JPS6112212B2 - - Google Patents

Info

Publication number
JPS6112212B2
JPS6112212B2 JP55141084A JP14108480A JPS6112212B2 JP S6112212 B2 JPS6112212 B2 JP S6112212B2 JP 55141084 A JP55141084 A JP 55141084A JP 14108480 A JP14108480 A JP 14108480A JP S6112212 B2 JPS6112212 B2 JP S6112212B2
Authority
JP
Japan
Prior art keywords
light
radiation thermometer
plane
measured
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55141084A
Other languages
Japanese (ja)
Other versions
JPS5764130A (en
Inventor
Junichiro Yamashita
Riichi Saeki
Toshio Takei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP55141084A priority Critical patent/JPS5764130A/en
Publication of JPS5764130A publication Critical patent/JPS5764130A/en
Publication of JPS6112212B2 publication Critical patent/JPS6112212B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、物体よりの熱放射を受光し、その
放射量によつて前記物体の温度を測定する、放射
温度計に関するものである。 第1図は製鉄所等で用いられる、連続式鋼片加
熱炉に設けられた従来の放射温度計の例を示す図
である。連続式鋼片加熱炉は、鋼片を連続して焼
きなます場合に広く用いられ、この装置において
は鋼片の品質管理や、加熱炉に供給する熱量の最
適化の観点から、鋼片温度の絶対値を知ることは
重要である。第1図において、放射温度計1は、
加熱炉2中に存在する鋼片3を垂直に見込み、鋼
片表面からの放射4を受光することによつて鋼片
の温度を測定する。しかし、鋼片3表面の垂直方
向の赤外光に対する反射率は通常約0.2とあまり
小さくなく、また炉壁5の温度は通常鋼片3の温
度と同程度もしくはそれ以上であるので、炉壁か
らの放射6が鋼片3表面で反射されて放射温度計
1に入射する成分は鋼片表面からの放射4に比べ
て無視できない。放射温度計1は受光した放射電
力が全て鋼片3表面からの放射によるものである
とみなして温度測定値を算出するため、上記の鋼
片3表面で反射された成分は温度測定値に誤差を
与える。 この発明は、この欠点を除去するために、放射
温度計が鋼片を見込む角を鋼片の光学的性質で決
まる特定の角度とするとともに放射温度計の受光
部に偏光装置を設けたもので、次にその原理を述
べる。 第2図は、物体の表面での光の反射の関係を表
わす図である。 物体からの熱放射などの自然光は進行方向に垂
直でかつ、互いに直交する方向への二つの偏光成
分の組合わせで表わせる。光の反射を考える場合
には、入射光7および物体表面8の垂線9を含む
面すなわち入射面とこの入射面に垂直な面内の成
分を考え、入射面内の偏光成分10に対する反射
率Rpおよび入射面に垂直な面内の偏光成分11
に対する反射率Rsは入射角12θの関数とし
て次のように示されることは光学関係の技術者に
とつては周知の事実である。
The present invention relates to a radiation thermometer that receives thermal radiation from an object and measures the temperature of the object based on the amount of radiation. FIG. 1 is a diagram showing an example of a conventional radiation thermometer installed in a continuous billet heating furnace used in steel works and the like. Continuous billet heating furnaces are widely used when continuously annealing steel billets, and in this equipment, the billet temperature is controlled from the viewpoint of quality control of the billets and optimization of the amount of heat supplied to the heating furnace. It is important to know the absolute value of . In FIG. 1, the radiation thermometer 1 is
A steel slab 3 existing in a heating furnace 2 is viewed vertically, and the temperature of the steel slab is measured by receiving radiation 4 from the surface of the steel slab. However, the reflectance of the surface of the steel slab 3 for infrared light in the vertical direction is usually about 0.2, which is not very small, and the temperature of the furnace wall 5 is usually about the same level or higher than the temperature of the steel slab 3, so the furnace wall The component of the radiation 6 reflected from the surface of the steel piece 3 and incident on the radiation thermometer 1 cannot be ignored compared to the radiation 4 from the surface of the steel piece. Since the radiation thermometer 1 calculates the temperature measurement by assuming that all the received radiant power is due to radiation from the surface of the steel slab 3, the component reflected from the surface of the steel slab 3 mentioned above causes an error in the temperature measurement value. give. In order to eliminate this drawback, this invention sets the angle at which the radiation thermometer looks into the steel piece to be a specific angle determined by the optical properties of the steel piece, and also provides a polarizing device in the light receiving part of the radiation thermometer. , Next, we will explain its principle. FIG. 2 is a diagram showing the relationship of light reflection on the surface of an object. Natural light such as thermal radiation from an object can be represented by a combination of two polarization components that are perpendicular to the direction of travel and orthogonal to each other. When considering the reflection of light, consider the plane containing the incident light 7 and the perpendicular line 9 of the object surface 8, that is, the plane of incidence, and the component in the plane perpendicular to this plane of incidence, and calculate the reflectance Rp for the polarized light component 10 in the plane of incidence. and the polarization component 11 in the plane perpendicular to the plane of incidence.
It is a well-known fact among optical engineers that the reflectance Rs for R is expressed as a function of the incident angle 12θ 0 as follows.

【表】 但し、rp=(η1p−η0p)/(η1p+η0p) rs=(η0s−η1s)/(η0s+η1s) η0p=1/cosθ η1p=(n−ik)/cosθ η0s=cosθ η1s=(n−ik)cosθ cosθ=((α+β1/2+α/2)1/2 −i((α+β1/2−α/2)1/2 α=1+(sinθ/n+k(k2−n2) β=−2nk(sinθ/n+k-2 なお、上式中n,kはそれぞれ物体の複素屈折
率の実部、虚部であり、iは虚数単位である。物
体を透過する光が無い場合、すなわち、入射光が
反射成分と物体へ吸射される成分だけに分配され
る場合には、熱平衡の関係から熱放射の放射率と
吸収率が等しいため、入射面内に偏光する成分の
放射率εpおよび入射面に垂直な面内に偏光する
成分の放射率εsはRp,Rsと次の関係にある。
[Table] However, rp = (η 1p - η 0p ) / (η 1p + η 0p ) r s = (η 0s - η 1s ) / (η 0s + η 1s ) η 0p = 1/cosθ 0 η 1p = (n −ik)/cosθ 1 η 0s = cosθ 0 η 1s = (n−ik) cosθ 1 cosθ 1 = ((α 2 + β 2 ) 1/2 + α/2) 1/2 −i((α 2 + β 2 ) 1/2 - α / 2) 1/2 α = 1 + (sin θ 0 / n 2 + k 2 ) 2 (k 2 - n 2 ) β = -2nk (sin θ 0 / n 2 + k 2 ) -2 Note that the above formula n and k are the real part and imaginary part of the complex refractive index of the object, respectively, and i is the imaginary unit. When no light passes through an object, that is, when the incident light is divided into only the reflected component and the absorbed component, the emissivity and absorption rate of thermal radiation are equal due to thermal equilibrium, so the incident The emissivity εp of the component polarized in the plane and the emissivity ε s of the component polarized in the plane perpendicular to the plane of incidence have the following relationship with Rp and R s .

【表】 第3図は、反射率R、放射率εの入射角θ
の依存性の例を表わす図で、n=3、k=0.1の
場合につき、Rp13、Rs14、εp15、εs
16の4つの値を上記第(1)式〜第(4)式を用いて求
めたものである。Rp13の最小値を与えるθ
の値θBはk=0の物質すなわちガラスのような
誘電体の表面の反射の場合においてはブリユース
ター角と呼ばれ、 θB=arctan n (5) で与えられる。k=0の場合においてもn>1で
あればθ゜<θ<90゜の間においてRpを最小
とする角θBが存在する。一方、εpはRpと第(3)
式の関係にあるため、Rpが最小となる角θBに対
しては最大となる。なお、この角θBは反射物体
の複素屈折率n−ikにより一意に決まる値であ
る。 第4図は、この発明の実施例を表わす図であ
る。放射温度計17は、温度を測定しようとする
鋼片3をθBなる角18をもつて見込み、放射温
度計17の受光窓には放射温度計17の見込む光
路と鋼片の表面の垂線19で決まる平面に直交す
る方向に偏光している成分を遮る機能を持つ偏光
装置20が設けられている。ここで、θBは先に
述べた、Rpを最小とする入射角であり、この角
をもつて物体の表面を見込む場合には、他のいず
れの角をもつて見込む場合よりも放射温度計17
の見込む光路と鋼片の垂線19のなす平面すなわ
ち入射面内に偏光している光に対する鋼片3表面
の反射率Rpが小さく、また、その平面内に偏光
している光に対する鋼片3表面の放射率εpが大
きくなる。一方、この入射面に垂直な方向に偏光
している成分は、偏光装置20によつて遮られ、
放射温度計内の検出部21には到達しない。従つ
て、先に第1図に示した従来の方式における放射
温度計に比べ、検出部21に入射する鋼片表面か
らの放射4の炉壁からの放射6が鋼片3表面で反
射される成分22に対する割合は第4図に示す場
合の方が大きくなり、鋼片3表面の反射光による
温度測定値の誤差は軽減できる。 第5図は第4図中に示した偏光装置20の構成
例を説明するための図である。入力光23は、対
象とする光の波長に対して内部での減衰率すなわ
ち屈折率の虚部が十分小さな誘電物質でできた反
射板24で反射され、その反射光25は放射温度
計の検出部21に入射する。ここで、入力光23
の反射板24に対する入射角25θiは、反射板
24の屈折率nrとの間に θi=arctan nr (6) の関係が成り立ち、また、入力光23の光路と反
射光25の光路で決定される平面すなわち反射板
24に対する入射面は第4図の説明中で述べた、
放射温度計の見込む光路と鋼片の垂線のなす平
面、すなわち鋼片に対する入射面と直交するよう
に反射板24、検出部21の位置と向きが設定さ
れている。先に述べた内容から明らかなように、
入力光23は、反射板24に対する入射面内の偏
光成分と、その成分に直交する方向の偏光成分の
和で表わせるが、反射板24に対する入射角26
が第(6)式で与えられる値すなわちブリユースター
角に設定されているために、反射光25には反射
板24に対する入射面内に偏光する成分は含まれ
ない。また、鋼片に対する入射面と反射板24に
対する入射面が直交しているため、第5図に示す
偏光装置は先に述べたように鋼片に対する入射面
に垂直な方向に偏光している成分を遮る機能を有
する。ところで、反射板24は対象とする光に対
する減衰率が小さな物質でできているために、反
射板裏面よりの透過光27も検出部21に入射す
るが、反射板24の背後に、一定の温度に制御さ
れ、かつ、その表面反射光の変動が反射光25の
変動よりも十分小さくなる程度に、反射率の低い
遮光板28を設けることにより、反射板裏面より
の透過光27の量は一定値となり、放射温度計の
温度測定値に影響を与えない。また、入力光23
が反射板24を透過する成分29も遮光板28で
反射されないため他に影響を与えない。この偏光
装置は偏光板と類似の機能を有するが、赤外線に
対する偏光板が高価であるのに対し、反射板とし
てCaF2のように比較的安価な結晶板を用いれ
ば、安価に実現できる特長を有する。 なお、以上は、鋼片加熱炉に用いられる放射温
度計の場合について説明したが、この発明はこれ
に限らず、被測定物体の表面で背景光が反射さ
れ、その反射光によつて放射温度計の温度測定値
に誤差が生じる場合に、その誤差を軽減する必要
がある場合には広く用いることができる。 以上のように、この発明に係る放射温度計で
は、被測定物体を放射温度計を見込む角を被測定
物体表面の光学定数で決まる特定の角度に設定す
るとともに、放射温度計の受光部に偏光装置を設
けることにより、物体表面で反射される背景光に
よる温度測定値の誤差を軽減させることができ
る。
[Table] Figure 3 is a diagram showing an example of the dependence of reflectance R and emissivity ε on the angle of incidence θ 0. In the case of n=3 and k=0.1, Rp13, R s 14, εp15, ε s
The four values of No. 16 were obtained using the above equations (1) to (4). θ 0 giving the minimum value of Rp13
The value θ B is called the Brewster angle in the case of reflection from the surface of a dielectric material such as glass, where k=0, and is given by θ B = arctan n (5). Even in the case of k=0, if n>1, there exists an angle θ B that minimizes Rp between θ°<θ 0 <90°. On the other hand, εp is Rp and the (3)
Since the relationship is as shown in the formula, Rp becomes maximum for the angle θ B where Rp becomes minimum. Note that this angle θ B is a value uniquely determined by the complex refractive index n−ik of the reflecting object. FIG. 4 is a diagram showing an embodiment of the invention. The radiation thermometer 17 looks at the steel slab 3 whose temperature is to be measured at an angle 18 of θ B , and the light receiving window of the radiation thermometer 17 has a perpendicular line 19 between the optical path that the radiation thermometer 17 looks through and the surface of the steel slab. A polarizer 20 is provided that has a function of blocking components polarized in a direction perpendicular to the plane determined by . Here, θ B is the angle of incidence that minimizes Rp, as mentioned earlier, and when looking at the surface of an object with this angle, the radiation thermometer 17
The reflectance Rp of the surface of the steel piece 3 for light polarized in the plane formed by the expected optical path and the perpendicular line 19 of the steel piece, that is, the plane of incidence, is small, and the surface of the steel piece 3 for light polarized within that plane. emissivity εp increases. On the other hand, the component polarized in the direction perpendicular to this plane of incidence is blocked by the polarizer 20,
It does not reach the detection section 21 within the radiation thermometer. Therefore, compared to the radiation thermometer of the conventional method shown in FIG. The ratio to component 22 is larger in the case shown in FIG. 4, and errors in temperature measurement values due to reflected light from the surface of the steel piece 3 can be reduced. FIG. 5 is a diagram for explaining a configuration example of the polarizing device 20 shown in FIG. 4. The input light 23 is reflected by a reflection plate 24 made of a dielectric material whose internal attenuation rate, that is, the imaginary part of the refractive index, is sufficiently small for the wavelength of the target light, and the reflected light 25 is detected by a radiation thermometer. The light enters the section 21. Here, input light 23
The angle of incidence 25θ i on the reflecting plate 24 has the following relationship with the refractive index n r of the reflecting plate 24: θ i = arctan n r (6), and the optical path of the input light 23 and the optical path of the reflected light 25 The plane determined by , that is, the plane of incidence on the reflection plate 24 is as described in the explanation of FIG.
The position and orientation of the reflecting plate 24 and the detection unit 21 are set so as to be perpendicular to the plane formed by the optical path of the radiation thermometer and the perpendicular line to the steel piece, that is, the plane of incidence on the steel piece. As is clear from what was stated above,
The input light 23 can be expressed as the sum of a polarized component in the plane of incidence with respect to the reflector 24 and a polarized component in a direction perpendicular to that component.
is set to the value given by equation (6), that is, the Brewster angle, so the reflected light 25 does not include a component polarized within the plane of incidence with respect to the reflector 24. Furthermore, since the plane of incidence on the steel piece and the plane of incidence on the reflection plate 24 are orthogonal, the polarization device shown in FIG. It has the function of blocking the By the way, since the reflection plate 24 is made of a material with a small attenuation rate for the target light, the transmitted light 27 from the back surface of the reflection plate also enters the detection unit 21. By providing a light shielding plate 28 with a low reflectance to such an extent that the fluctuation of the surface reflected light is sufficiently smaller than the fluctuation of the reflected light 25, the amount of transmitted light 27 from the back surface of the reflection plate is kept constant. value and does not affect the temperature readings of the radiation thermometer. In addition, the input light 23
The component 29 that passes through the reflection plate 24 is not reflected by the light shielding plate 28, so it does not affect others. This polarizing device has a similar function to a polarizing plate, but unlike infrared polarizing plates, which are expensive, it can be realized at a low cost by using a relatively inexpensive crystal plate such as CaF 2 as a reflector. have In addition, although the case of a radiation thermometer used in a steel billet heating furnace has been described above, the present invention is not limited to this. It can be widely used when there is a need to reduce errors in the temperature measurement values of the meter. As described above, in the radiation thermometer according to the present invention, the angle at which the radiation thermometer is viewed from the object to be measured is set to a specific angle determined by the optical constant of the surface of the object to be measured, and the light receiving part of the radiation thermometer is exposed to polarized light. By providing the device, it is possible to reduce errors in temperature measurements due to background light reflected from the object surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は連続式鋼片加熱炉に設けられた従来の
放射温度計の例を示す図、第2図は物体の表面で
の光の反射の関係を表わす図、第3図は反射率
R、放射率εの入射角θへの依存性の例を表わ
す図、第4図はこの発明の実施例を表わす図、第
5図は偏光装置の構成例を説明するための図であ
り1は放射温度計、3は鋼片、4は鋼片表面から
の放射、6は炉壁からの放射、10は入射面内の
偏光成分、11は入射面に垂直な面内の偏光成
分、20は偏光装置、24は反射板、26は遮光
板である。 なお、図中、同一あるいは相当部分には同一符
号を付して示してある。
Figure 1 is a diagram showing an example of a conventional radiation thermometer installed in a continuous billet heating furnace, Figure 2 is a diagram showing the relationship of light reflection on the surface of an object, and Figure 3 is a diagram showing the reflectance R. , a diagram showing an example of the dependence of emissivity ε on the incident angle θ 0 , FIG. 4 is a diagram showing an embodiment of the present invention, and FIG. 5 is a diagram for explaining an example of the configuration of a polarizing device. is a radiation thermometer, 3 is a steel piece, 4 is radiation from the surface of the steel piece, 6 is radiation from the furnace wall, 10 is a polarized light component in the plane of incidence, 11 is a polarized light component in a plane perpendicular to the plane of incidence, 20 2 is a polarizing device, 24 is a reflecting plate, and 26 is a light shielding plate. In the drawings, the same or corresponding parts are designated by the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定物体よりの熱放射を受光し、その受光
放射量によつて前記物体の温度を測定する放射温
度計において、被測定物体を放射温度計が見込む
光路と被測定物体表面の垂線を含む平面内に偏光
する成分に対する被測定物体表面の光の反射率が
最小となる角度で放射温度計が被測定物体を見込
むよう放射温度計を被測定物体に対し配置すると
ともに、放射温度計の見込む光路と被測定物体の
表面の垂線で決まる平面に直交する方向に偏光し
ている成分に対する光の反射率が最小となる角度
に反射面を持つ誘電体反射板を受光部に設け、そ
の誘電体反射板の反射光によつて被測定物体の温
度を測定することを特徴とする放射温度計。
1. In a radiation thermometer that receives thermal radiation from an object to be measured and measures the temperature of the object based on the amount of the received radiation, the radiation thermometer includes the optical path through which the radiation thermometer looks into the object to be measured and the perpendicular to the surface of the object to be measured. Position the radiation thermometer relative to the object to be measured so that the radiation thermometer looks into the object at an angle that minimizes the reflectance of light on the surface of the object to be measured with respect to components polarized in a plane, and A dielectric reflector plate is provided in the light receiving part with a reflective surface at an angle that minimizes the reflectance of light for components polarized in a direction perpendicular to the plane determined by the perpendicular line between the optical path and the surface of the object to be measured. A radiation thermometer characterized by measuring the temperature of an object to be measured using reflected light from a reflector.
JP55141084A 1980-10-08 1980-10-08 Radiation thermometer Granted JPS5764130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55141084A JPS5764130A (en) 1980-10-08 1980-10-08 Radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55141084A JPS5764130A (en) 1980-10-08 1980-10-08 Radiation thermometer

Publications (2)

Publication Number Publication Date
JPS5764130A JPS5764130A (en) 1982-04-19
JPS6112212B2 true JPS6112212B2 (en) 1986-04-07

Family

ID=15283828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55141084A Granted JPS5764130A (en) 1980-10-08 1980-10-08 Radiation thermometer

Country Status (1)

Country Link
JP (1) JPS5764130A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105551A1 (en) * 2016-12-07 2018-06-14 旭化成株式会社 Radiation temperature measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2231046C1 (en) * 2003-05-30 2004-06-20 Деревягин Александр Михайлович Method of measurement of dew point and device for realization of this method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105551A1 (en) * 2016-12-07 2018-06-14 旭化成株式会社 Radiation temperature measuring device
JPWO2018105551A1 (en) * 2016-12-07 2019-06-24 旭化成株式会社 Radiation temperature measuring device
US11573128B2 (en) 2016-12-07 2023-02-07 Asahi Kasel Kabushiki Kaisha Radiation temperature measuring device

Also Published As

Publication number Publication date
JPS5764130A (en) 1982-04-19

Similar Documents

Publication Publication Date Title
Jellison Jr et al. Optical functions of silicon at elevated temperatures
Edwards Refractive index of He4: LIQUID
US3672221A (en) Temperature sensor
CN104296875A (en) Light beam polarization degree measuring device and method
Zhang et al. Multi-layer-combination method to retrieve high-temperature spectral properties of C-plane sapphire
CN111829959B (en) Method and system for measuring liquid optical constant based on ellipsometry/transmission combination
JPS6112212B2 (en)
JPS6049850B2 (en) radiation thermometer
US11460396B2 (en) Concentration measurement method
JPS6049849B2 (en) Device for measuring surface temperature and emissivity of objects
JP2021139917A (en) Radiation temperature measuring device
SU811121A1 (en) Absortion meter
JPS5987329A (en) Method for measuring temperature of steel
WO2020062329A1 (en) Optical delay line device
Viskanta Infrared radiation techniques for glass surface and temperature distribution measurements
Swedberg Measurement of the refractive index of CsI and CsBr at cryogenic temperatures
Khomchenko et al. Determining thin film parameters by prism coupling technique
KR102003224B1 (en) Apparatus for measuring temperature of glass transmission type and induction range having the same
JPH0288929A (en) Infrared optical device
GLICKSMAN et al. Errors associated with temperature measurements in hot glass
CN108387327B (en) Temperature measurement method and system in strong ionizing radiation environment
SU694774A1 (en) Contactless method of measuring temperature of semiconductors
JPS6221953Y2 (en)
JPH0232207A (en) Roughness measuring method for metal surface
JPH0474934A (en) Measuring apparatus of characteristics of beam