JPS61133105A - Process for improving permeability of porous membrane - Google Patents

Process for improving permeability of porous membrane

Info

Publication number
JPS61133105A
JPS61133105A JP59254126A JP25412684A JPS61133105A JP S61133105 A JPS61133105 A JP S61133105A JP 59254126 A JP59254126 A JP 59254126A JP 25412684 A JP25412684 A JP 25412684A JP S61133105 A JPS61133105 A JP S61133105A
Authority
JP
Japan
Prior art keywords
porous membrane
pores
water
surfactant
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59254126A
Other languages
Japanese (ja)
Other versions
JPH0451208B2 (en
Inventor
Yoshiaki Nitori
似鳥 嘉昭
Toru Nakano
徹 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP59254126A priority Critical patent/JPS61133105A/en
Publication of JPS61133105A publication Critical patent/JPS61133105A/en
Publication of JPH0451208B2 publication Critical patent/JPH0451208B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a porous membrane having improved permeation velocity for water and permeability for solute together with hydrophilized surface by filling pores of a crystalline high molecular porous membrane which have been opened after drawing with aq. soln. of a surface active agent and then drying the membrane. CONSTITUTION:Fine through holes are formed by drawing a high molecular formed body having >=20% crystallinity. The mean pore size of the formed body is 0.05-3mu. This porous membrane is immersed in an aq. soln. or aq. suspension contg. 0.001-10wt% surface active agent, and the surface active agent is filled in the pores. Necessary time for filling is several mins - several days. Then the water in the pores is removed by drying the membrane at ca.80 deg.C. The water is almost completely removed by drying for several tens mins - several days.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多孔質膜の細孔の律速孔径を拡大して物質の
透過性を改良する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for improving the permeability of substances by enlarging the rate-determining pore diameter of the pores of a porous membrane.

(従来の技術) 近年、高分子化合物を材料とした多孔質膜が、水系溶液
あるいは水系懸濁液の口過に広く利用されており、工業
分野では電子工業用純水の製造、医薬品製造用原水の除
菌等に、また医療分野では、血液成分の分離用あるいは
腹水中の悪性有形成分の除去等に用いられている。
(Prior art) In recent years, porous membranes made of polymer compounds have been widely used for filtering aqueous solutions or suspensions. It is used to sterilize raw water, and in the medical field to separate blood components and remove malignant particles from ascites.

高分子化合物からなる多孔質l漠の製造法としては、湿
式製膜法、可塑剤等の添加物を混合し溶融成形した後、
添加物を抽出除去する溶融相転法、結晶性高分子の場合
に用いることができる延伸開孔法などが知られている。
Porous materials made of polymer compounds can be produced by wet film forming, after mixing additives such as plasticizers and melt-molding.
A melt phase inversion method for extracting and removing additives, a stretching hole opening method that can be used in the case of crystalline polymers, and the like are known.

延伸開孔法は、結晶性高分子を溶融成形後、冷延伸によ
り結晶ラメラ間に開裂を生じさせ、さらにjI%延伸に
より孔拡大を行ったのち熱セットで構造を固定するもの
で、細孔は延伸方向へ細長く配向したフィブリルと該フ
ィブリルに対し、はぼ直角に連結した結節部により形成
され、その細孔の構造は短冊状構造の基本単位が積層し
、膜の一方の面から他方の面へ貫通した連続孔を形成し
ている。この方法で得られる多孔質膜は、製造過程で有
機溶剤や可塑剤のような添加物を加えないため、添加物
抽出の操作が不要であり、また使用時に残留添加物の溶
出の心配もなく、医療用途などに使用する場合も安全性
の高い多孔質膜として有用である。しかし、延伸開孔法
で得られる多孔質膜は、その開孔原理から明らかなよう
に延伸方向に配向した短冊状微小孔を有するため、延伸
方向に配列したフィブリルがスクリーンの役割を果し、
各穴の開孔面端としては比較的大きい面積を示すにもか
かわらず1代い分画分子量しか得られないという欠点を
有していた。この欠点を改良するため、多孔質膜の細孔
に有機溶剤を含む液体を満たし、しかる後に該液体を除
去し、次いで乾燥させる方法が特開昭58−81130
号に開示されている。
In the stretch pore opening method, after melt-forming a crystalline polymer, cleavage is caused between crystal lamellae by cold stretching, the pores are enlarged by further stretching by jI%, and the structure is fixed by heat setting. is formed by fibrils oriented long and thin in the stretching direction and nodules connected at right angles to the fibrils. A continuous hole is formed that penetrates the surface. The porous membrane obtained by this method does not require additive extraction such as organic solvents or plasticizers during the manufacturing process, and there is no need to worry about residual additives leaching out during use. It is also useful as a highly safe porous membrane when used for medical purposes. However, since the porous membrane obtained by the stretching pore method has strip-shaped micropores oriented in the stretching direction, as is clear from the pore opening principle, the fibrils arranged in the stretching direction play the role of a screen.
Although each hole has a relatively large area at the end of the opening, it has the disadvantage that only one molecular weight cutoff can be obtained. In order to improve this drawback, a method has been proposed in which the pores of a porous membrane are filled with a liquid containing an organic solvent, the liquid is then removed, and then dried.
Disclosed in the issue.

しかし、この方法では有機溶剤を処理剤として使用する
ため、製造過程で有機溶剤を用いないという延伸開孔法
の最大の利点を減殺してしまうという問題点を有する。
However, since this method uses an organic solvent as a treatment agent, it has the problem that the greatest advantage of the stretch hole method, which is that no organic solvent is used in the manufacturing process, is negated.

(問題を解決するための手段) 本発明者らは、延伸開孔法により製造された多孔質膜の
上記欠点を解決すべく鋭意検討の結果。
(Means for Solving the Problems) The present inventors have made extensive studies to solve the above-mentioned drawbacks of porous membranes manufactured by the stretching pore method.

本発明に到達した。即ち、本発明は多孔質膜の改良法に
関し、結晶性高分子からなり、延伸開孔法により製造さ
れた多孔質膜の細孔内に、界面活性剤を含む水溶液また
は水懸濁液を充填した後に。
We have arrived at the present invention. That is, the present invention relates to a method for improving a porous membrane, which involves filling the pores of a porous membrane made of a crystalline polymer and produced by a stretched pore method with an aqueous solution or suspension containing a surfactant. After.

該多孔質膜を乾燥させることを特徴とする多孔質膜の透
過性改良法であり1本発明により、多孔質膜の#!速細
孔径が拡大され、分画分子量の向上が計られるものであ
る。本発明に使用する界面活性剤は、水溶液あるいは水
懸濁液の状態で使用されるため、有機溶剤を必要とせず
、製造過程で有機溶剤を使用しない延伸開孔法条孔質膜
の利点を最大限に発揮できるものである。
A method for improving the permeability of a porous membrane, which is characterized by drying the porous membrane. The rapid pore diameter is expanded and the molecular weight cutoff is improved. Since the surfactant used in the present invention is used in the form of an aqueous solution or suspension, it does not require an organic solvent and has the advantage of a stretched open-pore membrane that does not use an organic solvent during the manufacturing process. It is something that can be demonstrated to the fullest.

また、多孔質膜の素材に疎水性高分子を用いる場合は、
本発明の処理により細孔表面が親水化され、乾燥後でも
新たな親水化処理をすることなく水溶液等の口過が可能
になるという利点もある。
In addition, when using hydrophobic polymers as the material for porous membranes,
The treatment of the present invention also has the advantage that the pore surfaces are made hydrophilic, making it possible to pass an aqueous solution through the mouth without additional hydrophilization treatment even after drying.

(作用及び効果) 本発明で使用される結晶性高分子とは、延伸開孔法の原
理が適用可能な程度の結晶性を有する高分子であり、具
体的にはフィルムまたは中空糸の状態で少くとも20%
以上、好ましくは50%以上の結晶性をもつことができ
る高分子である。
(Functions and Effects) The crystalline polymer used in the present invention is a polymer that has crystallinity to the extent that the principle of the stretch aperture method can be applied, and specifically, in the form of a film or hollow fiber. at least 20%
As mentioned above, it is preferably a polymer that can have crystallinity of 50% or more.

本発明の結晶性高分子の代表的な例としては、ポリエチ
レン、ポリプロピレン、ポリ−4−メチルペンテン−1
等のポリオレフィン類、ポリオキシメチレンおよびその
一部をオキシエチレンJ!1!mで置換したポリオキシ
メチレンのランダムまたはブロックコポリマー、ポリ弗
化ビニリデン、ポリテトラフルオロエチレン、ポリフェ
ニレンオキシド、ポリフェニレンスルフィドあるいはポ
リエチレンテレフタレート、ポリブチレンテレフタレー
ト等の芳香族ポリエステル、ナイロン6、ナイロン66
、ナイロン12等のポリアミド等があげられるが、特に
ポリエチレンは結晶性が高く、延伸開孔法に適しており
好ましい。
Typical examples of the crystalline polymer of the present invention include polyethylene, polypropylene, poly-4-methylpentene-1
Polyolefins such as polyoxymethylene and some of them are used as oxyethylene J! 1! Random or block copolymers of polyoxymethylene substituted with m, polyvinylidene fluoride, polytetrafluoroethylene, polyphenylene oxide, polyphenylene sulfide, or aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate, nylon 6, nylon 66
, polyamides such as nylon 12, and the like, but polyethylene is particularly preferred because it has high crystallinity and is suitable for the stretching method.

本発明で言う延伸開孔法とは、結晶性高分子からなる成
形体を延伸することにより微細な貫通孔を形成させる方
法であり、例えば特公昭55−32531号に開示され
ている。この方法は結晶性高分子を溶融押出しにより、
フィルム状、中空糸状等に成形後、必要に応じアニール
処理を施して結晶を成長させ、ついで冷延伸により結晶
ラメラ間に開裂を生じさせ、ざらに熱延伸により孔拡大
を行ったのち熱セットで構造を固定する逐次的過程より
なる方法である。本発明で使用する多孔質膜としては、
例えばフィルム状、中空糸状などがあげられるが、特に
中空糸状のものは、小型で膜面積の大きい口過器のV造
が可能であり好ましい0本発明に用いる多孔質膜の細孔
の平均孔径は特に限定されるものではないが好ましい平
均孔径の範囲は未発明の処理を施す前の状態で0.05
〜3.Ou、である。
The stretching pore opening method referred to in the present invention is a method of forming fine through holes by stretching a molded body made of a crystalline polymer, and is disclosed, for example, in Japanese Patent Publication No. 32531/1983. This method uses melt extrusion of crystalline polymers.
After forming into a film, hollow fiber, etc., annealing is performed as necessary to grow crystals, cold stretching is performed to cause cleavage between the crystal lamellae, rough hot stretching is performed to enlarge the pores, and then heat setting is performed. This method consists of a sequential process of fixing the structure. The porous membrane used in the present invention includes:
For example, film-like, hollow-fiber-like, etc. are mentioned, but hollow fiber-like ones are particularly preferable because they allow V-shaped construction of a small size and large membrane area.0 Average pore diameter of the pores of the porous membrane used in the present invention is not particularly limited, but the preferred range of average pore diameter is 0.05 in the state before applying the uninvented treatment.
~3. It is Ou.

平均孔径が0.05g以下では律速孔径を広げても意味
がなく、3.0ル以上の孔は延伸開孔法による膜では、
はとんど得られない。
If the average pore diameter is less than 0.05 g, there is no point in increasing the rate-determining pore diameter, and if the pore size is 3.0 g or more, it is difficult to
I can hardly get it.

本発明に用いる界面活性剤はアニオン性界面活性剤、カ
チオン性界面活性剤、両性界面活性剤および非イオン性
界面活性剤から選ばれる少なくとも一種である。アニオ
ン性界面活性剤の例としては脂肪酸基、高級アルコール
硫酸エステル塩、ポリオキシエチレンサルフェート塩、
アルキルベンゼンスルホン酸塩、アルキルホスフェート
墳等が挙げられ、カチオン性界面活性剤の例としては、
アルキルアミン塩、第4級アンモニウム塩、ポリオキシ
エチレンアルキルアミン等が挙げられ、両性界面活性剤
の例としてはアルキルアミノ酸塩、アルキルベタイン等
が挙げられる。また非イオン界面活性剤の例としては、
ポリオキシエチレンアルキルエーテル、ポリオキシエチ
レンアルキルフェニルエーテル、ポリオキシエチレン脂
肪酸エステル、多価アルコール脂肪酸エステルエチレン
オキサイド付加物、ポリオ午ジエチレン脂肪酸アミド、
脂肪酸アルカノールアミド、油脂のエチレンオキサイド
付加物、オキシエチレンオキシプロピレンブロックポリ
マー、脂肪酸モノグリセリド、ソルビタン脂肪酸エステ
ル、ポリオ牛ジエチレンソルビタン脂肪酸エステル、シ
ヨ糖脂肪sエステル等が挙げられる。
The surfactant used in the present invention is at least one selected from anionic surfactants, cationic surfactants, amphoteric surfactants, and nonionic surfactants. Examples of anionic surfactants include fatty acid groups, higher alcohol sulfate salts, polyoxyethylene sulfate salts,
Examples of cationic surfactants include alkylbenzene sulfonates, alkyl phosphates, etc.
Examples of the amphoteric surfactants include alkyl amine salts, quaternary ammonium salts, polyoxyethylene alkyl amines, and examples of amphoteric surfactants include alkyl amino acid salts and alkyl betaines. Examples of nonionic surfactants include:
polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene fatty acid ester, polyhydric alcohol fatty acid ester ethylene oxide adduct, polyoxyethylene diethylene fatty acid amide,
Examples include fatty acid alkanolamides, ethylene oxide adducts of oils and fats, oxyethylene oxypropylene block polymers, fatty acid monoglycerides, sorbitan fatty acid esters, polio-bovine diethylene sorbitan fatty acid esters, and sucrose fat s esters.

これらの界面活性剤の内でも非イオン性界面活性剤は低
毒性であり、多孔質膜を医療用途等に用いる場合好まし
いものである。本発明において界面活性剤は水溶液また
は水懸sj濠の状態で使用されるが、水にある程度の溶
解性があることが好ましく、非イオン界面活性剤の場合
はHLB(親水性親油性バランス)の値が5〜1日の範
囲のものが好ましい。
Among these surfactants, nonionic surfactants have low toxicity and are preferred when the porous membrane is used for medical purposes. In the present invention, the surfactant is used in the form of an aqueous solution or a water-suspended solution, but it is preferable that it has some degree of solubility in water, and in the case of a nonionic surfactant, the HLB (hydrophilic-lipophilic balance) Preferably, the value is in the range of 5 to 1 day.

本発明では、界面活性剤を含む水溶液または水懸濁液を
多孔質膜細孔内に充填した後に、該多孔質膜を乾燥させ
ることが必要である。単に界面活性剤を含む水溶液また
は水懸濁液を細孔内に充填しただけでは本発明の物質透
過性改良の効果は得られない。
In the present invention, it is necessary to dry the porous membrane after filling the pores of the porous membrane with an aqueous solution or suspension containing a surfactant. Simply filling the pores with an aqueous solution or suspension containing a surfactant will not produce the effect of improving substance permeability of the present invention.

また、単に界面活性剤を含まない水を充填し、その水を
乾燥しただけでも本発明の効果は得られない。更に界面
活性剤の代わりに従来から膜の湿潤剤として知られてい
るグリセリンやポリエチレングリコール400等の水溶
性、不揮発性液体を用いて本発明と同様の処理を行って
も1本発明の(物質透過性改良の)効果は得られない。
Further, the effects of the present invention cannot be obtained by simply filling water containing no surfactant and drying the water. Furthermore, if the same treatment as in the present invention is performed using a water-soluble, non-volatile liquid such as glycerin or polyethylene glycol 400, which has been conventionally known as a membrane wetting agent, instead of a surfactant, the substance (substance of the present invention) (improvement of permeability) cannot be obtained.

本発明の詳細な説明 ように推定される。即ち、細孔内に界面活性剤を含む水
溶液または水懸濁液が充填されることにより、界面活性
剤は細孔表面に移行し、親水基を露出した状態で該表面
を覆い、表面が親水化される。親水化ざれた表面と水は
強く相互作用をするが,多孔質膜を乾燥させる際に、除
去される水がその界面張力により細孔表面を形成してい
るフィブリルに強く作用し、易動性のあるフィブリルを
動かし、その結果細孔の律速部(貫通孔のうち最も孔径
が小さい部分)が拡大して透過性改良の効果が得られる
ものと推定される.これは、延伸開孔法で製造された多
孔膜において顕著に見られる現象であり,多孔膜の細孔
が易動性のあるフィブリルで囲まれた短冊状構造を有す
ることに起因するものと考えられる。
A detailed description of the invention is envisaged. That is, by filling the pores with an aqueous solution or suspension containing a surfactant, the surfactant migrates to the pore surface and covers the surface with exposed hydrophilic groups, making the surface hydrophilic. be converted into Water strongly interacts with the hydrophilized surface, but when the porous membrane is dried, the water that is removed acts strongly on the fibrils forming the pore surface due to its interfacial tension, causing mobility. It is presumed that by moving a certain fibril, the rate-limiting part of the pore (the part of the through-hole with the smallest diameter) expands, resulting in the effect of improving permeability. This is a phenomenon that is noticeable in porous membranes manufactured by the stretched pore method, and is thought to be due to the fact that the pores of the porous membrane have a strip-like structure surrounded by mobile fibrils. It will be done.

本発明で使用する水溶液または水懸濁液中の界面活性剤
の含有量は、少なくとも細孔表面を被覆するに十分な量
が必要であり、好ましい量はo.oot〜10重t%で
ある.界面活性剤の量が多すぎても効果はさほど向トせ
ず経済的にも無駄であり、むしろ多すぎると乾燥後界面
活性剤が細孔内に固型分として残り孔がつまる恐れがあ
る。
The content of the surfactant in the aqueous solution or aqueous suspension used in the present invention must be sufficient to at least coat the pore surfaces, and the preferred amount is o. oot~10% by weight. If the amount of surfactant is too large, the effect will not be much improved and it will be economically wasteful.In fact, if it is too large, the surfactant will remain as a solid in the pores after drying and may clog the pores. .

より好ましい界面活性剤の含有量の範囲は0.01〜5
重量tである。水に完全に溶解しない界面活性剤も懸濁
液の状態で使用することができるが、懸sJ粒子の大き
さは細孔径より小さくすることが必要である。そのため
には、機械的かく拌、超音波処理等を行い十分に小さな
粒子を得ることが好ましい。界面活性剤の水溶液または
水懸濁液に少量の水溶性の無機塩類または水溶性の有機
化合物が含まれていても差しつかえない。
A more preferable surfactant content range is 0.01 to 5.
The weight is t. Surfactants that are not completely soluble in water can also be used in suspension, but the size of the suspended sJ particles must be smaller than the pore size. For this purpose, it is preferable to obtain sufficiently small particles by performing mechanical stirring, ultrasonic treatment, or the like. The aqueous solution or suspension of the surfactant may contain small amounts of water-soluble inorganic salts or water-soluble organic compounds.

次に、本発明の具体的な方法について説明する。先ず多
孔質膜の細孔に界面活性剤を含む、水溶液または水懸濁
液を充填する。充填の方法としては、単に一定時間上記
液体中に浸漬すればよいが、時間短縮のために、細孔内
の空気を真空下で排除したのち、一定時間浸漬したり、
1多孔質膜が変形しない程度の温度に加温することもで
きる。
Next, a specific method of the present invention will be explained. First, the pores of a porous membrane are filled with an aqueous solution or suspension containing a surfactant. As a filling method, it is sufficient to simply immerse the material in the liquid for a certain period of time, but in order to shorten the time, the air in the pores may be removed under vacuum and then immersed for a certain period of time.
1. It is also possible to heat the porous membrane to a temperature that does not deform it.

液体の充填に要する時間は数分乃至数日である0次いで
細孔内より水を除去するために多孔質膜を乾燥させる。
The time required for filling the liquid is from several minutes to several days.Next, the porous membrane is dried to remove water from the pores.

多孔質膜の乾燥は、無緊張下でも、あるいは1両端を接
着剤で固定したような緊張状態で行ってもよい、乾燥方
法は例えば高温の空気を吹きつけたり、真空乾燥したり
することができるが、乾燥温度は多孔質膜が熱により変
形を起さない程度以下に留めるべきであり1例えばポリ
エチレンの場合には80°C程度以下が好ましい。
The porous membrane may be dried under no tension or under tension such as by fixing both ends with adhesive. Drying methods include, for example, blowing hot air or vacuum drying. However, the drying temperature should be kept at a level below which the porous membrane is not deformed by heat; for example, in the case of polyethylene, it is preferably about 80°C or below.

また、多孔質膜の乾燥は、水分をほぼ完全に除去する程
度であればよく、これに要する時間は数十分乃至数日で
ある。
Further, the porous membrane may be dried only to the extent that moisture is almost completely removed, and the time required for this is several tens of minutes to several days.

本発明の方法により処理された多孔質膜は律速細孔径が
拡大されるため、透水速度が大きく向上し、また溶質の
透過率も飛躍的に向上する。また、本発明の方法により
改良された多孔質膜は乾燥膜として得られるが1表面の
親木化も同時に行われているため、素材としてポリエチ
レンのような疎水性高分子を用いた場合でも、有機溶剤
を浸透させた後、乾燥させて得た従来の多孔質膜とは異
なり、改めて親水化処理を施す必要がなくそのままで水
溶液等の口過に使用できるという効果も合せ有するもの
である。
Since the rate-determining pore diameter of the porous membrane treated by the method of the present invention is expanded, the water permeation rate is greatly improved, and the solute permeability is also dramatically improved. In addition, although the porous membrane improved by the method of the present invention is obtained as a dry membrane, one surface is also treated with wood at the same time, so even when a hydrophobic polymer such as polyethylene is used as the material, Unlike conventional porous membranes obtained by impregnating organic solvents and then drying them, this membrane does not require additional hydrophilic treatment and can be used as it is for oral filtration of aqueous solutions.

次に、本発明を実施例で説明する。Next, the present invention will be explained with examples.

なお、諸物性の測定は下記の方法で行った。The various physical properties were measured using the following methods.

平均孔径(角) 水銀ポロシメータにより求めた孔径−空孔容積積分曲線
上で、全空孔容積の極の空孔容積を示す孔径。
Average pore diameter (square) The pore diameter that indicates the pore volume at the pole of the total pore volume on the pore diameter-pore volume integral curve determined by a mercury porosimeter.

透水速度(立ハr a m” # tamHg)純水を
用い25℃、差圧50+mHgで測定。
Water permeation rate (vertical ram” # tamHg) Measured using pure water at 25°C and differential pressure of 50+mHg.

溶質透過率(S(:) SC= (Cf/Go) X 100(りGoは原液中
の溶質濃度、CFは透過液の溶質濃度、溶質としてはブ
ルーデキストラン(ファルマシア社製、分子量200万
)を1%生理食塩水で用いた。
Solute permeability (S(:) SC= (Cf/Go) 1% physiological saline was used.

(実施例) 高密度ポリエチレン(密度0.988 、 MI値5.
5゜商品名ハイゼックス2208J)を円形二重紡口を
用い、紡ロアは度155℃、紡速300 m/分で紡糸
し。
(Example) High density polyethylene (density 0.988, MI value 5.
5° (trade name HIZEX 2208J) was spun using a circular double spinneret, the spinning lower was 155°C, and the spinning speed was 300 m/min.

得られた中空糸を115°Cで2時間アニール処理した
。更にこの中空糸を室温で3D K伸、ついで102℃
の温度で350%#IK伸し、ざらに110℃で熱固定
を行い、多孔質ポリエチレン中空糸を得た。得られた中
空糸の内径は300終、膜厚50色、細孔の平均孔径は
0.30用であった。この中空糸を束ね。
The obtained hollow fibers were annealed at 115°C for 2 hours. Furthermore, this hollow fiber was subjected to 3D K stretching at room temperature, and then at 102°C.
The fibers were stretched by 350% #IK at a temperature of 100° C. and roughly heat-set at 110° C. to obtain porous polyethylene hollow fibers. The obtained hollow fiber had an inner diameter of 300 mm, a membrane thickness of 50 colors, and an average pore diameter of 0.30 mm. Bundle this hollow fiber.

両端を接着剤で固定し膜面積50 crrr’のモジュ
ールを作成した。このポリエチレン多孔質中空糸モジュ
ールを表1に示す各種界面活性剤の水溶液、または水懸
濁液に、50℃で24時間浸漬し、細孔内に該液体を充
填した。液中から取出したモジュールを引き続いて室温
で24時間真空乾燥機で乾燥した。このように本発明の
処理を終えたポリエチレン多孔質膜(実施例1.2.4
〜8)はエタノールに浸漬して親水化した後、膜の透過
性能を透水速度とブルーデキストランの透過率(SC)
で、評価した。
Both ends were fixed with adhesive to create a module with a membrane area of 50 crrr'. This polyethylene porous hollow fiber module was immersed in an aqueous solution or suspension of various surfactants shown in Table 1 at 50° C. for 24 hours to fill the pores with the liquid. The module taken out from the liquid was subsequently dried in a vacuum dryer at room temperature for 24 hours. Polyethylene porous membrane (Example 1.2.4
-8) After making it hydrophilic by immersing it in ethanol, the permeation performance of the membrane is measured by the water permeation rate and blue dextran permeability (SC).
So, I evaluated it.

実施例3の多孔質膜については本発明の処理後、エタノ
ールに浸漬する代わりに水に浸漬し性能を測定した。比
較例1は、本発明の処理を行わずにエタノールに浸漬し
て親水化した後、性能を測定した。比較例2は本発明の
処理を行わずにエタノールに浸漬して親水化した後、十
分に水洗し多孔質膜の細孔内充填液を水に置換後乾燥し
再びエタノールに浸漬して親水化した後、性能を測定し
たものである。比較例3は、実施例1と同様の条件で界
面活性剤水懸濁液を充填後、水洗し乾燥させずにそのま
まエタノールに浸漬して親水化した後、性能を測定した
ものである。
After the porous membrane of Example 3 was treated according to the present invention, it was immersed in water instead of ethanol, and its performance was measured. In Comparative Example 1, the performance was measured after being immersed in ethanol to make it hydrophilic without performing the treatment of the present invention. In Comparative Example 2, the membrane was immersed in ethanol to make it hydrophilic without performing the treatment of the present invention, then washed thoroughly with water, replacing the liquid filling the pores of the porous membrane with water, dried, and immersed in ethanol again to make it hydrophilic. The performance was then measured. In Comparative Example 3, the performance was measured after filling an aqueous surfactant suspension under the same conditions as in Example 1, immersing it in ethanol as it was without washing with water and drying it, and making it hydrophilic.

比較例4は界面活性剤の代わりにグリセリンを用いた例
であり、比較例2の方法に準じてエタノールに浸漬して
親木化した後、グリセリン水溶液で置換し、乾燥させた
ものを再びエタノールに浸漬して親水化した後、性能を
測定したものである。
Comparative Example 4 is an example in which glycerin was used instead of a surfactant, and after immersing it in ethanol to make it parent wood according to the method of Comparative Example 2, replacing it with a glycerin aqueous solution, drying it, and then immersing it in ethanol again. The performance was measured after being immersed in water to make it hydrophilic.

結果を表1に一括して示す。表1から明らかなように、
比較例1に示される本発明の処理を行わない多孔質膜に
比べ本発明の処理を行った多孔質膜は透水性、溶質透過
性ともに大巾に向上しており、実施例3では乾燥膜の状
態で親水化されており、エタノールによる親水化処理な
しでも十分な透過性を有することが確認された。また比
較例2および3で示すように、界面活性剤を含まない水
を充填し乾燥処理した場合や、界面活性剤を含む水溶液
または水懸濁液を充填しても、乾燥処理を行わなかった
場合には処理効果は認められなかった。また、比較例4
で示すように、界面活性剤の代わりにグリセリンを用い
た場合の処理効果も認められなかった。
The results are summarized in Table 1. As is clear from Table 1,
Compared to the porous membrane not treated according to the present invention shown in Comparative Example 1, the porous membrane treated according to the present invention has significantly improved water permeability and solute permeability. It was confirmed that the material was hydrophilized in the state of , and had sufficient permeability even without hydrophilic treatment with ethanol. Furthermore, as shown in Comparative Examples 2 and 3, no drying treatment was performed when filling with water without a surfactant and drying, or filling with an aqueous solution or aqueous suspension containing a surfactant. In some cases, no treatment effect was observed. Also, comparative example 4
As shown in , no treatment effect was observed when glycerin was used instead of a surfactant.

Claims (7)

【特許請求の範囲】[Claims] (1)結晶性高分子からなり延伸開孔法により製造され
た多孔質膜の細孔内に、0.001〜10重量%の界面
活性剤を含む水溶液または水懸濁液を充填した後に、該
多孔質膜を乾燥させることを特徴とする多孔質膜の透過
性改良方法。
(1) After filling the pores of a porous membrane made of crystalline polymer and manufactured by the stretch pore method with an aqueous solution or aqueous suspension containing 0.001 to 10% by weight of a surfactant, A method for improving the permeability of a porous membrane, the method comprising drying the porous membrane.
(2)結晶性高分子がポリエチレンである特許請求の範
囲第1項記載の方法。
(2) The method according to claim 1, wherein the crystalline polymer is polyethylene.
(3)細孔の平均孔径が0.05〜3.0μの範囲にあ
る多孔質膜を用いる特許請求の範囲第1〜2項のいずれ
か1つに記載の方法。
(3) The method according to any one of claims 1 to 2, using a porous membrane whose pores have an average pore diameter in the range of 0.05 to 3.0 μ.
(4)界面活性剤が非イオン性界面活性剤である特許請
求の範囲第1〜3項のいずれか1つに記載の方法。
(4) The method according to any one of claims 1 to 3, wherein the surfactant is a nonionic surfactant.
(5)非イオン性界面活性剤のHLBが5〜18である
特許請求の範囲第4項記載の方法。
(5) The method according to claim 4, wherein the nonionic surfactant has an HLB of 5 to 18.
(6)界面活性剤を含む水溶液または水懸濁液の濃度が
0.01〜5重量%である特許請求の範囲第1〜5項の
いずれか1つに記載の方法。
(6) The method according to any one of claims 1 to 5, wherein the concentration of the aqueous solution or suspension containing the surfactant is 0.01 to 5% by weight.
(7)多孔質膜の形態が中空糸である特許請求の範囲第
1〜5項のいずれか1つに記載の方法。
(7) The method according to any one of claims 1 to 5, wherein the porous membrane is in the form of a hollow fiber.
JP59254126A 1984-12-03 1984-12-03 Process for improving permeability of porous membrane Granted JPS61133105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59254126A JPS61133105A (en) 1984-12-03 1984-12-03 Process for improving permeability of porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59254126A JPS61133105A (en) 1984-12-03 1984-12-03 Process for improving permeability of porous membrane

Publications (2)

Publication Number Publication Date
JPS61133105A true JPS61133105A (en) 1986-06-20
JPH0451208B2 JPH0451208B2 (en) 1992-08-18

Family

ID=17260582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59254126A Granted JPS61133105A (en) 1984-12-03 1984-12-03 Process for improving permeability of porous membrane

Country Status (1)

Country Link
JP (1) JPS61133105A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411605A (en) * 1987-07-03 1989-01-17 Ube Industries Porous hollow fiber membrane
JPH0286822A (en) * 1988-05-02 1990-03-27 Terumo Corp Hydrophilic porous membrane, production thereof and liquid filter using the same membrane
GB2352652A (en) * 1999-08-06 2001-02-07 Fsm Technologies Ltd Pre-treating hollow fibre membranes for micro-organism detection
WO2002034374A1 (en) * 2000-10-24 2002-05-02 Kaneka Corporation Hydrophilized membrane and method of hydrophilization therefor
JP2003525092A (en) * 2000-02-28 2003-08-26 ボストン サイエンティフィック リミテッド Balloon structure with PTFE parts
KR100436307B1 (en) * 2001-11-02 2004-06-19 이진호 Treatment method of porous biodegradable polymer scaffolds for improved hydrophilicity and flexibility
JP2006088114A (en) * 2004-09-27 2006-04-06 Asahi Kasei Chemicals Corp Hydrophilic porous membrane
WO2021040001A1 (en) * 2019-08-29 2021-03-04 東レ株式会社 Method for hydrophilizing polyvinylidene fluoride-based porous separation membrane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146571A (en) * 1974-05-15 1975-11-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146571A (en) * 1974-05-15 1975-11-25

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6411605A (en) * 1987-07-03 1989-01-17 Ube Industries Porous hollow fiber membrane
JPH0286822A (en) * 1988-05-02 1990-03-27 Terumo Corp Hydrophilic porous membrane, production thereof and liquid filter using the same membrane
GB2352652A (en) * 1999-08-06 2001-02-07 Fsm Technologies Ltd Pre-treating hollow fibre membranes for micro-organism detection
JP2003525092A (en) * 2000-02-28 2003-08-26 ボストン サイエンティフィック リミテッド Balloon structure with PTFE parts
WO2002034374A1 (en) * 2000-10-24 2002-05-02 Kaneka Corporation Hydrophilized membrane and method of hydrophilization therefor
KR100436307B1 (en) * 2001-11-02 2004-06-19 이진호 Treatment method of porous biodegradable polymer scaffolds for improved hydrophilicity and flexibility
JP2006088114A (en) * 2004-09-27 2006-04-06 Asahi Kasei Chemicals Corp Hydrophilic porous membrane
WO2021040001A1 (en) * 2019-08-29 2021-03-04 東レ株式会社 Method for hydrophilizing polyvinylidene fluoride-based porous separation membrane
JPWO2021040001A1 (en) * 2019-08-29 2021-09-13 東レ株式会社 Polyvinylidene Fluoride Porous Separation Membrane Hydrophilization Method

Also Published As

Publication number Publication date
JPH0451208B2 (en) 1992-08-18

Similar Documents

Publication Publication Date Title
JP4656839B2 (en) Halar film
US7632439B2 (en) Poly(ethylene chlorotrifluoroethylene) membranes
EP0250337B1 (en) Semi-permeable hydrophilic polyvinylidene fluoride membranes suited for drying
WO2002102500A1 (en) Membrane polymer compositions
JPS6217614B2 (en)
JPH0628705B2 (en) Method for producing semipermeable hollow fiber membrane
US5290448A (en) Polyacrylonitrile membrane
JPS61133105A (en) Process for improving permeability of porous membrane
JPS61238834A (en) Porous polysulfone resin membrane
JPH0278425A (en) Hydrophilic and dryable semipermeable membrane based on polyvinylidene fluoride
US6979700B2 (en) Non-degradable porous materials with high surface areas
EP0092587B1 (en) Polymethyl methacrylate hollow yarn ultra-filtration membrane and process for its production
JPH0468010B2 (en)
Cabasso Practical aspects in the development of a polymer matrix for ultrafiltration
JPH01184001A (en) Porous membrane of polysulfone
JPS6193805A (en) Improvement for permeability of porous membrane
JP2512909B2 (en) Method for producing hollow fiber porous membrane
KR100231262B1 (en) The process for producing hollow fiber membrane having an improved rewettability
JPS6219208A (en) Process for affording hydrophilic property to hydrophobic porous film
JPH0670155B2 (en) Manufacturing method of polytetrafluoroethylene resin porous membrane
KR101557460B1 (en) Polymer resin composition for preparing hollow fiber membrane, preparation method of hollow fiber membrane, and hollow fiber membrane
EP0099686A2 (en) Process for preparing polypiperazinamide anisotropic membranes
JPH02268821A (en) Production of hollow fiber membrane of polysulfone
AU2004253197B2 (en) Membrane post treatment
WO2003033580A2 (en) Non-degradable and degradable porous materials with high surface areas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees