JPS61134812A - Running controlling method of self-running car - Google Patents

Running controlling method of self-running car

Info

Publication number
JPS61134812A
JPS61134812A JP59258375A JP25837584A JPS61134812A JP S61134812 A JPS61134812 A JP S61134812A JP 59258375 A JP59258375 A JP 59258375A JP 25837584 A JP25837584 A JP 25837584A JP S61134812 A JPS61134812 A JP S61134812A
Authority
JP
Japan
Prior art keywords
self
running
distance
measured
propelled vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59258375A
Other languages
Japanese (ja)
Other versions
JPH0444961B2 (en
Inventor
Takenori Nakanishi
中西 武徳
Takuo Mizutani
水谷 拓夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWAJIMA KENSA KEISOKU KK
Original Assignee
ISHIKAWAJIMA KENSA KEISOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWAJIMA KENSA KEISOKU KK filed Critical ISHIKAWAJIMA KENSA KEISOKU KK
Priority to JP59258375A priority Critical patent/JPS61134812A/en
Publication of JPS61134812A publication Critical patent/JPS61134812A/en
Publication of JPH0444961B2 publication Critical patent/JPH0444961B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons

Abstract

PURPOSE:To detect exactly the position of a self-running car by measuring a distance between two point positions of a reflecting plate by oscillating one of lights projected to a 90 deg. direction, to the right and left at the same necessary angle, and turning the upper turning body so that it coincides. CONSTITUTION:Reflecting plates 2, 3 of an X axis and a Y axis are installed to two sides of a right angle of a rectangular steel plate 1 which has been placed horizontally. Also, a self-running car 8 provided with light wave range finders 6, 7 for projecting and photodetecting a light in two directions of a right angle of both exes and measuring a distance between them, on the upper turning body 11 is provided on the steel plate 1. In such a case, one light wave range finder 7 is ocillated to the right and left at the same necessary angle theta, and distances Y1, Y2 between two points are measured. In this way, when detecting a flaw of the steel plate 1, said oscillating angle thetaand the period, a running speed of the self-running car 8, and inspecting lines L, M, etc. are given in advance to an instructing device, and the self-running car 8 is run. the upper turning body 11 is turned so that the distances Y1, Y2 between two points which have been measured by said range finder 7 coincide with each other, and a running driving motor is controlled through a control device so that the measured distance becomes a set value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自走車の走行制御方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for controlling the running of a self-propelled vehicle.

〔従来の技術〕[Conventional technology]

従来、自走車を設定された経路に沿って走行させること
により、探傷、溶接等といった作業を自動的に行わせる
ような場合、予め走行ラインに沿ってレールを敷設し、
該レールに沿って自走車を走行させるようにしているの
が一般的である。
Conventionally, when a self-propelled vehicle is run along a set route to automatically perform tasks such as flaw detection and welding, rails are laid along the running line in advance.
It is common for self-propelled vehicles to run along the rails.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来方式においては、レールの設置が大変
であり、特に走行ラインが複雑な曲線形状を有している
場合にはレールの製作、設置に多大の時間と費用を要す
る等の問題を有していた。
However, in the conventional method described above, it is difficult to install the rails, and especially when the running line has a complicated curved shape, there are problems such as the production and installation of the rails requires a large amount of time and cost. Was.

本発明は、レール等の軌条を要することなしに自走車を
任意の設定された走行ラインに沿って走行させることの
できる自走車の走行制御方法を提供することを目的とし
ている。
An object of the present invention is to provide a travel control method for a self-propelled vehicle that allows the self-propelled vehicle to travel along an arbitrary set travel line without requiring a track such as a rail.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記技術的課題を解決するためになしたもの
で、互に直角を成す如くX方向とY方向に反射板を配設
し、且つ90°方向に光を投射して前記各反射板との間
の距離を計測できるようにした光波距離計を上部旋回体
上に設けた自走車を配置し、前記90°方向に光を投射
して各反射板との間の距離を計測する投射光の一方を前
記90°の位置から所要の同一角度だけ左右に首振りを
行わせて反射板における2点との間の距離を計測し、該
2点との間の距離が一致するように前記上部旋回体の旋
回位置を調整しながら、X、Y方向の計測距離に基づい
て自走車の走行方向を制御することを特徴とする自走車
の走行制御方法1、に係るものである。
The present invention has been made to solve the above technical problem, and includes reflective plates disposed in the X direction and Y direction so as to be perpendicular to each other, and by projecting light in a 90° direction. A self-propelled vehicle equipped with a light wave distance meter that can measure the distance between the plates is installed on the upper revolving body, and the distance between each reflecting plate is measured by projecting light in the 90° direction. One of the projected lights is swung from the 90° position to the left and right by the same required angle, and the distance between the two points on the reflector is measured, and the distances between the two points match. According to a traveling control method for a self-propelled vehicle, the traveling direction of the self-propelled vehicle is controlled based on measured distances in the X and Y directions while adjusting the turning position of the upper revolving structure. It is.

〔作  用〕[For production]

従って゛、本発明によれば、90°方向に投射する光の
一方を、90°の位置から左右に所要の同一角度で首を
振らせて反射板の2点の位置との間の距離を計測し、そ
の点の計測距離が一致するように上部旋回体を旋回させ
るようにしているので、前記光波距離計からの光を常に
反射板に対して直角に投射して距離を計測することがで
き、よって自走車の位置を正確に知って任意の設定され
た方向に自走車を正確に走行させることができる。
Therefore, according to the present invention, one of the lights projected in the 90° direction is swung left and right at the same required angle from the 90° position, and the distance between the two points on the reflector is determined. Since the upper rotating body is rotated so that the measured distance at that point matches, the distance can be measured by always projecting the light from the light wave rangefinder at right angles to the reflector. Therefore, the location of the self-propelled vehicle can be accurately known and the self-propelled vehicle can be accurately driven in any set direction.

〔実 施 例〕〔Example〕

以下本発明の一実施例を図面を参照しつつ説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は鋼板(1)の探傷等に適用した本発明の概略を
示すもので、水平に置かれた矩形鋼板(1)の直角な2
辺に沿って垂直なX軸反射板(2)とY軸反射板(3)
を設置する。反射板(21(3)は、例えば板(4)に
、その表面に微細な球状レンズを接着してなる反射’y
−)(5)等を貼り付けた構成を有し・   1投射さ
れた光を再帰性良く反射させることかできるようになっ
ている。
Figure 1 shows the outline of the present invention applied to flaw detection etc. of steel plate (1).
Vertical X-axis reflector (2) and Y-axis reflector (3) along the sides
Set up. The reflective plate (21(3)) is made by bonding a fine spherical lens to the surface of the plate (4), for example.
-) (5), etc. 1) It is possible to reflect the projected light with good retroactivity.

又鋼板(1)上には、X軸、Y軸の直角2方向に光を投
射して前記X軸反射板(2)及びY軸反射板(3)から
反射して戻って来る光の位相差を計ることによりその間
の距離を計測するようにした光波距離計(61(7)を
上部に備えてなる自走車(8)が設けられている。
Furthermore, light is projected onto the steel plate (1) in two directions perpendicular to the X-axis and Y-axis, and the position of the light reflected from the X-axis reflector (2) and Y-axis reflector (3) is determined. A self-propelled vehicle (8) is provided with a light wave distance meter (61 (7)) on its upper part that measures the distance between them by measuring the phase difference.

第2.3図は、上記自走車(8)の詳細例を示すもので
、自走車(8)は下部車体(9)とその上部に支持軸α
Oを介して旋回自在に支持された上部旋回体0のとによ
り構成されており、下部車体(9)の前後、左右に設け
られた走行輪(12α)(12;)(12A )(12
N)によって鋼板(1)上に走行可能に支持されている
。又、前後−側における左右の走行輪(12α)(12
h)の夫々が走行駆動モータ(13α)(13りと直結
するか、又は図示するようにギヤ(14α)(14h)
を介して同時に又は別個に回転駆動することができるよ
うになっている。
Figure 2.3 shows a detailed example of the above-mentioned self-propelled vehicle (8). The self-propelled vehicle (8) has a lower body (9) and a support shaft α
The upper rotating body 0 is rotatably supported via the lower vehicle body (9), and running wheels (12α) (12;) (12A) (12
N) is movably supported on the steel plate (1). In addition, left and right running wheels (12α) (12
h) are directly connected to the travel drive motor (13α) (13), or are connected to a gear (14α) (14h) as shown in the figure.
They can be rotated simultaneously or separately.

又、前記上部旋回体αυ上には、前記光波距離計(6)
 (7)の一方(6)が固定され、又他方(7)は支点
aOを中心に水平方向に回動可能に設けられている。
Further, on the upper revolving body αυ, the optical distance meter (6) is installed.
One (6) of (7) is fixed, and the other (7) is provided so as to be rotatable in the horizontal direction about a fulcrum aO.

更に、前記光波距離計(7)には円弧ギヤ(イ)が固定
され、且つ上部旋回体αυ上に設けた首振り駆動モータ
αηの駆動ギヤ(至)が前記円弧ギヤ(ト)に噛合して
いることにより、前記モータα力を正逆転させて前記光
波距離計(7)を固定側の光波距離計(6)に対して9
0°の位置から左右に所要の同一角度θで首振りを行わ
せることができるようになっている。
Further, an arc gear (A) is fixed to the light wave distance meter (7), and a drive gear (To) of a swing drive motor αη provided on the upper rotating body αυ meshes with the arc gear (G). By rotating the motor α force in the forward and reverse directions, the light wave distance meter (7) is moved 9 degrees with respect to the light wave distance meter (6) on the fixed side.
The head can be swung left and right at the same required angle θ from the 0° position.

更に、前記支持軸αOに旋回用の固定ギヤα9を設け、
且つ該固定ギヤαりに噛合する駆動ギヤ翰を有した旋自
駆動モータQのを上部旋回体ση上に設け、前記旋回駆
動モ〒り(ハ)の作動により上部旋回体(11)の位置
を下部車体(9)に対して支持軸σOを中心に旋回させ
ることができるようになっている。
Furthermore, a fixed gear α9 for rotation is provided on the support shaft αO,
In addition, a rotating self-driving motor Q having a drive gear frame that meshes with the fixed gear α is provided on the upper rotating body ση, and the position of the upper rotating body (11) is controlled by the operation of the rotating driving motor (c). can be rotated about the support axis σO with respect to the lower vehicle body (9).

又、自走車から離れた位置には、第4図に示すように、
コンピュータ(イ)及び指示装置(ホ)に接続され、前
記光波距離計(61(7)からの検出信号を入力して前
記コンピュータ(イ)との間で信号の授受を行い、前記
走行駆動モータ(131Z)(13b)及び首振り駆動
モータa71の駆動制御を行うための制御装置(ハ)が
別置に設けられ、該制御装置(ハ)が信号ケーブル(ハ
)及び端子箱■を介して自走車の各駆動源に接続されて
いる。上記した自走車(8)の所要位置に、所要数の探
傷装置(ホ)(第2図参照)を設置して鋼板(1)の探
傷を行うようにする。
In addition, as shown in Figure 4, at a location away from the self-propelled vehicle,
It is connected to a computer (a) and an indicating device (e), inputs a detection signal from the light wave distance meter (61(7)), sends and receives signals to and from the computer (a), and controls the travel drive motor. (131Z) (13b) and a control device (c) for controlling the drive of the swing drive motor a71 is provided separately, and the control device (c) is connected to the signal cable (c) and the terminal box (iii). It is connected to each drive source of the self-propelled vehicle.The required number of flaw detection devices (E) (see Figure 2) are installed at the required positions of the above-mentioned self-propelled vehicle (8) to detect flaws in the steel plate (1). Make sure to do the following.

尚、第1図に示すような鋼板(1)は、その端縁から所
要の寸法だけ内側の位置、及び更にそこから内側に所要
の間隔を有した位置において探傷検査を行うことが義務
づけられるような場合が多々有り、図中(Ll)(L2
)・・・はX軸反射板(2)に平行な検査ライン、(M
l ) (M2 )・・・はY軸反射板(3)に平行な
検査ラインを示している。
It should be noted that flaw detection must be performed on a steel plate (1) as shown in Figure 1 at a position a required distance inside from its edge, and at a position further inward from there at a required distance. There are many cases where (Ll) (L2
)... is the inspection line parallel to the X-axis reflector (2), (M
1) (M2)... indicates an inspection line parallel to the Y-axis reflector (3).

第1図に示すような矩形の鋼板(1)の探傷を行うに際
しては、まず鋼板(1)の寸法、検査ライン(Ll ”
) (L2 )・・・及び(■ムXM2)・・・と各反
射板(21(3,1との間の距離からなる自走車の進路
図形を前記指示装置翰に与えると共に、光波距離計(7
)の首振り角度(θ)及び周期、並びに自走車(8)の
走行速度等も与えておく。
When performing flaw detection on a rectangular steel plate (1) as shown in Fig. 1, first the dimensions of the steel plate (1) and the inspection line (Ll ”
) (L2) ... and (■muXM2) ... and each reflecting plate (21 (3, 1)). Total (7
), the swing angle (θ) and period of the vehicle (8), and the traveling speed of the self-propelled vehicle (8).

上記状態において、自走車(8〕をスタート点(81に
載置し、装置をONに操作すると、制御装置に)により
走行駆動モータ(13α)(13A)が駆動され、自走
車(8〕は設定された速度で走行を開始する。
In the above state, when the self-propelled vehicle (8) is placed at the starting point (81 and the device is turned on, the control device) drives the traveling drive motor (13α) (13A), and the self-propelled vehicle (8) is driven by the control device. ] starts running at the set speed.

このとき、光波距離計(7)が所要の角度(θ)で左右
に首を振り、その際の距離Y、とY2を検出しており、
その検出信号がコンピュータ(イ)に導かれている。上
記Y1とY2が異なっていると、光波距離計(7〕が反
射板(2)に対して直角を有していない(正面を向いて
いない)ことになるので、この傾斜方向と傾斜の程度を
演算し、その演算結果に基づき、制御装置(ハ)を介し
て旋回駆動モータQυを駆動し、前記Y1とY2とが一
致するように上部旋回体Oυを旋回させる。これにより
1.X、 Yの正確な(真の)距離が計測されることに
なる。
At this time, the light wave distance meter (7) swings its head left and right at the required angle (θ) and detects the distances Y and Y2 at that time.
The detection signal is guided to the computer (a). If the above Y1 and Y2 are different, the optical distance meter (7) will not be at a right angle to the reflector (2) (not facing the front), so the direction and degree of inclination will be is calculated, and based on the calculation result, the swing drive motor Qυ is driven via the control device (c), and the upper rotating body Oυ is turned so that the above-mentioned Y1 and Y2 match.As a result, 1. The exact (true) distance of Y will be measured.

更に光波距離計〔7〕による計測距離が予め指示装置翰
によって設定された一定の値になるように制御装置(ハ
)を介して走行駆動モータ(13αX131!l)硼 の駆動を制御することにより、自走車(8)を設定され
た検査ライン(L、)に沿って自走させることができる
。従って、この走行と同時に、探傷装置(イ)を作動さ
せて検査ライン(Ll)?こ沿った探傷検査を行うこと
ができる。
Furthermore, by controlling the drive of the traveling drive motor (13αX131!l) via the control device (c) so that the distance measured by the light wave distance meter [7] becomes a constant value set in advance by the indicating device (c). , the self-propelled vehicle (8) can be self-propelled along the set inspection line (L,). Therefore, at the same time as this traveling, the flaw detection device (A) is activated to check the inspection line (Ll). Flaw detection inspections can be performed along these lines.

自走車(8)が検査ライン(L、)の右方向端部まで移
動して来ると、次の検査ライン(L2)に移動するため
tこ90’ずつ2回の方向変換を゛行ってターンする。
When the self-propelled vehicle (8) moves to the right end of the inspection line (L,), it changes direction twice by 90' in order to move to the next inspection line (L2). Turn.

即ち、検査ライン(L、)の端部位置に来ると光波距離
計(6)によってそれが検出されて自走車(8)の走行
が停止され、続いて自走車(8)が検査ライン(L2)
の方向を向くように90゜方向転換され、続いて更に検
査ライン(L2)位置まで走行された後、更に90°方
向転換される。
That is, when it comes to the end position of the inspection line (L,), it is detected by the light wave distance meter (6) and the traveling of the self-propelled vehicle (8) is stopped, and then the self-propelled vehicle (8) returns to the inspection line. (L2)
The vehicle is then turned 90 degrees so as to face in the direction of , and then further traveled to the inspection line (L2) position, and then turned another 90 degrees.

このとき、自走車(8〕の方向転換は一方の走行駆動モ
ータを停止させた状態で他方を駆動するか、又は互に逆
方向に回転させることによって行われる。父上記自走車
の方向転換と一緒に光波距離計(61(7)が向きを変
えてしまったのでは、投射する光が反射板から外れて計
測が不能になってしまう。このため、前記自走車(8)
の方向変換と同時にそめ方向変換の方向と反対の方向に
90゜ずつ2回上部旋回体0〃を旋回させる。これによ
り、光波距離計(61(7)は常に反射板(21(31
の正面を向いていることになる。
At this time, the direction of the self-propelled vehicle (8) is changed by stopping one travel drive motor and driving the other, or by rotating them in opposite directions. If the light wave distance meter (61 (7)) changes direction at the same time as the vehicle is turned, the projected light will come off the reflector and measurement will become impossible.
Simultaneously with the direction change, the superstructure 0 is turned twice by 90 degrees in the opposite direction to the direction of the diversion. As a result, the light wave distance meter (61 (7)) always uses the reflector (21 (31)
It will be facing the front.

上記により、検査ライン(Ll ) (L2 )・・・
の探傷検査を能率的に行うことができ、また検査ライン
(Ml)(M2)・・・についても同様に実施すること
ができる。
Due to the above, inspection line (Ll) (L2)...
flaw detection can be carried out efficiently, and inspection lines (Ml) (M2), etc. can be carried out in the same way.

第5図は、扇形の鋼板(1)の探傷に適用した場合の一
例を示すもので、曲線の検査ラインへか進路図形として
前記指示装置(ホ)に与えられていることにより、光波
距離計(6) (7)が常に反射板(2)(3)の正面
を向くように上部旋回体αυの位置が調整された状態に
おいて、光波距離計(6)(7)のX、Yの計測値が設
定された値になるように自走車(8)の走行方向が制御
される。これにより自走車(8)を曲線の検査ラインN
に沿って走行させなから探傷検査を行うことができる。
Fig. 5 shows an example of the case where it is applied to the flaw detection of a fan-shaped steel plate (1). (6) Measurement of X and Y of the optical distance meter (6) and (7) while the position of the upper revolving body αυ is adjusted so that (7) always faces the front of the reflector plates (2) and (3). The traveling direction of the self-propelled vehicle (8) is controlled so that the value becomes the set value. This allows the self-propelled vehicle (8) to move along the curved inspection line N.
Flaw detection can be performed without running the vehicle along the road.

尚、上記実施例においては90°方向に2台の光波距離
計(61(7)を備えた場合について例示したが、1台
の光波距離計を備えたものにおいても本発明を実施する
ととができる。即ち、第6図に示す如く、1台の光波距
離計(6)を90°方向に旋回させて各反射板(21(
3)との間の距離を計測すると共に、上記旋回端におい
て、左右に所要の角度(のの首振りを行って、その2点
との距離Y1゜Y2を計測することによりその検出距離
Y、 、 Y2が同一になるように上部旋回体σルの位
置を調整する。従って、この場合には、円弧ギヤ(4)
の角度を大きくしたり、或いは円形ギヤを用いる等によ
って光波距離計(6)の投射方向を変えられるようにす
る必要がある。
In the above embodiment, the case is illustrated in which two light wave distance meters (61(7)) are provided in the 90° direction, but the present invention can also be practiced in a case in which one light wave distance meter is provided. That is, as shown in FIG.
3), and at the end of the turn, swing the head to the left and right at the required angle, and measure the distance Y1°Y2 between the two points to determine the detected distance Y, , adjust the position of the upper revolving body σ so that Y2 is the same.Therefore, in this case, the arc gear (4)
It is necessary to be able to change the projection direction of the optical distance meter (6) by increasing the angle or by using a circular gear.

更に、本発明は上記実施例にのみ限定されるものではな
く、探傷検査以外の検査、溶接、運搬等を行う種々の自
走車の走行制御に適用し得ること、反射板は種々の構造
のものを適用できること、反射板を四周に配置するよう
にしても良いこと、自走車の走行方式、方向変換方式、
上部旋回体の旋回方式、光波距離計の首振り方式等は種
々の方式を採用し得ること、その他本発明の要旨、を逸
脱しない範囲内において種々変更を加え得ること、等は
勿論である。
Furthermore, the present invention is not limited to the above-mentioned embodiments, but can be applied to the travel control of various self-propelled vehicles that perform inspections other than flaw detection, welding, transportation, etc., and the reflector may have various structures. It is possible to apply reflective plates on all four sides, the driving method of self-propelled vehicles, the direction change method,
It goes without saying that various methods can be adopted for the rotating system of the upper revolving body, the oscillating method of the optical distance meter, etc., and that various other changes can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

上記したように、本発明の自走車の走行制御方法によれ
ば、光波距離計を首振りさせて2点α℃ との間の距離が常に一致しよって光波距離計が常に正確
に反射板の方向を向くように旋回調整しながら、X、Y
方向に設けられた反射板との間の距離を計測して設定さ
れた方向に走行させるようにしたので、任意の直線、曲
線に沿って自走車を自由且つ正確に走行させることがで
きる優れた効果を奏し得る。
As described above, according to the traveling control method for a self-propelled vehicle of the present invention, the distance between the two points α℃ is always the same by swinging the optical distance meter, so that the optical distance meter always accurately detects the reflector. While adjusting the rotation so that it faces the direction of
The distance between the vehicle and the reflective plate installed in the direction is measured and the vehicle travels in the set direction, allowing the self-propelled vehicle to travel freely and accurately along any straight line or curve. It can have a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す平面図、第2図は自走
車の詳細例を示す平面図、第3図は第2図の■−■矢視
図、第4図は制御系統を示すブロック図、第5図は本発
明の他の実施例を示す平面図、第6図は光波距離計を1
台とした場合0実施例を示す平面図である・     
    1(1)は鋼板、(2)はX軸反射板、覧3)
はY軸反射板、(61(7)は光波距離計、(8)は自
走車、Qflは支持軸、αηは上部旋回体、(12α)
(12j)(12b)(12J) 、、、は走行輪、(
13α)(13h)は走行駆動モータ、(ト)は円弧ギ
ヤ、αηは首振り駆動モータ、萌ζま固定ギヤ、Ql)
は旋回駆動モータ、翰はコンピュータ、脅は指示装置、
(7)ば制g41表直をボ■。
Fig. 1 is a plan view showing an embodiment of the present invention, Fig. 2 is a plan view showing a detailed example of a self-propelled vehicle, Fig. 3 is a view taken along the ■-■ arrow in Fig. 2, and Fig. 4 is a control A block diagram showing the system, FIG. 5 is a plan view showing another embodiment of the present invention, and FIG.
It is a plan view showing the zero embodiment when used as a stand.
1 (1) is a steel plate, (2) is an X-axis reflector, see 3)
is the Y-axis reflector, (61 (7) is the optical distance meter, (8) is the self-propelled vehicle, Qfl is the support shaft, αη is the upper rotating body, (12α)
(12j) (12b) (12J) , , is the running wheel, (
13α) (13h) is the travel drive motor, (G) is the circular arc gear, αη is the oscillation drive motor, Moeζma fixed gear, Ql)
is the swing drive motor, the handle is the computer, the threat is the instruction device,
(7) Control g41 face straight.

Claims (1)

【特許請求の範囲】[Claims] 1)互に直角を成す如くX方向とY方向に反射板装置を
配設し、且つ90°方向に光を投射して前記各反射板装
置との間の距離を計測できるようにした光波距離計を上
部旋回体上に設けた自走車を配置し、前記90°方向に
光を投射して各反射板装置との間の距離を計測する投射
光の一方を前記90°の位置から所要の同一角度だけ左
右に首振りを行わせて反射板装置における2点との間の
距離を計測し、該2点との間の距離が一致するように前
記上部旋回体の旋回位置を調整しながら、X、Y方向の
計測距離に基づいて自走車の走行方向を制御することを
特徴とする自走車の走行制御方法。
1) Optical wave distance in which reflector devices are arranged in the X direction and Y direction so as to form a right angle to each other, and the distance between each of the reflector devices can be measured by projecting light in a 90° direction. A self-propelled vehicle with a meter mounted on an upper revolving body is placed, and one of the projected lights is measured from the 90° position by projecting light in the 90° direction to measure the distance between it and each reflector device. Measure the distance between two points on the reflector device by swinging left and right by the same angle, and adjust the rotating position of the upper rotating structure so that the distance between the two points matches. A method for controlling the running of a self-propelled vehicle, characterized in that the traveling direction of the self-propelled vehicle is controlled based on measured distances in the X and Y directions.
JP59258375A 1984-12-05 1984-12-05 Running controlling method of self-running car Granted JPS61134812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59258375A JPS61134812A (en) 1984-12-05 1984-12-05 Running controlling method of self-running car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59258375A JPS61134812A (en) 1984-12-05 1984-12-05 Running controlling method of self-running car

Publications (2)

Publication Number Publication Date
JPS61134812A true JPS61134812A (en) 1986-06-21
JPH0444961B2 JPH0444961B2 (en) 1992-07-23

Family

ID=17319369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59258375A Granted JPS61134812A (en) 1984-12-05 1984-12-05 Running controlling method of self-running car

Country Status (1)

Country Link
JP (1) JPS61134812A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4809178A (en) * 1986-05-22 1989-02-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Obstacle data processing system for unmanned vehicle
US4834591A (en) * 1987-03-04 1989-05-30 Mitsubishi Kinzoku Kabushiki Kaisha Indexable cutter insert
US4898499A (en) * 1987-03-04 1990-02-06 Mitsubishi Kinzoku Kabushiki Kaisha Ball end mill
US4927303A (en) * 1988-09-27 1990-05-22 Mitsubishi Metal Corporation Ball end mill
US4940925A (en) * 1985-08-30 1990-07-10 Texas Instruments Incorporated Closed-loop navigation system for mobile robots
JPH0336760U (en) * 1989-08-18 1991-04-10
US5017055A (en) * 1987-03-04 1991-05-21 Mitsubishi Kinzoku Kabushiki Kaisha Indexable cutter insert

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940925A (en) * 1985-08-30 1990-07-10 Texas Instruments Incorporated Closed-loop navigation system for mobile robots
US4809178A (en) * 1986-05-22 1989-02-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Obstacle data processing system for unmanned vehicle
US4834591A (en) * 1987-03-04 1989-05-30 Mitsubishi Kinzoku Kabushiki Kaisha Indexable cutter insert
US4898499A (en) * 1987-03-04 1990-02-06 Mitsubishi Kinzoku Kabushiki Kaisha Ball end mill
US5017055A (en) * 1987-03-04 1991-05-21 Mitsubishi Kinzoku Kabushiki Kaisha Indexable cutter insert
US4927303A (en) * 1988-09-27 1990-05-22 Mitsubishi Metal Corporation Ball end mill
JPH0336760U (en) * 1989-08-18 1991-04-10
JP2515577Y2 (en) * 1989-08-18 1996-10-30 有限会社近本エンジニアリング Table feeding device for grinding machine

Also Published As

Publication number Publication date
JPH0444961B2 (en) 1992-07-23

Similar Documents

Publication Publication Date Title
JP4676980B2 (en) Measuring method of road
JPS61134812A (en) Running controlling method of self-running car
JP2011069699A (en) Rail detection method and rail displacement measurement apparatus in rail displacement measurement
JPH0949827A (en) Self-traveling inspection device for metallic plate and method for running the device
JP2000227333A (en) Shape measuring instrument for bridge
JP3219204B2 (en) Road surface unevenness measurement vehicle
JPH01153253A (en) Non-contact copy system
JPS6227406B2 (en)
JPH06138107A (en) Self-propelling flaw detector
JP2004287571A (en) Yard crane, and traveling control method therefor
JP2006123787A (en) Height/deflection measuring device for trolley cable
JPH04102104A (en) Traveling control system for unmanned traveling vehicle
JPH0573841B2 (en)
JPH0476634B2 (en)
JPH09170923A (en) Sleeper surveying apparatus
JPH01239608A (en) Method for controlling travel of self-traveling working vehicle
JPH04161814A (en) Two-dimensional position and direction measuring apparatus for moving object
JP3090371B2 (en) Position measuring device and position measuring method using the same
JPH09178479A (en) Inclination angle measuring device
JPS59214731A (en) Device for checking looked-down head lamp beams
JP2871842B2 (en) Furnace size measurement device
SU370459A1 (en) SECURITY mmm- ^ ij ^^ icm
JPH02120406A (en) Road division line positioning device
JPH10254542A (en) Guiding equipment for moving body
JPH08258987A (en) Hatch edge detecting method