JPS61120026A - Simple deep-part clinical thermometer - Google Patents

Simple deep-part clinical thermometer

Info

Publication number
JPS61120026A
JPS61120026A JP59240669A JP24066984A JPS61120026A JP S61120026 A JPS61120026 A JP S61120026A JP 59240669 A JP59240669 A JP 59240669A JP 24066984 A JP24066984 A JP 24066984A JP S61120026 A JPS61120026 A JP S61120026A
Authority
JP
Japan
Prior art keywords
temperature
insulating material
heat insulating
sensor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59240669A
Other languages
Japanese (ja)
Inventor
Yoshio Watanabe
渡辺 吉雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59240669A priority Critical patent/JPS61120026A/en
Publication of JPS61120026A publication Critical patent/JPS61120026A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • G01K3/14Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of space
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K13/00Thermometers specially adapted for specific purposes
    • G01K13/20Clinical contact thermometers for use with humans or animals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PURPOSE:To measure the bodily temperature of a deep part without any invasion by arranging temperature sensors at the center positions of the contact surface of a heat insulating material which has relatively small heat conductivity and contacts a living body and an atmospheric contact surface which face the contact surface of the heat of the heat insulating material. CONSTITUTION:A deep-part clinical thermometer 4 consists of the heat insulating material 1 which contacts skin 5, and a sensor 2 for measuring the temperature of a body surface and a sensor 3 for measuring outside air temperature fixed at the center parts of the body surface side of the heat insulating material 1 and air-side surface. Outputs of a bridge circuit 11 including the sensor for body surface temperature measurement and a bridge circuit 13 including the sensor 3 for outside air temperature measurement are amplified by amplifying circuits 12, 14, the output of a subtracting circuit 15 is multiplied by a specific correction value, and the output of a multiplying circuit 16 and the output of the amplifier 14 are added together by an adding circuit 17, whose output is digitized by an A/D converter 18 and displayed on a digital temperature display part 19. Consequently, a value close to the bodily temperature of a deep part is measured without reference to variation in outside temperature.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は体温計に係り、核心温度や末梢の血液循環の携
帯型長期モニタや皮膚に炎症を起こす心配のない安全性
の高い簡易型深部体温計に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a thermometer, and relates to a portable long-term monitor of core temperature and peripheral blood circulation, and a highly safe and simple core thermometer that does not cause skin irritation. .

〔発明の背景〕[Background of the invention]

体温は年齢9日差9個人差、卵巣周期1発熱などによっ
て生理的に変動するし、体熱の分布は部位、環境などに
よって異なる。通常、末梢1体表に近い程、温度は低下
するが、身体の中心部は核心温度といわれる恒温状態に
保たれる方向に制御される。核心温度は生理的状態をよ
く反映しており、その測定意義は周知のとおりでおる。
Body temperature fluctuates physiologically depending on age, 9 day differences, 9 individual differences, ovarian cycle 1 fever, etc., and body heat distribution differs depending on location, environment, etc. Normally, the temperature decreases closer to the peripheral body surface, but the center of the body is controlled to maintain a constant temperature called core temperature. Core temperature reflects the physiological state well, and the significance of its measurement is well known.

核心温度として代表的な大動脈出口の血温を日常直接測
定することは不可能でおるため、これに近い直腸温9口
腔温、あるいは腋窩温か水銀温度計、を子体温計等で測
定され、体温と称されている。直腸温は体腔内の温度で
あり、正確さという点からはよく核心温度を反映してい
るが、不快感1体温計の汚染などの理由から日常あまり
用いられない。
Since it is impossible to directly measure the blood temperature at the aortic outlet, which is representative of the core temperature, on a daily basis, the rectal temperature, which is close to this, or the axillary temperature, 9 oral temperature, or the axillary temperature is measured with a mercury thermometer, or a child thermometer. It is called. Rectal temperature is the temperature inside the body cavity, and from the point of view of accuracy it reflects the core temperature well, but it is not used on a daily basis for reasons such as discomfort 1 and contamination of thermometers.

また、口腔温はこれより0.4〜0.6C,腋窩温は0
.8〜0.9 tl:’低いが(中野昭−著:図解生理
学。
Also, the oral temperature is 0.4 to 0.6C, and the axillary temperature is 0.
.. 8-0.9 tl: 'Low (Akira Nakano - Author: Illustrated Physiology.

医学書院、1981)、簡便な方法のため臨床上よく用
いられる。しかし、長時間の温度モニタにはむかない。
Igakushoin, 1981), and is often used clinically because it is a simple method. However, it is not suitable for long-term temperature monitoring.

皮膚においては、皮膚表面から体温は漸次上昇し、約2
cmの深さで36.5〜37.5Cのほぼ一定値となる
。すなわち、内部の高温層を約2crr1の厚さの低温
層で包んでいる(前着)。そこで、深部体温計が考案さ
れ、熱流補償法によって、身体各部の深部組織温の測定
、特に連続測定がなされ、核心温度や末梢の血流状態を
知ることができる(特開昭55−29794 )。
In the skin, the body temperature gradually rises from the skin surface to approximately 2
At a depth of cm, it becomes a nearly constant value of 36.5 to 37.5C. That is, the internal high-temperature layer is surrounded by a low-temperature layer with a thickness of about 2 crr1 (first layer). Therefore, a deep body thermometer was devised, and by using the heat flow compensation method, the deep tissue temperature of each part of the body can be measured, especially continuous measurement, and the core temperature and peripheral blood flow state can be known (Japanese Patent Application Laid-Open No. 55-29794).

この従来からの深部体温計を第4囚に示す。本センサは
伝導率の小さい断熱層8と、該断熱層8の被測定生体に
対向する面を除く周囲を包囲しつつ周縁部において前記
被測定生体の表面に接触するようにした熱伝導率の大き
い伝熱層6と、該伝熱層60表面に固着された発熱体層
7と、断熱層8の前記接触面側の中心位置に配置された
計測用温度上/す9と、伝熱層6の断熱層8側に固定さ
れた発熱体/117の発熱制御用の温度センサ10とか
らなる。本法に熱源を組み込んだ深部体温計を体表面に
aき、該熱源から生体へ伝導する熱流で、生体から深部
体温計へ伝導する熱流をキャンセルし、生体深部温と深
部体温計間の皮膚5の熱勾配を零として、体゛表面で深
部温を検出する熱流補償法t′原理としている。従って
、ヒータを加温するための電力(数W)が必要であり、
携帯凰としての長期モニタには不利であるし、ヒータ制
御回路の故障による過大電力供給による皮膚炎症の問題
、あるいはそのフエイルーセイフ・システムが必要とな
る。また、長期にわたる装着状態で間欠的に測定する場
合、ヒータ制御回路tOHにしても、皮膚やセンサの熱
容量のために測定までに15〜20分の時間を要すると
いう問題がおった。
This conventional core thermometer is shown in the fourth prisoner. This sensor includes a heat insulating layer 8 having a low conductivity, and a heat insulating layer 8 having a low thermal conductivity that surrounds the periphery of the heat insulating layer 8 except for the surface facing the living body to be measured, and contacts the surface of the living body to be measured at the peripheral edge. A large heat transfer layer 6, a heating element layer 7 fixed to the surface of the heat transfer layer 60, a measuring temperature top/suction 9 disposed at a central position on the contact surface side of the heat insulating layer 8, and a heat transfer layer. It consists of a heating element fixed to the heat insulating layer 8 side of 6/117 and a temperature sensor 10 for controlling heat generation. A core thermometer incorporating a heat source in this method is placed on the body surface, and the heat flow conducted from the heat source to the living body cancels the heat flow transmitted from the living body to the core thermometer, and the heat flow between the body's core temperature and the skin 5 between the core thermometer is The heat flow compensation method t' principle is used to detect the deep temperature at the body surface by setting the gradient to zero. Therefore, electric power (several W) is required to heat the heater,
It is disadvantageous for long-term monitoring as a portable device, and there is a problem of skin irritation due to excessive power supply due to failure of the heater control circuit, or a fail-safe system is required. Further, when measuring intermittently while the sensor is worn for a long period of time, even with the heater control circuit tOH, there is a problem in that it takes 15 to 20 minutes to measure due to the heat capacity of the skin and the sensor.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、低電力かつ熱的安全性を備え、生体深
部温度の近似値を気温に大きく影響されることなく簡便
に測定でき、さらに核心温度や末梢血液循環の長期携帯
モスりや、装着しておけば必要時に体温を即時に測れる
深部体温計を提供することにある。
The purpose of the present invention is to provide low power consumption and thermal safety, to easily measure an approximate value of the body's core temperature without being greatly affected by temperature, and to provide a long-term portable moss for measuring core temperature and peripheral blood circulation. To provide a core thermometer that can instantly measure body temperature when necessary.

〔発明の概要〕[Summary of the invention]

本発明は、体表面に皮膚と同程度の熱伝導率を持つ断熱
材を密着させれば、血流で運ばれてきた体熱は皮膚と断
熱材中をその熱流に対する抵抗値と温度差により伝導し
て大気中に放散するため、熱流に対する抵抗値が既知の
断熱材を用い、この断熱材の皮膚接触面と大気接触面の
温度を測れば、皮膚の熱の特性がほぼ一定であるため、
無侵襲に深部体温が測定できることに基づく。以下、詳
細に6り定の原理を説明する。
In the present invention, if a heat insulating material with a thermal conductivity similar to that of the skin is closely attached to the body surface, the body heat carried in the bloodstream is transferred between the skin and the heat insulating material due to the resistance value and temperature difference between the heat flow. Because heat is conducted and dissipated into the atmosphere, if you use an insulating material with a known resistance to heat flow and measure the temperature of the skin-contacting surface and the air-contacting surface of this insulating material, the thermal characteristics of the skin are almost constant. ,
It is based on the fact that core body temperature can be measured non-invasively. The principle of six determination will be explained in detail below.

まず、無限に広がる平坦な皮膚とそれを覆う断熱材を考
えて、第5図には皮膚と断熱材の断面を表す簡易モデル
を示す。図中の太線は温度分布を示し、領域(n)、(
In)での低下は後述の皮膚と断熱材での熱流に対する
抵抗比に起因する。領域(n)の皮膚、(■)の断熱材
は等方体と考えられ、体表面に垂直なX方向のみに熱伝
導があるとすれば、次の熱伝導方程式が成立する。
First, considering an infinitely expanding flat skin and a heat insulating material covering it, Figure 5 shows a simple model showing the cross section of the skin and the heat insulating material. The thick line in the figure shows the temperature distribution, and the area (n), (
The decrease in In) is due to the ratio of resistance to heat flow between the skin and the insulation, which will be discussed below. The skin in region (n) and the heat insulating material in region (■) are considered to be isotropic, and assuming that heat conduction occurs only in the X direction perpendicular to the body surface, the following heat conduction equation holds true.

ただし、 T   :温度 t   :時間 CL t Ca :皮膚、断熱材の比熱ρt、ρ、:皮
膚、断熱材の密度 に、、に、:皮膚、断熱材の熱伝導率 である。また、境界条件は T=T= (x= −り、)        ・・・・
・・・・・(3)’r=’I’L(X =O)    
     −”・・(4)T=T、(x=L、)   
     −−”・(5)である。ただし、 T、、T、、T、:深部温組織、低温層組織表面。
However, T: temperature t: time CL t Ca: specific heat ρt of the skin and insulation material, ρ,: density of the skin and insulation material, , ,: thermal conductivity of the skin and insulation material. Also, the boundary condition is T=T= (x= -ri,)...
...(3)'r='I'L(X=O)
-”...(4) T=T, (x=L,)
--”・(5) However, T,, T,, T,: Deep warm tissue, low temperature layer tissue surface.

大気の温度 り、、L、:低温層組織、断熱材の厚さである。atmospheric temperature , L: Low-temperature layer structure, thickness of insulation material.

定常状態において熱伝導方程式を解くととなる。Solving the heat conduction equation in steady state gives.

次に、FOurier の法則によると、断面積Aを通
って、X方向に流れる熱流量qt 、 qa  (qt
は皮膚+C1mは断熱材での熱流量)は次式で与えられ
る。
Next, according to Fourier's law, the heat flow rates qt, qa (qt
is the skin + C1m is the heat flow rate in the insulation material) is given by the following equation.

Qt”kt”A”(aT/ax)     −・−−−
−−(s)q、=に、・A・(&T/θX )    
 ・−・−・−(9)皮膚表面において熱流量は連続な
ので、式(6)〜(jJ)よシ となる。ただし、 R* = L t / k t         ・・
・・・・・・・αυR,=L、/に、        
 ・・・・旧・・住2であり、R,、R,は皮膚、断熱
材の熱流に対する抵抗である。
Qt”kt”A”(aT/ax) --・---
--(s)q,=to,・A・(&T/θX)
・−・−・−(9) Since the heat flow is continuous on the skin surface, equations (6) to (jJ) are satisfied. However, R* = L t / k t ・・
・・・・・・αυR,=L,/to,
. . Old . . 2, where R,, R, is the resistance to heat flow of the skin and insulation material.

さて、皮膚の熱流に対する抵抗は式αυより、深部源ま
での深さり、と熱伝導率に、で決まるが、Ltは前述の
如く一般に2cm程度である。また、k、は筋肉でI 
X 10−” (cat/cm*FB: −’C]であ
り(桜井端久ほか編:MEの知識と機器の安全。
Now, the resistance of the skin to heat flow is determined by the depth to the deep source and the thermal conductivity according to the formula αυ, and Lt is generally about 2 cm as mentioned above. Also, k is muscle and I
X 10-” (cat/cm*FB: -'C] (Edited by Hisashi Sakurai et al.: ME knowledge and equipment safety.

pp、42〜43.南山堂、1983)、皮膚でもこの
程度の値である。従って、皮膚の熱流に対する抵抗R,
は2X10” Ccm”FB’・C/Cal〕でおる。
pp, 42-43. Nanzando, 1983), and this value is also found in the skin. Therefore, the skin's resistance to heat flow R,
is 2X10"Ccm"FB'・C/Cal].

ここで、皮膚表面に装着する断熱材の熱伝導率に、と厚
さり、、すなわち熱流に対する抵抗R1を決定し、深部
体温計装着時の体表面温度T1と大気温度T、を測定す
れは式αOより、深部組織部Tht−求めることができ
る。また、本法のW、MAは、生体以外の被測定対象物
への応用も可能である。
Here, determine the thermal conductivity and thickness of the heat insulating material attached to the skin surface, that is, the resistance R1 to heat flow, and measure the body surface temperature T1 and atmospheric temperature T when wearing the core thermometer using the formula αO Therefore, the deep tissue part Tht- can be determined. Furthermore, the W and MA of this method can also be applied to objects to be measured other than living bodies.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面に基づいて詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明における簡易型深部体温計でおる。該深
部体温計4は被測定部位の皮膚5に接する断熱材1と、
この断熱材の体表側の面および大気側の面の中心部分に
固定する体表面温度測定用温度セン?2および外気温測
定用温度セン?3からなる。温度センサ2あるいは3は
、サーミスタや白金測温抵抗体などの抵抗変化製温度セ
ンサ、あるいは熱電対を用いる。
FIG. 1 shows a simple core thermometer according to the present invention. The core thermometer 4 includes a heat insulating material 1 in contact with the skin 5 of the measurement site;
A temperature sensor for measuring body surface temperature that is fixed to the center of the body surface side and the atmosphere side surface of this insulation material. 2 and temperature sensor for measuring outside temperature? Consists of 3. As the temperature sensor 2 or 3, a variable resistance temperature sensor such as a thermistor or a platinum resistance temperature sensor, or a thermocouple is used.

次に、断熱材1の材質は式αOからどのようなものでも
可能であるが、皮膚の熱伝導率に、に比し断熱材の熱伝
導率に、が2桁以内のものでなければ断熱材の厚さ、温
度センサの測定誤差の点で好ましくない。ここでは深部
体温計の厚さを1c!r1程度とし、体表面温度T、が
深部温度T−と外気温度T1の中間値となるように、熱
伝導率に、が皮膚のそれの約1/2の断熱材を使用した
。すなわち、セルロイド(30Cで0.50 X I 
O−” cat/cm ・9[%ニーC)、ポリエチレ
/(27cで0.5 a Xl 0−’ Ca L 7
cm ・n @ C)、シリコーンゴム(27Cで0.
48X10−”cat/cnaF13”=・c)を用い
た。これらは厚さを約1cTnにすると、熱流に対する
抵抗R,は2 X 10 ’ (cm” ・”liK 
・C/ Ca1Jとなり、皮膚のそれと同一となる。断
熱材にはこれら以外の材質、厚さのものが可能なのは前
述のとおりである。さらに深部体温計装着時の体表面温
度T、が深部温度T−と外気温度T、の中間値となるよ
うな断熱材の抵抗を選ばなくても、本法によれば深部温
度の測定が可能である。なお、深部体温計の平面の形状
はある程度以上の大きさでなければ、環境温度の影響を
受け、温度センサ2で得られる値が理論どおりにならな
い。具体的には直径3備であれば、どのような部位にも
心音計用の両面テープ(例えばツクダミ子)等で容易に
装着できる。しかし、円形とは限らず、他の形状であっ
てもよい。
Next, the material of the insulation material 1 can be any material according to the formula αO, but if the thermal conductivity of the insulation material is within two digits compared to the thermal conductivity of the skin, the insulation material is This is unfavorable in terms of the thickness of the material and the measurement error of the temperature sensor. Here, the thickness of the core thermometer is 1c! A heat insulating material with a thermal conductivity of about 1/2 that of the skin was used so that the body surface temperature T was an intermediate value between the deep temperature T- and the outside air temperature T1. That is, celluloid (0.50 X I at 30C
O-" cat/cm ・9 [% knee C), polyethylene/(27c 0.5 a Xl 0-' Ca L 7
cm ・n @ C), silicone rubber (0.
48X10-"cat/cnaF13"=・c) was used. If these have a thickness of about 1 cTn, the resistance R, to heat flow is 2 x 10'(cm"・"liK
・C/Ca1J, which is the same as that of the skin. As mentioned above, the heat insulating material can be made of other materials and have different thicknesses. Furthermore, according to this method, it is possible to measure the core temperature without selecting the resistance of the insulation material such that the body surface temperature T when wearing the core thermometer is an intermediate value between the core temperature T- and the outside temperature T. be. Note that unless the plane shape of the core thermometer is larger than a certain level, it will be affected by the environmental temperature and the value obtained by the temperature sensor 2 will not be as theoretical. Specifically, as long as it has a diameter of 3, it can be easily attached to any part using double-sided tape for phonocardiographs (for example, Tsukuda Miko). However, it is not limited to a circular shape, and may have other shapes.

第2図に温度測定回路の一実施例を示す。該回路は体表
面温度測定用温度センサを含むブリッジ回路11、該ブ
リッジ回路の出力電圧を体表面温度に比例して増幅する
増幅回路12、外気温測定用温度センサを含むブリッジ
回路13、該ブリッジ回路13の出力電圧を外気温度に
比例して増幅する増幅回路14、前記2個の増幅回路1
2゜14の出力差をとる減算回路15、該減算回路15
の出力に式αQの(Rs +R−)/R1を掛ける掛算
回路16、該掛算回路16の出力と外気温度を出力する
前記増幅回路14の出力を加算する加算回路17、該加
算回路17の出力をディジタル信号に変換するA/D変
換器18、該A/D変換器18の出力を表示するディジ
タル温度表示部19からなる。なお、表示はA/D変換
器18、ディジタル温度表示部19の代りにアナログ表
示部を用いてもよい。
FIG. 2 shows an embodiment of the temperature measurement circuit. The circuit includes a bridge circuit 11 that includes a temperature sensor for measuring body surface temperature, an amplifier circuit 12 that amplifies the output voltage of the bridge circuit in proportion to the body surface temperature, a bridge circuit 13 that includes a temperature sensor for measuring outside temperature, and the bridge. an amplifier circuit 14 that amplifies the output voltage of the circuit 13 in proportion to the outside temperature; and the two amplifier circuits 1.
A subtraction circuit 15 that takes an output difference of 2°14;
a multiplier circuit 16 that multiplies the output of the expression αQ by (Rs +R-)/R1, an adder circuit 17 that adds the output of the multiplier circuit 16 and the output of the amplifier circuit 14 that outputs the outside air temperature, and the output of the adder circuit 17. It consists of an A/D converter 18 that converts the temperature into a digital signal, and a digital temperature display section 19 that displays the output of the A/D converter 18. Note that an analog display section may be used for display instead of the A/D converter 18 and the digital temperature display section 19.

第2図の装置に用いるブリッジ回路11または13を第
3図に示す。該ブリッジ回路は温度上/す21、抵抗2
2.23からなる。抵抗23は温度セ/す21の特性を
リニアライズするためのものでおり、サーミスタの場合
に有効である。ブリッジの不平衡電圧は第2図の増幅回
路12あるいは14に入力される。
A bridge circuit 11 or 13 used in the device of FIG. 2 is shown in FIG. The bridge circuit has a temperature of 21 and a resistance of 2.
Consists of 2.23. The resistor 23 is for linearizing the characteristics of the temperature sensor 21, and is effective in the case of a thermistor. The unbalanced voltage of the bridge is input to the amplifier circuit 12 or 14 of FIG.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱流補償法によらず、はぼ深部体温に
近い値を、外気温の変化Kかかわらず測定することがで
きる。従って、従来の深部体温計と異なりヒータへの電
力供給が不要で、深部体温や末梢血流循環の長期携帯モ
ニタや、ヒータ制御回路の故障による過加熱による炎症
等の心配がなく安全な温度測定ができる。tた、長期に
わたり装着しておけば、常に皮膚での温度勾配が定常状
態にあるため、温度測定したい時に即時に測れる効果も
ある。さらに1過加熱に対するフェイル・セイフφシス
テムも不要であるため経済性に優れている。
According to the present invention, a value close to the core body temperature can be measured regardless of the change K in the outside temperature, without using the heat flow compensation method. Therefore, unlike conventional core thermometers, there is no need to supply power to the heater, allowing for long-term portable monitoring of core body temperature and peripheral blood circulation, and safe temperature measurement without the risk of inflammation caused by overheating due to failure of the heater control circuit. can. Additionally, if you wear it for a long period of time, the temperature gradient on your skin will always be in a steady state, so you can measure your temperature instantly when you want to. Furthermore, since a fail-safe φ system against overheating is not required, it is highly economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例になる非熱流補償法による深
部体温計の断面図、第2図は本発明の一実施例になる深
部体温測定回路、第3図はブリッジ回路、第4図は従来
の熱流補償法による深部体温計の断面図、第5図は皮膚
と断熱材の温度勾配を示す簡易断面モデルである。 1・・・断熱材、2・・・体表面温度測定用温度センサ
、3・・・外気温測定用温度センサ、4・・・深部体温
計、5・・・皮膚、11.13・・・ブリッジ回路、1
2゜14・・・増幅回路、15・・・減算回路、16・
・・掛算回路、17・・・加算回路、18・・・A/D
変換器、19第 1  図
Fig. 1 is a sectional view of a core body thermometer using a non-heat flow compensation method, which is an embodiment of the present invention, Fig. 2 is a core body temperature measurement circuit, which is an embodiment of the invention, Fig. 3 is a bridge circuit, and Fig. 4 is a cross-sectional view of a core thermometer using the conventional heat flow compensation method, and FIG. 5 is a simple cross-sectional model showing the temperature gradient between the skin and the insulation material. 1... Insulating material, 2... Temperature sensor for measuring body surface temperature, 3... Temperature sensor for measuring outside temperature, 4... Core thermometer, 5... Skin, 11.13... Bridge circuit, 1
2゜14...Amplification circuit, 15...Subtraction circuit, 16.
... Multiplication circuit, 17 ... Addition circuit, 18 ... A/D
Transducer, 19 Fig. 1

Claims (1)

【特許請求の範囲】 1、被測定生体の表面に接触する熱伝導率の比較的小さ
い断熱材と、該断熱材の前記生体への接触面の中心位置
に配置された温度センサと、前記断熱材の前記接触面と
対向する大気接触面の中心位置に配置された温度センサ
とからなることを特徴とする簡易型深部体温計。 2、温度センサとして、サーミスタや白金測温抵抗体な
どの抵抗変化形温度センサ、あるいは熱電対を用いるこ
とを特徴とする特許請求の範囲第1項に記載の簡易型深
部体温計。 3、断熱材として、セルロイド、ポリエチレン、シリコ
ーンゴムを用いることを特徴とする特許請求の範囲第1
項から第2項に記載の簡易型深部体温計。
[Scope of Claims] 1. A heat insulating material having a relatively low thermal conductivity that contacts the surface of the living body to be measured, a temperature sensor disposed at the center of the contact surface of the heat insulating material to the living body, and the heat insulating material having a relatively low thermal conductivity; A simple deep body thermometer comprising a temperature sensor disposed at the center of an air contact surface facing the contact surface of the material. 2. The simple deep body thermometer according to claim 1, wherein a variable resistance temperature sensor such as a thermistor or a platinum resistance thermometer, or a thermocouple is used as the temperature sensor. 3. Claim 1, characterized in that celluloid, polyethylene, or silicone rubber is used as the heat insulating material.
The simple core thermometer described in Items 1 to 2.
JP59240669A 1984-11-16 1984-11-16 Simple deep-part clinical thermometer Pending JPS61120026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59240669A JPS61120026A (en) 1984-11-16 1984-11-16 Simple deep-part clinical thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59240669A JPS61120026A (en) 1984-11-16 1984-11-16 Simple deep-part clinical thermometer

Publications (1)

Publication Number Publication Date
JPS61120026A true JPS61120026A (en) 1986-06-07

Family

ID=17062938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59240669A Pending JPS61120026A (en) 1984-11-16 1984-11-16 Simple deep-part clinical thermometer

Country Status (1)

Country Link
JP (1) JPS61120026A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606202A4 (en) * 1989-09-12 1995-04-19 Kenneth Naoyuki Matsumura Device for computer-assisted monitoring of the body.
US6220750B1 (en) * 1999-03-29 2001-04-24 Yoram Palti Non-invasive temperature measurement method and apparatus
WO2002031457A1 (en) * 2000-10-13 2002-04-18 Seb S.A. Non-invasive electronic thermometer
JP2006153572A (en) * 2004-11-26 2006-06-15 Sakano Kazuhito Method and instrument for measuring body temperature
US7249883B2 (en) 2004-09-15 2007-07-31 Seiko Epson Corporation Thermometer, electronic device having a thermometer, and method for measuring body temperature
JP2007212407A (en) * 2006-02-13 2007-08-23 Kanazawa Univ Non-heating type deep part medical thermometer and deep part temperature measuring device using it
US7284904B2 (en) * 2001-04-11 2007-10-23 Omron Corporation Electronic clinical thermometer
JP2008502903A (en) * 2004-06-18 2008-01-31 アドヴァンスト・モニターズ・コーポレーション Medical body core thermometer
JPWO2007138699A1 (en) * 2006-05-31 2009-10-01 坂野 數仁 Body temperature measuring method and body temperature measuring device
US7789554B2 (en) 2007-01-17 2010-09-07 DRäGERWERK AKTIENGESELLSCHAFT Double temperature sensor
JP2011027619A (en) * 2009-07-28 2011-02-10 Toyama Sangyo Kk Temperature measurement system and temperature measuring method, temperature control system of elution tester using the same, and temperature control method
US20110243183A1 (en) * 2010-04-02 2011-10-06 Seiko Epson Corporation Temperature measurement device and temperature measurement method
EP2450683A2 (en) 2010-11-05 2012-05-09 Citizen Holdings Co., Ltd. Temperature measuring device
JP2012098259A (en) * 2010-11-05 2012-05-24 Citizen Holdings Co Ltd Temperature measurement device
JP2012207943A (en) * 2011-03-29 2012-10-25 Murata Mfg Co Ltd Thermometer and body temperature measurement system
JP2014167480A (en) * 2014-04-16 2014-09-11 Seiko Epson Corp Thermometer and temperature measuring method
US10750951B1 (en) 2016-02-25 2020-08-25 Verily Life Sciences Llc Core temperature measurement using asymmetric sensors
EP4300062A1 (en) * 2022-06-28 2024-01-03 Samsung Electronics Co., Ltd. Electronic device and method of estimating body temperature using the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606202A4 (en) * 1989-09-12 1995-04-19 Kenneth Naoyuki Matsumura Device for computer-assisted monitoring of the body.
US6220750B1 (en) * 1999-03-29 2001-04-24 Yoram Palti Non-invasive temperature measurement method and apparatus
WO2002031457A1 (en) * 2000-10-13 2002-04-18 Seb S.A. Non-invasive electronic thermometer
FR2815407A1 (en) * 2000-10-13 2002-04-19 Seb Sa Electronic medical thermometer includes sensor in cavity place in contact with skin, with surrounding cavity providing isolation
US7284904B2 (en) * 2001-04-11 2007-10-23 Omron Corporation Electronic clinical thermometer
JP2008502903A (en) * 2004-06-18 2008-01-31 アドヴァンスト・モニターズ・コーポレーション Medical body core thermometer
JP4824020B2 (en) * 2004-06-18 2011-11-24 アドヴァンスト・モニターズ・コーポレーション Medical body core thermometer
US7249883B2 (en) 2004-09-15 2007-07-31 Seiko Epson Corporation Thermometer, electronic device having a thermometer, and method for measuring body temperature
JP4711664B2 (en) * 2004-11-26 2011-06-29 坂野 數仁 Body temperature measuring method and body temperature measuring device
JP2006153572A (en) * 2004-11-26 2006-06-15 Sakano Kazuhito Method and instrument for measuring body temperature
JP2007212407A (en) * 2006-02-13 2007-08-23 Kanazawa Univ Non-heating type deep part medical thermometer and deep part temperature measuring device using it
JPWO2007138699A1 (en) * 2006-05-31 2009-10-01 坂野 數仁 Body temperature measuring method and body temperature measuring device
US7789554B2 (en) 2007-01-17 2010-09-07 DRäGERWERK AKTIENGESELLSCHAFT Double temperature sensor
JP2011027619A (en) * 2009-07-28 2011-02-10 Toyama Sangyo Kk Temperature measurement system and temperature measuring method, temperature control system of elution tester using the same, and temperature control method
US20110243183A1 (en) * 2010-04-02 2011-10-06 Seiko Epson Corporation Temperature measurement device and temperature measurement method
US9341519B2 (en) 2010-04-02 2016-05-17 Seiko Epson Corporation Temperature measurement device and temperature measurement method
US8783946B2 (en) * 2010-04-02 2014-07-22 Seiko Epson Corporation Temperature measurement device and temperature measurement method
CN102525429A (en) * 2010-11-05 2012-07-04 西铁城控股株式会社 Temperature measuring device
JP2012098259A (en) * 2010-11-05 2012-05-24 Citizen Holdings Co Ltd Temperature measurement device
EP2450683A2 (en) 2010-11-05 2012-05-09 Citizen Holdings Co., Ltd. Temperature measuring device
JP2012207943A (en) * 2011-03-29 2012-10-25 Murata Mfg Co Ltd Thermometer and body temperature measurement system
JP2014167480A (en) * 2014-04-16 2014-09-11 Seiko Epson Corp Thermometer and temperature measuring method
US10750951B1 (en) 2016-02-25 2020-08-25 Verily Life Sciences Llc Core temperature measurement using asymmetric sensors
EP4300062A1 (en) * 2022-06-28 2024-01-03 Samsung Electronics Co., Ltd. Electronic device and method of estimating body temperature using the same

Similar Documents

Publication Publication Date Title
JPS61120026A (en) Simple deep-part clinical thermometer
US7314309B2 (en) Ambient and perfusion normalized temperature detector
CN110121291B (en) Patch for determining temperature
US3933045A (en) Temperature measurement
JPS6358223A (en) Clinical thermometer device
EP1857795B1 (en) Tympanic thermometer
EP0077073B1 (en) Method for transcutaneous measurement of a blood parameter and an electrochemical measuring electrode device for carrying out the method
EP2459976B1 (en) Sensor and method for determining a core body temperature
US20180008149A1 (en) Systems and Methods of Body Temperature Measurement
US20060056487A1 (en) Thermometer, electronic device having a thermometer, and method for measuring body temperature
WO2018167765A1 (en) Method, system and device for noninvasive core body temperature monitoring
US20220000370A1 (en) Core body temperature sensor system based on flux measurement
JP2008502903A (en) Medical body core thermometer
US20220128413A1 (en) Core body temperature sensor and method for the manufacturing thereof
CN109008989A (en) The measurement method and equipment of abdomen core temperature
Saurabh et al. Continuous core body temperature estimation via SURFACE temperature measurements using wearable sensors-is it feasible?
Betta et al. An assessment of infrared tympanic thermometers for body temperature measurement
JPS61120027A (en) Simple type clinical thermometer for deep part
JP3920662B2 (en) Electronic thermometer
Tanaka et al. Robust skin attachable sensor for core body temperature monitoring
Finvers et al. Wireless temporal artery bandage thermometer
JPS622526B2 (en)
WO2024075281A1 (en) Temperature measurement device, method, and program
US11874173B1 (en) Devices and methods for detecting inflammation
JPH0239229Y2 (en)