JPS61124816A - Non-contact type three-dimensional measuring apparatus - Google Patents

Non-contact type three-dimensional measuring apparatus

Info

Publication number
JPS61124816A
JPS61124816A JP24630384A JP24630384A JPS61124816A JP S61124816 A JPS61124816 A JP S61124816A JP 24630384 A JP24630384 A JP 24630384A JP 24630384 A JP24630384 A JP 24630384A JP S61124816 A JPS61124816 A JP S61124816A
Authority
JP
Japan
Prior art keywords
detection sensor
dimensional
measuring
measuring means
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24630384A
Other languages
Japanese (ja)
Inventor
Tsunehiko Takakusaki
高草木 常彦
Joshiro Sato
佐藤 譲之良
Masahiro Yoshida
正博 吉田
Seiichi Usami
宇佐美 清一
Kazuo Moriguchi
森口 一夫
Katsuhiro Oshima
大島 勝宏
Yusuke Takagi
勇輔 高木
Yoshio Kojima
小島 吉夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24630384A priority Critical patent/JPS61124816A/en
Publication of JPS61124816A publication Critical patent/JPS61124816A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • G01B11/005Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates coordinate measuring machines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To make it possible to automatically measure three-dimensional matter in a non-contact manner, by relatively driving a detection sensor and the matter to be detected so as to allow the distance between the detection sensor and the matter to be detected to be always present in a definite measurement region. CONSTITUTION:In an apparatus for measuring the shape of matter 1 having a three-dimensional free curved surface, a detection sensor 4 for detecting the distance up to the surface of the matter 1 in a non-contact manner is provided, and the matter 1 and the detection sensor 4 are made relatively movable by a drive apparatus 2. As the detection sensor 4, for example, a laser length measuring machine may be used. The shape of the matter 1 is inputted as a three-dimensional coordinates value in a dot line state by a recording medium 8 and processed by an operational processing apparatus 6 to be applied to the drive apparatus 2 as an order value to perform control so as to allow the detection sensor 4 to be always present in a definite measurable region.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、非接触式三次元計測装置に係り、特に、三次
元自由曲面を有する物体を非接触の状態で計測するに好
適な、非接触式三次元計測装置に関するものである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a non-contact three-dimensional measuring device, and in particular, a non-contact three-dimensional measuring device suitable for measuring an object having a three-dimensional free-form surface in a non-contact state. This relates to a type three-dimensional measuring device.

〔発明の背景〕[Background of the invention]

近年注目されはじめている計測技術に、光点検出センサ
利用による非mM方式での物体形状の測定がめる。この
光点検出センサ利用による非接触方式での物体形状の測
定については、雑誌1センサ技術“における東京農工大
学の告澤徹氏による“光点検出上/すによる物体形状の
測定”と題する文献において論じられている。
A measurement technology that has started to attract attention in recent years involves measuring the shape of objects using a non-mM method using light point detection sensors. Regarding the measurement of object shape in a non-contact manner using this light point detection sensor, there is a document titled "Measurement of object shape by light point detection" by Toru Fukuzawa of Tokyo University of Agriculture and Technology in the magazine 1 "Sensor Technology". It is discussed in

この文献では、計測原理の紹介、この原理を利用した検
出センサの製品例の紹介およびこれらセンサの応用例に
ついての紹介等が記載されている。
This document introduces the measurement principle, introduces product examples of detection sensors that utilize this principle, and introduces application examples of these sensors.

これらのセンナを利用した計測装置の一例+t−第6図
を参照して説明する。
An example of a measuring device using these sensors will be described with reference to FIG.

ここに第6図は、検出センナの計測原理図である。FIG. 6 is a diagram showing the principle of measurement of the detection sensor.

1は計測すべき物体、4′は検出センナで、検出センナ
4′は、光源13、送光用レンズ14、受光用レンズ1
5および検知器16からなっている。光源13は、例え
ばレーザー光などである。
1 is the object to be measured, 4' is a detection sensor, and the detection sensor 4' includes a light source 13, a light transmitting lens 14, and a light receiving lens 1.
5 and a detector 16. The light source 13 is, for example, a laser beam.

物体1の基準面を1.とすると、レーザー光は送光用し
/ズ14t−経て基準面1.で反射し受光レンズ15t
−経て当該レンズの垂直軸上の検知器16の168に集
光し、面1bでの反射は16bK集光し、レーザー光の
乱反射を検知器16面に集光する状態によって検出セン
ナ4′と物体1間の距離が計測される。
Let the reference plane of object 1 be 1. Then, the laser beam is transmitted to the reference surface 1. reflected by the light receiving lens 15t
- the laser beam is focused on 168 of the detector 16 on the vertical axis of the lens, and the reflection on the surface 1b is focused on 16bK, and the diffused reflection of the laser beam is focused on the detector 16 surface. The distance between objects 1 is measured.

検出センナの計測範囲、すなわち計測可能領域は、例え
ば第6図に示すように、*体1と検出センナ4′との間
にある距離を基準として±16mといったように受光で
きる範囲が有限で6t)、 したがって、検出センナ4
′を如何にして計測可能領域を外れないように物体lの
まわりに移動させるかということが重要な問題となる。
The measurement range of the detection senna, that is, the measurable area, is, for example, as shown in Figure 6, *±16 m based on the distance between the body 1 and the detection senna 4', and the range where light can be received is limited to 6t. ), therefore, the detection sensor 4
An important problem is how to move the object l around the object l without leaving the measurable area.

しかし、前記の文献には、センナの駆動制御については
論じられていなかった。
However, the above literature does not discuss drive control of the senna.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の事情に鑑みてなされたもので、計測手
段に係る検出センナと物体との間の距#llを常にめる
一定の計測可能領域内にろるように、検出センナまたは
物体、もしくは検出センナと物体との両者1駆動制御で
きるようにし、これによ勺、三次元自由曲面を有する物
体を非接触の状態で。
The present invention has been made in view of the above circumstances, and the present invention has been made in view of the above-mentioned circumstances. Alternatively, it is possible to drive and control both the detection sensor and the object, and this allows objects with three-dimensional free-form surfaces to be moved in a non-contact state.

かつ、自動的に計測しうる非接触式三次元計測装置の提
供を、その目的としている。
The purpose of this invention is to provide a non-contact three-dimensional measuring device that can automatically measure.

〔発明の概要〕[Summary of the invention]

本発明に係る非接触式三次元計測装置の構成は、三次元
自由曲面を有する物体を、非接触の状態で当該物体と計
測手段との閣の距離を計測する計測手段と、当該計測手
段と当該物体との間の距離が常にある一定の計測可能領
域内にあるように当該計測手段または当該物体、もしく
は当該計測手段と当該物体との両者を移動せしめるため
に複数の駆動軸を具備する駆動装置と、物体の形状を点
列の状態で三次元の座標値として入力する入力手段と、
その入力を前記駆動装置の複数の駆動軸の座標位置指令
信号に変換するとともに、前記計測手段によって計測さ
れた距P@信号を座標系の距離情報に変決して出力処理
するだめの信号変換部を有する信号処理手段と、前記座
標位置指令信号によって前記駆動装置紫、計測手段が常
に計測可能領域内で物体のまわ)を移動するように各軸
の座標位1tを指令する制御指令手段とを備えたもので
ある。
The configuration of the non-contact three-dimensional measuring device according to the present invention includes a measuring means for measuring an object having a three-dimensional free-form surface in a non-contact state and a distance between the object and the measuring means; A drive having a plurality of drive shafts for moving the measuring means, the object, or both the measuring means and the object so that the distance between the object and the object is always within a certain measurable area. an input means for inputting the shape of the object as a three-dimensional coordinate value in the form of a series of points;
A signal converter converts the input into coordinate position command signals for the plurality of drive axes of the drive device, and converts the distance P@ signal measured by the measuring means into distance information in a coordinate system and outputs the signal. and control command means for commanding the coordinate position 1t of each axis so that the driving device 1t and the measuring means always move around the object within a measurable region according to the coordinate position command signal. It is something that

さらに補足すると、次のとおシである。To add more information, the following points are true.

上記目的を達成するため、本発明では、検出センナと物
体との間の距離が常にある一定の範囲内と次るようK、
検出セ/すまたは物体、もしくは、検出センナと物体と
の両者を、複数の自由度を持つ駆動装置、すなわち複数
の駆動軸を具備する駆動装置に取付け、さらに当該7駆
動装置を、検出センナが常に計測範囲内、すなわち計測
可能領域内で物体のまわりt−移動するように、制御指
令手段により駆動制御するようにしたものである。
In order to achieve the above object, the present invention provides K, such that the distance between the detection sensor and the object is always within a certain range.
The detection sensor or object, or both the detection sensor and the object, are mounted on a drive device with multiple degrees of freedom, that is, a drive device with multiple drive axes, and the seven drive devices are connected to the detection sensor and the object. The drive is controlled by the control command means so that the object always moves within the measurement range, that is, within the measurable area.

一方、この制御指令手段としては、物体の形状を点列の
状態で三次元の座標値として、NOテープまたは70ツ
ビーデスクに予め入力しておき、これを各軸の座標位置
指令信号に変換することにより、複数の駆動軸を具備す
る駆動装置を制御す・るか、または、検出センサ自身に
よって計測済みの各軸の座標値を基に1次に進むべき座
標位置を演算予測し、これにより、複数の駆動軸を具備
する駆動装置を制御するようにしたものである。
On the other hand, as this control command means, the shape of the object is input in advance as a three-dimensional coordinate value in the form of a point sequence to a NO tape or a 70-tube desk, and this is converted into a coordinate position command signal for each axis. By controlling a drive device equipped with a plurality of drive axes, or by calculating and predicting the coordinate position to proceed to the first stage based on the coordinate values of each axis already measured by the detection sensor itself, The drive device is configured to control a drive device including a plurality of drive shafts.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の各実施例を第1図ないしig5図を参照
して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.

ここに第1図は、本発明の一実施例に係る非接触式三次
元計測装置の構成図、第2図は、本発明の他の実施例に
係る非接触式三次元計測装置の構成図、第3図は、これ
らの装置の計測および駆動制御系のブロック図、$4図
および第5図は、これら装置による実験結果を示す線図
であり、第1図および第2図において同等部は同一符号
で示している。そして、第1図は、物体と駆動itとが
別々に設置される場合、すなわち、4E体を固定し、計
測手段のみを駆動する実施例を示し、第2図は、物体が
駆動装置上に設置される場合、すなわち、物体と計測手
段との両者を駆動する実施例を示す。
FIG. 1 is a configuration diagram of a non-contact three-dimensional measuring device according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of a non-contact three-dimensional measuring device according to another embodiment of the present invention. , Fig. 3 is a block diagram of the measurement and drive control system of these devices, and Fig. 4 and Fig. 5 are diagrams showing experimental results using these devices. are indicated by the same symbol. FIG. 1 shows an example in which the object and the drive IT are installed separately, that is, the 4E body is fixed and only the measuring means is driven, and FIG. 2 shows an example in which the object is installed on the drive device. An example will be shown in which the apparatus is installed, that is, both the object and the measuring means are driven.

ここでは5$1図の実施例を主として説明する。Here, the embodiment of the 5$1 figure will be mainly described.

第1図において、lは物体、例えば水車ランナの羽根な
ど三次元自由曲pitもり物体でろる。2は、複数の自
由度をもつ駆動装置で、矢印で示すX、Y、Z軸方向の
直線移動、θ軸方向の回転およびζ軸方向の俯仰を行う
複数の駆動軸をもつものである。3aおよび3bは駆動
装置2を直接制御するためのコントローラで、第1図に
示す実施例では、駆動装置のX軸、Y軸およびZ軸を制
御する丸めのコントローラ3aと、回転軸(θ軸)およ
び俯仰軸(ζ軸)を制御するためのコントロー23bを
別々に設置しているが、これを一つにすることも可能で
るる。
In FIG. 1, l is an object, for example, a three-dimensional free-form pit object such as a blade of a water wheel runner. Reference numeral 2 denotes a drive device having multiple degrees of freedom, and has a plurality of drive shafts for linear movement in the X, Y, and Z axis directions, rotation in the θ axis direction, and elevation and elevation in the ζ axis direction, as indicated by arrows. 3a and 3b are controllers for directly controlling the drive device 2; in the embodiment shown in FIG. ) and the elevation axis (ζ axis) are installed separately, but it is also possible to combine them into one.

また、4は計測手段に係る検出センナを示し、検出セン
ナ4は、第6図に示したようなレーザー光を使用した有
限の計測可能領域を有する検出器である。
Further, reference numeral 4 indicates a detection sensor related to the measuring means, and the detection sensor 4 is a detector having a finite measurable area using a laser beam as shown in FIG.

6.7および8は、前記上/す4が常にろる一定の距離
で物体のまわりを移動するよう駆動装置2に指令信号を
与える制御指令手段と、検出センナ4によって計測され
た距離信号を必要な座標系の距離情報に変換し、かつ、
出力処理するための信号処理手段とを内蔵した、コンピ
ュータ、デスクドライバおよびフロッピーデスクを示す
6.7 and 8 are a control command means for giving a command signal to the drive device 2 so that the top/stool 4 always moves around the object at a constant distance, and a distance signal measured by the detection sensor 4. Convert to distance information in the required coordinate system, and
This figure shows a computer, a desk driver, and a floppy disk, each of which has a built-in signal processing means for output processing.

次に、第1図および43図を用いて計測手順を説明する
Next, the measurement procedure will be explained using FIGS. 1 and 43.

まず、制御指令手段として、物体1の形状を点列の状態
で三次元の座標値として入力手段に係るフロッピーデス
ク8に予め入力しておき、この入力ta数の駆動軸の座
標位置指令信号に変換し、もって各軸の座標位置を指令
する場合について説明する。
First, as a control command means, the shape of the object 1 is input in advance as a three-dimensional coordinate value in the form of a point sequence to the floppy disk 8, which is an input means, and the coordinate position command signal of the drive axis corresponding to the input ta number is input in advance. A case will be explained in which the coordinate position of each axis is commanded by the conversion.

計測を開始するに当り、まず駆動装置2と物体1との間
で座標系のリンケージを行う。ここに、座標系のリンケ
ージとは、物体1の座標系と、その設計値の座標系とを
一致させることである。
Before starting measurement, the coordinate system is first linked between the drive device 2 and the object 1. Here, the linkage of the coordinate system means to match the coordinate system of the object 1 with the coordinate system of its design values.

これは、いま、計測しようとする物体1の三次元の座標
系(X、Y、Z軸)が、駆動装置z側の複数の駆動方向
の軸(X、Y、Z、θ、ζ軸)の座標値としてどこにあ
るかを定義するためのもので、設置された物体1のある
基準面上の数点を計測することにより行うことができる
This means that the three-dimensional coordinate system (X, Y, Z axes) of the object 1 to be measured now is axes of multiple drive directions (X, Y, Z, θ, ζ axes) on the drive device z side. This is to define where the object is located as the coordinate values of the object 1, and can be done by measuring several points on a certain reference plane of the installed object 1.

この機能により、掬体xfe任意の位置に設置して加工
する、いわゆるフリーセツティングが可能となる。
This function enables so-called free setting, in which the scoop xfe can be installed and processed at any desired position.

このように座標系のリンケージが完了すると。Once the coordinate system linkage is completed in this way.

次に、フロッピーデスク8に予め入力しておいた物体の
三次元点列データを、デスクドライバ7、インタフェイ
ス9?介してコンピュータ6に送る。
Next, the three-dimensional point sequence data of the object previously input to the floppy disk 8 is transferred to the disk driver 7 and the interface 9? The data is sent to the computer 6 via the computer 6.

そこで、コンピュータ6に内蔵した制御指令手段により
、物体1の三次元点列データは駆動装置2の複数の駆動
軸の移動量として、物体1と検出センサ4との間の距離
が常にある一定の範囲となるzうに演算変換され、イン
タフェイス11、コントローラ3aおよび3bを介して
駆動装置2に指令信号が伝達される。
Therefore, using the control command means built into the computer 6, the three-dimensional point sequence data of the object 1 is used as the amount of movement of the plurality of drive axes of the drive device 2, so that the distance between the object 1 and the detection sensor 4 is always a constant value. The command signal is arithmetic converted into the range Z, and the command signal is transmitted to the drive device 2 via the interface 11 and the controllers 3a and 3b.

ここで注目すべきことは、物体の三次元点列データは、
物体lの形状を定めるX、YおよびZ軸の三次元座標値
であるが、制御指令手段においては、このデータにより
制御指令手段内部で物体1“の形状をモニターし、第3
図に示すように、駆動装置2に具備された干渉防止用近
接スイッチ12等の作用で、物体1と検出センサー4が
干渉しないことを確認し、また各点における最適の回転
角(θ軸)および俯仰角(ζ軸)を演算して定めている
ことでるる。
What should be noted here is that the three-dimensional point sequence data of the object is
These are the three-dimensional coordinate values of the X, Y, and Z axes that define the shape of the object 1. In the control command means, the shape of the object 1" is monitored within the control command means using this data, and the third
As shown in the figure, it is confirmed that there is no interference between the object 1 and the detection sensor 4 due to the action of the interference prevention proximity switch 12 etc. provided in the drive device 2, and the optimum rotation angle (θ axis) at each point is confirmed. It is determined by calculating the angle of elevation and elevation (ζ axis).

駆a装置2においては、制御指令手段からの指令信号に
より、褒数の駆動軸(X軸、Y軸、z軸。
In the axle drive device 2, the drive axes (X-axis, Y-axis, Z-axis) are controlled by command signals from the control command means.

θ軸およびζ軸)が指令値に一致するまで、指令信号の
フィードバック回路機能により移動する。
The θ-axis and ζ-axis) are moved by the command signal feedback circuit function until the θ-axis and ζ-axis match the command values.

検出セ/す4により物体1との間の距離を計測し、計測
された距離信号は、信号増中器5、インタフェイスl(
l介して信号処理手段を内蔵したコンピュータ6に伝達
される。
The distance to the object 1 is measured by the detection unit 4, and the measured distance signal is sent to the signal intensifier 5 and the interface l (
The signal is transmitted to a computer 6 having built-in signal processing means.

信号処理手段においては、駆動機構2の複数の駆動軸の
座標信号および検出センサ4からの計測信号を基に、計
測結果を物体の座標値として出力し、また、必要に厄じ
てム己憶する。
The signal processing means outputs the measurement result as the coordinate value of the object based on the coordinate signals of the plurality of drive axes of the drive mechanism 2 and the measurement signal from the detection sensor 4, and also outputs the measurement result as the coordinate value of the object. do.

上述のように、検出センサ4と物体lとの間の距離は、
店にある一定の範囲である計測可能領域内で、検出セン
サ4が物体1のまわりt−移動し、物体lとの間の距離
を計測することができる。
As mentioned above, the distance between the detection sensor 4 and the object l is
The detection sensor 4 moves around the object 1 within a measurable area that is a certain range in the store, and can measure the distance between the object 1 and the object 1.

発明者らは、上述の手順に従って実験を行い、s4図に
示す結果を得た。
The inventors conducted an experiment according to the above-described procedure and obtained the results shown in Figure s4.

第4図は、X、y、z軸による三次元座標系で示した実
験結果で、コンピュータ6からアウトプットされたもの
である。図中の実線は、フロッピーデスク8により予め
入力された物体の三次元形状を示しており、はぼその線
上にるる×印は実際の計測結果を示したもので良好な結
果であることがわかる。
FIG. 4 shows the experimental results shown in a three-dimensional coordinate system with X, y, and z axes, and is output from the computer 6. The solid line in the figure shows the three-dimensional shape of the object inputted in advance by the floppy desk 8, and the round x mark on the floppy line shows the actual measurement result, and it can be seen that the result is good. .

次に、制御指令手段として、検出センサ4自身によって
計測済みの駆動装置2の複数の駆動軸の座標値を基に、
次に検出センサ4の進むべき゛座標位置を演算予測し、
もって、各駆動軸の座標位置ftm令する場合について
IN5!明する。
Next, as a control command means, based on the coordinate values of the plurality of drive axes of the drive device 2 that have been measured by the detection sensor 4 itself,
Next, calculate and predict the coordinate position to which the detection sensor 4 should move,
Therefore, IN5 when determining the coordinate position ftm of each drive shaft! I will clarify.

計測を開始するに当り、前記手順と同様、まず駆動装置
2と物体lとの間で座標系のす/ケージを行う。次に、
検出セフt4により、物体1のるる計測面上の41数点
(最少2点)を、駆動装置2を手動操作するかまたは、
この点のみは、概略座matを人力することによる自動
操作によって計測し、計測した距離信号tig号増巾器
5、インタフェイス10を介して制御指令手段を内蔵し
たコンピュータ6に伝達する。そこで、制御指令手段に
より、その計測データは、駆動装置2の複数の駆動軸の
座標値として演算変換されるとともに、その計測データ
を基に、駆動装置2の複数の駆動軸の次に進むべき点は
、検出センサ4が計測可能領域内に入るようにコンピュ
ータ6に内蔵された演算部で演算予測され、インタ7エ
イス11、コントローラ3aお工び3bを介して駆動装
置2に司令信号として伝達される。
To start measurement, first, a coordinate system is established between the drive device 2 and the object 1 in the same manner as in the above procedure. next,
With the detection safety t4, 41 points (minimum 2 points) on the measurement surface of the object 1 are manually operated by the drive device 2, or
Only this point is measured automatically by manual operation of the seat mat, and the measured distance signal is transmitted via the TIG amplifier 5 and the interface 10 to the computer 6 having a built-in control command means. Therefore, the control command means calculates and converts the measurement data into coordinate values of the plurality of drive axes of the drive device 2, and based on the measurement data, determines which of the plurality of drive axes of the drive device 2 should proceed to the next one. The point is calculated and predicted by the calculation unit built in the computer 6 so that the detection sensor 4 falls within the measurable area, and is transmitted as a command signal to the drive device 2 via the interface 7/8 11 and the controller 3a and the controller 3b. be done.

、駆動装d2に2いては、制御指令手段からの指令16
号により、複数の駆!jh軸(X軸、Y軸、z軸。
, the drive device d2 receives a command 16 from the control command means.
Depending on the issue, multiple Kakeru! jh axis (X axis, Y axis, z axis.

θ軸およびζ軸)が指令値に一致するまで、指令信号に
対するフィードバック回路機能により移動する。
The feedback circuit function in response to the command signal causes movement until the θ-axis and ζ-axis match the command value.

ここで注目すべきことは、演算予測された指令信号に従
って駆動装置2の複数の駆動軸が移動し、検出センサ4
に工って物体1を計測したにもかかわらず、検出センサ
4が計測不能領域になり計測不能を生じた場合で、この
場合は、計測不能信号を制御指令手段にフィードバック
して、計測可能となるまで予測点を繰返し演算し捜し出
すことでbる。
What should be noted here is that the plurality of drive shafts of the drive device 2 move according to the command signals predicted by calculation, and the detection sensor 4
In this case, the detection sensor 4 enters the unmeasurable area and becomes unmeasurable even though the object 1 is measured using the following methods. By repeatedly calculating and searching for the predicted point until it becomes b.

本手順は、噴出センサ4により物体1と検出セフt4と
の間の距離を計測し、その結果を基に各駆動軸の次に進
むべき点を演算予測する以外、これを信号処理するなど
については、前記方式と同様である。
This procedure involves measuring the distance between the object 1 and the detected object t4 using the ejection sensor 4, and calculating and predicting the next point of each drive shaft based on the result, as well as signal processing. is the same as the above method.

このように、検出センサ4と物体lとの間の距離は、常
にるる一定の計測可能領域内で、検出センサ4が物体1
のまわり?移動し、物体lとの間の距離全計測すること
ができる。
In this way, the distance between the detection sensor 4 and the object l is always within a constant measurable area, and the distance between the detection sensor 4 and the object l is always within a constant measurable area.
Around? It is possible to move and measure the entire distance to the object l.

発明者らは、上述の手順に従って実jAを行い、第5図
に示す艮好な結果を得た。
The inventors carried out a practical experiment according to the procedure described above and obtained excellent results as shown in FIG.

第5図は、X、Y二次元の線図で1図中x印が実際の計
測結果を示すものでコンビエータ6がアウトプットした
ものである。この実験では予め設計データがないので演
算予測をして計測したものであり、この計測データから
設計データ?採取することができる。
FIG. 5 is a two-dimensional X, Y diagram, in which the x marks indicate actual measurement results, which are output by the combiator 6. In this experiment, there was no design data in advance, so the measurements were made using calculation predictions, and this measurement data was used as design data. Can be collected.

上記実施例によれば、形状が既知の物体、すなわち三次
元の座標値のある切体のみならず、形状が未知の三次元
自由曲@Jを有する物体についても非接触、かつ、自動
的に計測できるという効果がおる。
According to the above embodiment, not only an object with a known shape, that is, a section with three-dimensional coordinate values, but also an object with an unknown shape and a three-dimensional free curve @J can be handled automatically and without contact. This has the effect of being measurable.

以上述べたところは、ig1図のように検出センサ4の
み7f!:移動させるものであるが、第2図に示す実施
例は、物体1と検出センナ4の両方を駆動せしめるもの
である。
As stated above, only the detection sensor 4 is 7f! as shown in the ig1 diagram. In the embodiment shown in FIG. 2, both the object 1 and the detection sensor 4 are driven.

第2図において、物体1は、駆動装置2人のテーブルに
設置されX軸方向に移動し、検出センサ4は、駆動装[
t2Aに装着されて、Y軸、Z軸の直線運動、θ軸の回
転およびζ軸の俯仰運動の複数の軸方向の駆動がなされ
る。
In FIG. 2, an object 1 is placed on a table with two driving devices and moves in the X-axis direction, and a detection sensor 4 detects the driving device [
t2A, and is driven in a plurality of axial directions including linear movement on the Y-axis and Z-axis, rotation on the θ-axis, and elevational movement on the ζ-axis.

そして、駆動装置2人による切体1および検出センサ4
を移動させるコントローラ3a、3bは、本実施例では
ひとつの装置に構成されている。
Then, the cutting body 1 and the detection sensor 4 are operated by two driving devices.
In this embodiment, the controllers 3a and 3b for moving are configured as one device.

本実施例の場合も、41図の実施例で述べたものと同様
の効果が期待される。
In the case of this embodiment as well, effects similar to those described in the embodiment shown in FIG. 41 are expected.

また、特に図示して説明しないが、物体のみを多次元に
駆動させて計測するように構成して同様の効果を期待す
ることも可能である。
Further, although not specifically illustrated and described, it is also possible to expect similar effects by configuring so that only the object is driven multidimensionally and measured.

なお、前記の実施例では、第1図および第2図に示す代
表的なg4h装置、検出センナを説明したが、本発明は
、これらの形状、駆動機構、構造のものに限るものでな
く、同等の効果が期待される他の装置1手段の採用を妨
げるものではない。
In addition, in the above-mentioned embodiment, the representative g4h device and detection sensor shown in FIGS. 1 and 2 were explained, but the present invention is not limited to these shapes, drive mechanisms, and structures. This does not preclude the adoption of other devices that are expected to have the same effect.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、計測手段に係る検
出センナと物体との間の距m’を常にらる一定の計測可
能領域内にあるように、検出センサまたは物体、もしく
は検出センナと物体との両者を駆動制御できるようにし
、これにより三次元自由曲面を有する物体を非接触の状
態で、かつ、自動的に計測しうる非接触式三次元計測装
置を提供することができる。
As described above, according to the present invention, the detection sensor, the object, or the detection sensor is arranged so that the detection sensor, the object, or the detection sensor is always within a certain measurable area where the distance m' between the detection sensor and the object is always determined by the distance m' between the detection sensor and the object. It is possible to provide a non-contact three-dimensional measuring device that can drive and control both the object and the object, thereby automatically measuring an object having a three-dimensional free-form surface in a non-contact state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、杢発明の一実施例に係る非接触式三次元計測
装置の構成図、第2図は1本発明の他の実施例に係る非
接触式三次元計測装置の構成図。 第3図は、これらの装置の計測および駆動制御系のブロ
ック図、第4図および第5図は、これら装置による実験
結果を示す5図、第6図は、検出センサの計測原理図で
める。 l・・・切体、2,2A・・・駆動装置、3a、3b・
・・コントローラ、4・・・検出センサ、6・・・コン
ピュータ、内 〉発明者 大 島   勝 宏 日立市幸町3丁目1番
FIG. 1 is a configuration diagram of a non-contact three-dimensional measuring device according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of a non-contact three-dimensional measuring device according to another embodiment of the present invention. Figure 3 is a block diagram of the measurement and drive control system of these devices, Figures 4 and 5 show experimental results using these devices, and Figure 6 is a diagram of the measurement principle of the detection sensor. Ru. l... Cutting body, 2, 2A... Drive device, 3a, 3b.
... Controller, 4... Detection sensor, 6... Computer, Inventor Katsuhiro Oshima 3-1 Saiwaimachi, Hitachi City

Claims (1)

【特許請求の範囲】 1、三次元自由曲面を有する物体を、非接触の状態で当
該物体と計測手段との間の距離を計測する計測手段と、
当該計測手段と当該物体との間の距離が常にある一定の
計測可能領域内にあるように当該計測手段または当該物
体、もしくは当該計測手段と当該物体との両者を移動せ
しめるために複数の駆動軸を具備する駆動装置と、物体
の形状を点列の状態で三次元の座標値として入力する入
力手段と、その入力を前記駆動装置の複数の駆動軸の座
標位置指令信号に変換するとともに、前記計測手段によ
つて計測された距離信号を座標系の距離情報に変換して
出力処理するための信号変換部を有する信号処理手段と
、前記座標位置指令信号によつて前記駆動装置を、計測
手段が常に計測可能領域内で物体のまわりを移動するよ
うに各軸の座標位置を指令する制御指令手段とを備えた
ことを特徴とする非接触式三次元計測装置。 2、特許請求の範囲第1項記載のものにおいて、計測手
段は、レーザー光を使用した有限の計測可能領域を有す
る検出器を用いたものである非接触式三次元計測装置。 3、特許請求の範囲第1項記載のものにおいて、信号処
理手段は、ある任意の時点において複数の駆動軸の次に
進むべきそれぞれの座標位置を、その任意時点までに計
測手段によつて計測ずみの各軸の座標値を基に演算予測
しうる演算部を備えたものとし、演算予測に従つて各軸
の座標位置を制御指令手段によつて指令するように構成
したものである非接触式三次元計測装置。
[Scope of Claims] 1. Measuring means for measuring the distance between an object having a three-dimensional free-form surface in a non-contact state and the measuring means;
A plurality of drive shafts for moving the measuring means, the object, or both the measuring means and the object so that the distance between the measuring means and the object is always within a certain measurable area. an input means for inputting the shape of an object as three-dimensional coordinate values in the form of a point sequence; converting the input into coordinate position command signals for a plurality of drive axes of the drive device; a signal processing means having a signal conversion unit for converting a distance signal measured by the measuring means into distance information in a coordinate system and outputting the same; and a measuring means that controls the drive device according to the coordinate position command signal. 1. A non-contact three-dimensional measuring device, comprising control command means for commanding the coordinate position of each axis so that the object always moves around an object within a measurable region. 2. The non-contact three-dimensional measuring device according to claim 1, wherein the measuring means uses a detector that uses laser light and has a finite measurable area. 3. In the device described in claim 1, the signal processing means measures the coordinate position of each of the plurality of drive shafts to which the plurality of drive shafts should proceed next at a certain arbitrary point of time, using the measuring means by that arbitrary point of time. The non-contact type is equipped with an arithmetic unit that can perform calculations and predictions based on the coordinate values of each axis, and is configured so that the coordinate position of each axis is commanded by a control command means according to the calculation predictions. Three-dimensional measuring device.
JP24630384A 1984-11-22 1984-11-22 Non-contact type three-dimensional measuring apparatus Pending JPS61124816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24630384A JPS61124816A (en) 1984-11-22 1984-11-22 Non-contact type three-dimensional measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24630384A JPS61124816A (en) 1984-11-22 1984-11-22 Non-contact type three-dimensional measuring apparatus

Publications (1)

Publication Number Publication Date
JPS61124816A true JPS61124816A (en) 1986-06-12

Family

ID=17146550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24630384A Pending JPS61124816A (en) 1984-11-22 1984-11-22 Non-contact type three-dimensional measuring apparatus

Country Status (1)

Country Link
JP (1) JPS61124816A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454305A (en) * 1987-08-26 1989-03-01 Nec Corp Method and device for pattern size measurement
JPH01318912A (en) * 1988-06-20 1989-12-25 Osaka Kiko Co Ltd Digitizing method and apparatus
JPH03140814A (en) * 1989-10-24 1991-06-14 Korea Advanced Inst Of Sci Technol Three-dimensional rectangular coordinate type high-speed precision measuring instrument
WO1993004339A1 (en) * 1991-08-27 1993-03-04 Fanuc Ltd Method of diagnosing real time sensor
JP2000346641A (en) * 1999-06-01 2000-12-15 Mitsubishi Heavy Ind Ltd Apparatus for measuring surface roughness of machine structure
JP2002122499A (en) * 2000-07-19 2002-04-26 Snap On Deutschland Holding Gmbh Optical scanner and scanning method for vehicular wheel
US7117047B1 (en) * 2001-12-04 2006-10-03 Assembly Guidance Systems, Inc. High accuracy inspection system and method for using same
CN103148825A (en) * 2013-01-21 2013-06-12 山东交通学院 Curved surface measuring device
EP3315898A1 (en) * 2016-10-31 2018-05-02 Omron Corporation Control system, control method and program for control system
EP3315899A1 (en) * 2016-10-31 2018-05-02 Omron Corporation Control system, control method and program for control system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110913A (en) * 1980-12-27 1982-07-10 Toyota Motor Corp Measurement of curved surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110913A (en) * 1980-12-27 1982-07-10 Toyota Motor Corp Measurement of curved surface

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454305A (en) * 1987-08-26 1989-03-01 Nec Corp Method and device for pattern size measurement
JPH01318912A (en) * 1988-06-20 1989-12-25 Osaka Kiko Co Ltd Digitizing method and apparatus
JPH03140814A (en) * 1989-10-24 1991-06-14 Korea Advanced Inst Of Sci Technol Three-dimensional rectangular coordinate type high-speed precision measuring instrument
WO1993004339A1 (en) * 1991-08-27 1993-03-04 Fanuc Ltd Method of diagnosing real time sensor
US5511007A (en) * 1991-08-27 1996-04-23 Fanuc Ltd. Diagnostic method for a real time sensor mounted on a robot
JP2000346641A (en) * 1999-06-01 2000-12-15 Mitsubishi Heavy Ind Ltd Apparatus for measuring surface roughness of machine structure
JP4727853B2 (en) * 2000-07-19 2011-07-20 スナップ−オン エクイップメント ゲーエムベーハー Optical scanning apparatus and scanning method for vehicle wheel
JP2002122499A (en) * 2000-07-19 2002-04-26 Snap On Deutschland Holding Gmbh Optical scanner and scanning method for vehicular wheel
US7117047B1 (en) * 2001-12-04 2006-10-03 Assembly Guidance Systems, Inc. High accuracy inspection system and method for using same
CN103148825A (en) * 2013-01-21 2013-06-12 山东交通学院 Curved surface measuring device
EP3315898A1 (en) * 2016-10-31 2018-05-02 Omron Corporation Control system, control method and program for control system
EP3315899A1 (en) * 2016-10-31 2018-05-02 Omron Corporation Control system, control method and program for control system
CN108008687A (en) * 2016-10-31 2018-05-08 欧姆龙株式会社 Control system, its control method and computer-readable recording medium
JP2018072223A (en) * 2016-10-31 2018-05-10 オムロン株式会社 Control system, method for controlling the same, and program therefor
CN108021090A (en) * 2016-10-31 2018-05-11 欧姆龙株式会社 Control system and its control method, computer-readable recording medium
US10705503B2 (en) 2016-10-31 2020-07-07 Omron Corporation Control system, and control method and program for control system

Similar Documents

Publication Publication Date Title
US10317186B2 (en) Articulating CMM probe
US4638445A (en) Autonomous mobile robot
WO1991008861A1 (en) Noncontact profile controller
JPS61124816A (en) Non-contact type three-dimensional measuring apparatus
EP0440202A2 (en) Force-reflective teleoperation control system
JPS586404A (en) Device for detecting physical position and direction of body
EP1480009A3 (en) Laser measurement apparatus
JP2001074413A (en) Method and apparatus for measuring distance to reflective surface
JP2594578B2 (en) Non-contact profile control device
JPH01501016A (en) positioning device
JPH01120607A (en) Motor controller
JPS6114442B2 (en)
JPS5834781A (en) Method of controlling form profiling by robot
GB2185593A (en) Improvements in and relating to robot teaching
JPH0789497A (en) Automatic collision avoidance device and artificial satellite provided therewith
JPH09203688A (en) Method and device for estimating beam shape of laser scanner unit
JPS57209124A (en) Positioning method of bucket wheel in reclaimer
SU753715A1 (en) Drilling vessel attitude control system
JP2000275011A (en) Measuring apparatus and measurement method for mobile body
JPS5625096A (en) Semiautomatic steering gear in which accuracy of command steering angle indication in range of small angle is remarkably improved in comparison with that of actual steering angle
JPS57204967A (en) Interactive stereoscopical pattern processing system
JPH0441364Y2 (en)
JPH02300611A (en) Measuring instrument
JPS58127274A (en) Co-ordinate reader
JP2000146520A (en) Reflection type displacement measuring instrument