつ信号が受信される。
Now, if a certain point P on the target is rotating in the manner shown in FIG. is received.

ただし、λ:レーダ送信波の波長 ここで、こうした観測を時間Tの間連続して行ったとす
ると、上記ドツプラー廟波数feLに関する分解能へf
4は となり、またこれ(こ対応する同図X軸方向の分解能△
Xは と表わされることiζなる。なおこの(3)式における
八〇は、 であって、時間Tの間Iこ目標(P点)が回転する全角
度を示す。
However, λ is the wavelength of the radar transmission wave, and if these observations are made continuously for a time T, then the resolution with respect to the Doppler wave number feL is
4 becomes, and this (this corresponds to the resolution △ in the X-axis direction in the same figure)
X can be expressed as iζ. Note that 80 in this equation (3) is as follows, and represents the total angle through which the target (point P) rotates during the time T.

このように、回転する目標については、これを適宜な時
間幅で観測することにより、高い空間分解能を得ること
が可能である。ただし、この(3ン式で得られる分解能
は、距離方向に直交する方向の分解能(以下この方向を
クロスレンジ方向、またこの方向の分解能をクロスレン
ジ分解能という)であり、距離方向の分解能については
送信パルス内変調等のパルス圧縮などによって得るとす
る。
In this way, high spatial resolution can be obtained by observing a rotating target over an appropriate time span. However, the resolution obtained with this (3-n formula) is the resolution in the direction perpendicular to the distance direction (hereinafter, this direction is referred to as the cross-range direction, and the resolution in this direction is referred to as the cross-range resolution), and the resolution in the distance direction is It is assumed that this is obtained by pulse compression such as modulation within the transmission pulse.

〔背景技術の問題点〕[Problems with background technology]

上述した方式は、目標をクロスレンジ方向に分解してこ
の分解能を向上するという点では有効であるが、直接同
目標のクロスレンジ方向の大きさを知ることはできず、
レーダ装置としてはなお課題を残すものであった。
Although the above-mentioned method is effective in improving the resolution by resolving the target into cross-range directions, it is not possible to directly know the size of the same target in the cross-range direction.
As a radar device, there were still issues to be solved.

し発明の目的〕 この発明は、少なくとも回転運動を含む運動を行う目標
の上記クロスレンジ方向の大きさも直接測定することの
できるレーダ装置を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a radar device that can also directly measure the size in the cross-range direction of a target that performs a motion that includes at least rotational motion.

(発明の概要〕 この発明では、前記空中線として、単一のパルス応答で
瞬時にアンテナの方位指向誤差を検出し、該検出誤差に
応じた和チャンネル信号および差チャンネル信号を出力
するモノパルスアンテナを用いる。そして上記目標の運
動lこ追従して得られるこれら和チャンネル信号および
差チャンネル信号の随時の復調信号をドツプラー周波数
分解してそれぞれ同一ドツプラー周波数成分を有するこ
れら2種の信号に基づく各同一ドツプラー周波数成分毎
の反射波到来方位を求め、次いで反射波の到来時刻によ
って定まる上記モノパルスアンテナから目標までの距離
およびこれら求めた各反射波到来方位に基づいて同目標
のモノパルスアンテナ正面方位からのずれすなわちクロ
スレンジ方向の距離を求め、さらにこれら求めたクロス
レンジ方向の距離のうち任意のドツプラー周波数成分に
対応する少なくとも2つを用いてピッブラー周波数の座
標をクロスレンジ方向の座標に変換する係数を求めるよ
うにする。これ−こより、上記目標は、距離方向の座標
およびクロスレンジ方向の座標といった共に大きさを直
接表わすことのできる座標をもって表現されることとな
り、おのずと同目標の空間的な大きさも知ることができ
るようになる。
(Summary of the Invention) In the present invention, a monopulse antenna is used as the antenna, which instantly detects the azimuth pointing error of the antenna with a single pulse response and outputs a sum channel signal and a difference channel signal according to the detection error. Then, the demodulated signals of the sum channel signal and the difference channel signal obtained by following the movement of the target are subjected to Doppler frequency decomposition to obtain the same Doppler frequency based on these two types of signals each having the same Doppler frequency component. The direction of arrival of the reflected wave for each component is determined, and then the distance from the monopulse antenna to the target determined by the arrival time of the reflected wave and the deviation from the front direction of the monopulse antenna of the target based on the direction of arrival of each reflected wave determined are calculated. Find the distance in the range direction, and then use at least two of these found distances in the cross-range direction that correspond to arbitrary Doppler frequency components to find a coefficient for converting the coordinates of the pibbler frequency into the coordinates in the cross-range direction. From this, the above target is expressed by coordinates that can directly represent the size, such as coordinates in the distance direction and coordinates in the cross range direction, and it is naturally possible to know the spatial size of the target. become able to.

〔発明の効果〕〔Effect of the invention〕

このように、この発明にかかるレーダ装置によれば、回
転運動を伴なう目標のクロスレンジ方向の大きさも1接
測定することができることから、同目標の空間的性質を
判定する上で非常に有益なデータをもたらすことができ
る。
As described above, according to the radar device according to the present invention, since it is possible to directly measure the size of a target in the cross-range direction that involves rotational motion, it is very useful for determining the spatial properties of the target. It can provide useful data.

し発明の実施例〕 第」図iこ、この発明にかかるレーダ装置の一実施例を
示す。ただし、この第1図において、先の第3図に示し
た要素と基本的に同一の機能を有する要素には同一の番
号を付して示しており、重複する説明は省略する。
Embodiment of the Invention] Figure 1 shows an embodiment of the radar device according to the invention. However, in this FIG. 1, elements having basically the same functions as the elements shown in FIG.

同第1図にて明らかなように、この実施例装置は、空中
線40(第3図参照)としてモノパルスアンテナ41を
用い、かつ受信機50と表示器60との間に新たに受信
信号処理装置70を介在せしめて構成される。上記モノ
パルスアンテナ41は、前述したように単一のパルス応
答で瞬時にアンテナの方位指向誤差を検出し、該検出誤
差に応じた和チャンネル信号および差チャンネル信号を
出力するアンテナであり、また受信信号処理装置70は
、上記モノパルスアンテナ41から出力され、かつ受信
機50にて復調された和チャンネル復調信号Σおよび差
チャンネル復調信号Δlこ基づいて目標(図示せず)の
クロスレンジ方向の座標を求めるこの発明の主要部をな
す装置である。以下この受信信号処理装置70の機能に
ついて第2図を参照して詳述する。
As is clear from FIG. 1, this embodiment uses a monopulse antenna 41 as the antenna 40 (see FIG. 3), and a new received signal processing device is installed between the receiver 50 and the display 60. 70 is interposed therebetween. As described above, the monopulse antenna 41 is an antenna that instantaneously detects the azimuth pointing error of the antenna with a single pulse response and outputs a sum channel signal and a difference channel signal according to the detection error, and also outputs a received signal. The processing device 70 determines the coordinates of the target (not shown) in the cross-range direction based on the sum channel demodulated signal Σ and the difference channel demodulated signal Δl output from the monopulse antenna 41 and demodulated by the receiver 50. This is a device that forms the main part of this invention. The functions of this received signal processing device 70 will be described in detail below with reference to FIG.

フーリエ変換回路711および712は、上記受信機5
0から加えられる差チャンネル復調信号Δおよび和チャ
ンネル復調信号Σをそれぞれ異なるドツプラー周波数成
分毎に、すなわち各距離毎にドツプラー周波数分解する
回路であり、該分解された信号Δ1 、Δ2.・・Δ。
The Fourier transform circuits 711 and 712 are connected to the receiver 5.
This circuit decomposes the difference channel demodulated signal Δ and sum channel demodulated signal Σ added from 0 into Doppler frequency components for each different Doppler frequency component, that is, for each distance, and the decomposed signals Δ1, Δ2 . ...Δ.

およびΣl、Σ2゜・・・Σ。は、それぞれ同一ドツプ
ラー周波数成分を有する信号(例えば信号Δ1と信号Σ
1.信号Δ2と信号Σ2等々)毎に各別の測角処理回路
721゜722、・・・720に加えられる。なお、こ
こで、第2図(a)4こ示すよう番こレンジR(反射波
到来時刻によって求まる目標までの距離)とドツプラー
周波数fdとをそれぞれ直交する座標転として上記のエ
コー信号Σ直〜Σ。を表示するようにしても目標の形状
は知ることができるが、クロスレンジ方向の大きさは不
明である。そこでこの処理装置70では、上記測角処理
回路721〜72n以降の回路によりさらに次の処理が
行われる。これら測角処理回路721〜72nには、そ
れぞれ上記同一ドツプラー周波数成分を有する信号ペア
(ΔX。
and Σl, Σ2゜...Σ. are signals (for example, signal Δ1 and signal Σ
1. (signal Δ2, signal Σ2, etc.) are applied to separate angle measurement processing circuits 721, 722, . . . , 720. Here, as shown in FIG. 2(a), the above echo signal Σ is expressed by orthogonal coordinate transformation of the range R (distance to the target determined by the reflected wave arrival time) and the Doppler frequency fd, respectively. Σ. Although it is possible to know the shape of the target by displaying it, the size in the cross-range direction is unknown. Therefore, in this processing device 70, the following processing is further performed by the circuits after the angle measurement processing circuits 721 to 72n. These angle measurement processing circuits 721 to 72n each have a signal pair (ΔX) having the same Doppler frequency component.

Σ1 )、(Δ2 、Σ2)、・・・(Δ。、Σn)に
基づいて各同一ドツプラー周波数成分毎の反射波到来方
位すなわち測角値を求める回路であり(モノパルスアン
テナの特性−上、Δ/Σの値についてそれぞれ対応する
測角値θが固定的に求まる)、こうして求められた各測
角θ1 、θ2 、・θnはさらに各別に掛算器731
,732.・・・73nに加えられる。掛算器731〜
73nは、それぞれ受入された測角値θ1〜θ。に、上
述したレンジRを乗算するよう動作する。すなわちこれ
によっ。て同目標に関しての各ドツプラー周波数成分に
対応するクロスレンジ方向の座標値Xl、Xg、・・X
Qが得られることになる。ここで、これらドツプラー周
波数fdとクロスレンジ方向の座標Xとは、先の(1)
式にて示される通り、 fd=kx ただしに:比例係数 なる比例関係にあることがら、この係数kが設定されれ
ば全てのドツプラー周波数について上記クロスレンジ方
向の座標Xを直線近似することができ、同ドツプラー周
波数からクロスレンジ座標への座標変換が可能となるこ
とがわかる。上記座標値xI−xnを受入するようにな
る変換係数設定回路740は、これら6値から例えば最
小2乗法等によりて上述した係数kを推定設定する回路
であり、これによって表示器60では、例えば第2図(
1))に示すように、レンジRとクロスレンジXといっ
た共に大きさを直接表わすことのできる座標をもって同
目標の形状を表現することができるようになる。
Σ1), (Δ2, Σ2), ... (Δ., Σn) is a circuit that calculates the direction of arrival of reflected waves, that is, the angle measurement value for each same Doppler frequency component (Characteristics of monopulse antenna - above, Δ For each value of /Σ, the corresponding angle measurement value θ is fixedly determined), and each of the angle measurements θ1, θ2, and θn thus determined is further processed by a multiplier 731
, 732. ...Added to 73n. Multiplier 731~
73n are the accepted angle measurement values θ1 to θ, respectively. It operates to multiply by the range R mentioned above. In other words, by this. coordinate values Xl, Xg,...X in the cross range direction corresponding to each Doppler frequency component regarding the same target.
Q will be obtained. Here, these Doppler frequency fd and the coordinate X in the cross range direction are
As shown in the formula, fd=kx However: Since there is a proportional relationship called a proportional coefficient, if this coefficient k is set, the above coordinate X in the cross range direction can be linearly approximated for all Doppler frequencies. , it can be seen that coordinate transformation from the same Doppler frequency to cross-range coordinates is possible. The conversion coefficient setting circuit 740 that receives the coordinate values xI−xn is a circuit that estimates and sets the coefficient k described above from these six values by, for example, the method of least squares. Figure 2 (
As shown in 1)), the shape of the target can be expressed using coordinates such as range R and cross range X, both of which can directly represent the size.

なお、この実施例では、上記ドツプラー周波数分解した
各ドツプラー周波数成分に対応するクロスレンジ方向座
標値X1−Xnといった多数の値に基づいて上記変換係
数kを推定設定するようにしたことから、かなり正確な
りロスレンジ座標が得られるようになるが、基本的には
これら座標値X1〜XQのうち少なくとも2つがわかり
さえすれば同係数にの推定は可能であり、これによって
上述した受信信号処理装置70の構成を簡略化すること
もできる。
In addition, in this embodiment, the conversion coefficient k is estimated and set based on a large number of values such as the cross-range direction coordinate values X1-Xn corresponding to each Doppler frequency component subjected to the Doppler frequency decomposition, so that the conversion coefficient k can be estimated and set fairly accurately. Basically, as long as at least two of these coordinate values X1 to XQ are known, it is possible to estimate the same coefficient. The configuration can also be simplified.

また、これまでの説明では便宜上、目標は回転運動をし
ていると仮定したが、同目標が必ずしもこのような純粋
な回転運動をしている必要はなく、少なくとも回転運動
を含む運動をしてさえいればこの発明を適用することが
できる。すなわちこの場合、目標の直線運動に関する運
動部分については割愛して、回転運動に関する運動部分
のみに着目するようにすればよい。
In addition, in the explanation so far, for convenience, it has been assumed that the target is in rotational motion, but the target does not necessarily have to be in pure rotational motion, and may be at least in motion that includes rotational motion. This invention can be applied as long as there is. That is, in this case, it is sufficient to omit the motion part related to the linear motion of the target and focus only on the motion part related to the rotational motion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明にかかるレーダ装置の一実施例を示す
ブロック図、第2図は第1図1こ示した実施例装置の機
能を示す線図、第3図は従来のレーダ装置の一般的構成
を示すブロック図、第4図は回転運動している目標を固
定レーダによって高分解能観測する方法を説明するため
の模式図である。
FIG. 1 is a block diagram showing an embodiment of the radar device according to the present invention, FIG. 2 is a diagram showing the functions of the embodiment device shown in FIG. 1, and FIG. 3 is a general diagram of a conventional radar device. FIG. 4 is a schematic diagram illustrating a method for high-resolution observation of a rotating target using a fixed radar.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも回転運動を含む運動を行う目標に対してモノ
パルスアンテナからパルス信号を放射し、この反射波に
基づいて同目標の空間的性質を測定するレーダ装置であ
って、前記モノパルスアンテナから得られる和チャンネ
ル信号および差チャンネル信号の随時の復調信号をそれ
ぞれドップラー周波数分解する第1の演算手段と、これ
ら分解された和チャンネル復調信号および差チャンネル
復調信号のうちのそれぞれ同一ドップラー周波数成分を
有する2種の信号に基づいて各同一ドップラー周波数成
分毎の反射波到来方位を求める第2の演算手段と、前記
反射波の到来時刻によって定まるモノパルスアンテナか
ら目標までの距離およびこれら求められた各反射波到来
方位に基づいて同目標のモノパルスアンテナ正面方位か
らのずれの距離を求める第3の演算手段と、これら求め
られたずれの距離のうち任意のドップラー周波数成分に
対応する少なくとも2つを用いて各ドップラー周波数を
それぞれ対応する前記ずれの距離に変換する係数を求め
る第4の演算手段とを具え、該求められた係数に基づい
て前記ドップラー周波数分解された目標の空間的な大き
さを測定するレーダ装置。
A radar device that radiates a pulse signal from a monopulse antenna to a target that makes a motion that includes at least rotational motion, and measures the spatial properties of the target based on the reflected waves, the sum channel obtained from the monopulse antenna. a first calculation means for decomposing the demodulated signal at any time of the signal and the difference channel signal into Doppler frequency, and two types of signals each having the same Doppler frequency component of the decomposed sum channel demodulated signal and the difference channel demodulated signal; a second calculating means for determining the direction of arrival of the reflected waves for each same Doppler frequency component based on the distance from the monopulse antenna to the target determined by the arrival time of the reflected waves and the direction of arrival of each of the reflected waves determined by the second calculation means; A third calculating means calculates the deviation distance from the monopulse antenna front direction of the target, and at least two of these calculated deviation distances corresponding to arbitrary Doppler frequency components are used to calculate each Doppler frequency. a fourth calculating means for determining a coefficient to be converted into a distance of the corresponding deviation, and measuring the spatial size of the target subjected to Doppler frequency resolution based on the determined coefficient.
JP59261515A 1984-12-10 1984-12-10 Radar equipment Pending JPS61138188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261515A JPS61138188A (en) 1984-12-10 1984-12-10 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261515A JPS61138188A (en) 1984-12-10 1984-12-10 Radar equipment

Publications (1)

Publication Number Publication Date
JPS61138188A true JPS61138188A (en) 1986-06-25

Family

ID=17362974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261515A Pending JPS61138188A (en) 1984-12-10 1984-12-10 Radar equipment

Country Status (1)

Country Link
JP (1) JPS61138188A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9401440A (en) * 1993-09-03 1995-04-03 Mitsubishi Electric Corp Radar type object shape detector.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927281A (en) * 1982-06-17 1984-02-13 グラマン・エアロスペ−ス・コ−ポレイシヨン Method and device for forming ship image containing distance/azimuth/inclination in order to control weapon
JPS5927279A (en) * 1982-06-17 1984-02-13 グラマン・エアロスペ−ス・コ−ポレイシヨン Method and device for displaying distance/azimuth ship image in order to control weapon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927281A (en) * 1982-06-17 1984-02-13 グラマン・エアロスペ−ス・コ−ポレイシヨン Method and device for forming ship image containing distance/azimuth/inclination in order to control weapon
JPS5927279A (en) * 1982-06-17 1984-02-13 グラマン・エアロスペ−ス・コ−ポレイシヨン Method and device for displaying distance/azimuth ship image in order to control weapon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9401440A (en) * 1993-09-03 1995-04-03 Mitsubishi Electric Corp Radar type object shape detector.
US5485160A (en) * 1993-09-03 1996-01-16 Mitsubishi Denki Kabushiki Kaisha Radar-type object shape detector

Similar Documents

Publication Publication Date Title
CN109581352B (en) Super-resolution angle measurement system based on millimeter wave radar
JP4293194B2 (en) Distance measuring device and distance measuring method
Vinci et al. Promise of a better position
JP5811931B2 (en) Phase monopulse radar device
JP3821688B2 (en) Radar equipment
JP2014044109A (en) Synthetic aperture radar apparatus
Reshma et al. Improved frequency estimation technique for fmcw radar altimeters
JP2010175457A (en) Radar apparatus
CN112578353A (en) Device and method for measuring target angle, sensor and equipment
RU2696274C1 (en) Small-size multi-mode on-board radar system for equipping promising unmanned and helicopter systems
JP4266810B2 (en) Wind speed vector calculation device
JPS61138188A (en) Radar equipment
JP6573748B2 (en) Radar equipment
JP2007192573A (en) Target positioning apparatus
JP3484995B2 (en) Instantaneous passive distance measuring device
JP3213143B2 (en) Radar equipment
US20220381926A1 (en) System and method for positioning and navigation of an object
Shcherbyna et al. Accuracy characteristics of radio monitoring antennas
JP2708550B2 (en) Direction measuring method, direction measuring system, transmitting device and receiving device
JPH1031065A (en) Fm-cw radar
Belyaev et al. The range of pedestrian detection with automotive radar
JPS623675A (en) Radar indicator
Zhang et al. Research on wingtip distance measurement of high-speed coaxial helicopter based on 77 GHz FMCW millimeter-wave radar
JP7413850B2 (en) Angle estimation device and method for object position, and radar device
JPH0449915B2 (en)