JPS6111827A - Control device of power supply for freezing and air conditioning - Google Patents

Control device of power supply for freezing and air conditioning

Info

Publication number
JPS6111827A
JPS6111827A JP59134588A JP13458884A JPS6111827A JP S6111827 A JPS6111827 A JP S6111827A JP 59134588 A JP59134588 A JP 59134588A JP 13458884 A JP13458884 A JP 13458884A JP S6111827 A JPS6111827 A JP S6111827A
Authority
JP
Japan
Prior art keywords
transformer
temperature
refrigeration
control device
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59134588A
Other languages
Japanese (ja)
Inventor
Yoshio Sasaki
佐々木 芳男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59134588A priority Critical patent/JPS6111827A/en
Publication of JPS6111827A publication Critical patent/JPS6111827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To reduce the capacity of a transformer by feeding back the change of a freezing/air conditioning temperature to a control device for turning on/off freezers/air conditioners as a set point necessary for the protection of the transformer. CONSTITUTION:The freezers/air conditioners 1a-1n are connected to the oil- immersed transformer 2 through electromagnetic contacts 11a-11n. A sensor 12 for measuring the peripheral temperatur of the transformer 2 is arranged at the vicinity of the transformer 2. A rated value of the transformer 2 is set in a setting part 7. The detected output of a sensor 15 for detecting the temperatures of rooms cooled by the freezers/air conditioners 1a-1n is applied to a peripheral temperature input part 13 together with the data of the sensor 12. An operation part 8 calculates a rated current, a load ratio, etc. of the transformer 2 on the basis of the data of a transformer current input part 6, the peripheral temperature input part 13 and a setting part 7.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は冷凍空調室温の変化によシ変圧−の容量を一
時的に変更するようにした冷凍空調用電力供給制御装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a power supply control device for a refrigeration air conditioner that temporarily changes the capacity of a transformer voltage depending on a change in the room temperature of the refrigeration air conditioner.

〔従来技術〕[Prior art]

従来のこの稲の装置として、第1図に示すものが知られ
ている。この第1図において、11〜1・nは冷凍装置
、空調装置などで、変圧器の負荷であり、これらの冷凍
装置、空調装置1a〜1nは電磁接触器11a〜11n
を介して、油入変圧器2(以下、変圧器と云う)の2次
側に接続されている。
As a conventional rice cultivation device, the one shown in FIG. 1 is known. In this FIG. 1, 11 to 1·n are refrigeration equipment, air conditioning equipment, etc., which are loads on the transformer, and these refrigeration equipment and air conditioning equipment 1a to 1n are electromagnetic contactors 11a to 11n.
It is connected to the secondary side of an oil-immersed transformer 2 (hereinafter referred to as a transformer) via.

この変圧器201次側は電力線3に接続されている。変
圧器2の2次側の電流は電流変換装置4で検出するよう
になっておシ、この電流変換装置4の出力は制御装置1
4の変圧器電流値入力部6に送出するようになっている
The primary side of this transformer 20 is connected to the power line 3. The current on the secondary side of the transformer 2 is detected by a current converter 4, and the output of this current converter 4 is detected by the controller 1.
4 is sent to the transformer current value input section 6.

また、変圧器2の近傍には、変圧器周囲温度測定用のセ
ンサ12が設けられており、このセンサ。12によって
変圧器2の周囲の温度を検出するようにしている。この
センサ12(D−出力は周囲温度値入力部13に入力す
るようになってい社変圧器電流値入力部61周囲温度値
入力部13゜設定部Iの出力は演・算部8に送出するよ
うになっている。
Further, a sensor 12 for measuring the temperature around the transformer is provided near the transformer 2. 12 detects the temperature around the transformer 2. The output of this sensor 12 (D- output is input to the ambient temperature value input section 13, transformer current value input section 61, ambient temperature value input section 13°, and the output of the setting section I is sent to the calculation section 8. It looks like this.

この演算部8の出力および記憶部9の出力は出力制御部
10に送出するようになってお9、この出力制御部10
の出力によシ、電磁接触器11a〜tinの開閉制御を
行うようにしている。
The output of the calculation section 8 and the output of the storage section 9 are sent to an output control section 10.
The opening/closing control of the electromagnetic contactors 11a to 11a to 11a is performed based on the output.

次に動作について説明する。冷凍装置、空調装置1a〜
1nを運転すると負′#Iが生じるため、変圧器2を介
して電流が流れる。この電流値は電流変換装置4よシ変
圧器電流値入力部6へ入力される。また、変圧器周囲温
度、はセンサ12よシ周囲温度値入力部13へ入力され
る。
Next, the operation will be explained. Refrigeration equipment, air conditioning equipment 1a~
When 1n is operated, a negative '#I is generated, so current flows through the transformer 2. This current value is inputted from the current converter 4 to the transformer current value input section 6. Further, the transformer ambient temperature is inputted from the sensor 12 to the ambient temperature value input section 13 .

一方、゛設定部1においては、あらかじめ変圧器2の定
格容量、定格電圧、相数2時定数、損失比。
On the other hand, in the setting section 1, the rated capacity, rated voltage, number of phases 2 time constant, and loss ratio of the transformer 2 are set in advance.

最高点油温上昇が設定されている。演算部8は変−圧器
電流値入力部62周囲温度値入力i1s、設定部Tのデ
ータをもとに、変圧器2の定格電流。
The highest point oil temperature rise is set. The calculation section 8 calculates the rated current of the transformer 2 based on the data from the transformer current value input section 62, the ambient temperature value input i1s, and the setting section T.

負荷率、変圧器内油温度、最高巻線温度、寿命損失率を
次のように演算する。
The load factor, oil temperature in the transformer, maximum winding temperature, and life loss rate are calculated as follows.

ここで、T:変圧器周囲温度 R:損失比一定負荷時の負荷損と無負荷損の比 τ:時定数 θθN:最高点油温上昇−油温の最も高い場所における
温度上昇度 最高巻線温度θ、=G(θθ、Kn、T)−1”油入寒
圧器の寿命は絶縁物の劣化によるが、この劣化に最も大
きな影響を与えるものが、油温度と巻線温度である。絶
縁物劣化の法則により変圧器の寿命Y=’a −EXP
 (−’b、θH)1.。(6)ここでa、  bは定
数 が成り立つ。
Here, T: Transformer ambient temperature R: Loss ratio Ratio of load loss to no-load loss at constant load τ: Time constant θθN: Highest point oil temperature rise - Maximum temperature rise at the highest point of oil temperature winding Temperature θ, = G (θθ, Kn, T) - 1" The life of an oil-immersed cryostat depends on the deterioration of the insulator, but the things that have the biggest influence on this deterioration are the oil temperature and the winding temperature. Insulation According to the law of material deterioration, the life of the transformer is Y = 'a - EXP
(-'b, θH)1. . (6) Here, a and b are constants.

次に基準となる寿命をYoとすると、YOは基準となる
最高巻線温度θHOよシ求められ、YO= a−EX 
P、 (’−’b−θHci)  、−−(6)   
゛となる。したがって、寿命Yとの比(寿命損失率)を
とれば Y=YO−ExP (−b ・(θR−θno) ) 
= (8)一般的に、θno = 95℃、Yo=30
年とされている。いま、最高巻線温度θH1で運転をし
続ければ、その寿命Y1は(S)式よシ、 Yl−Yo、E X P (b ・(θa1−8go)
 ) −−−(g)となる。この状態でh1時間運転し
た場合には、その寿命損失v1は、 v1=−・・・(10) v1=1となったときにその変圧器社寿命がきたという
Next, if the reference life is Yo, then YO is determined from the reference maximum winding temperature θHO, and YO = a-EX
P, ('-'b-θHci), --(6)
It becomes ゛. Therefore, if we take the ratio to life Y (life loss rate), then Y=YO-ExP (-b ・(θR-θno))
= (8) Generally, θno = 95°C, Yo = 30
It is said to be the year. Now, if we continue to operate at the maximum winding temperature θH1, the life Y1 will be as follows from equation (S): Yl-Yo, E X P (b ・(θa1-8go)
)---(g). When the transformer is operated for h1 hours in this state, the life loss v1 is: v1=-...(10) When v1=1, the transformer's life is said to have come to an end.

通常、変圧器の負荷は時間とともに変化するため、最高
巻線温度θ■も時間とともに変化し、時間をtとすれば
θn(t)と表わせる。また、寿命損失率もv(t)と
表わせる。したがって、ある時間t1よシある時間t2
までの寿命損失Vは、 時間t1 = oにすれば、始動時よシの寿命損失v2
が求められ、t2までの寿命Y2は、 Y2=V2°Y0      ・・・(13)残9の寿
命Y2は、 Y2’=YO−(1−V2 )  −−−(14)とな
る。寿命損失率v (t)を監視していれば基準となる
寿命Yo運転できるわけである、以上によシ、演算部8
においては(1)〜(7)式をある一定時間間隔で演算
し、出力制御部10へ出力する。記憶部9においては、
負荷率、油温度9巻線温度、寿命損失率それぞれに対す
る目標値(負荷のしゃ断、投入の係数)をあらかじめ記
憶している。
Normally, the load on the transformer changes with time, so the maximum winding temperature θ■ also changes with time, and if time is t, it can be expressed as θn(t). Further, the life loss rate can also be expressed as v(t). Therefore, a certain time t1 and a certain time t2
If time t1 = o, then the life loss V2 during starting is
is calculated, and the lifespan Y2 up to t2 is: Y2=V2°Y0 (13) The remaining 9 lifespans Y2 are: Y2'=YO-(1-V2) ---(14). If the life loss rate v (t) is monitored, the standard life Yo operation can be achieved.
In this step, equations (1) to (7) are calculated at certain fixed time intervals and outputted to the output control section 10. In the storage unit 9,
Target values (load cutoff and load load coefficients) are stored in advance for each of the load factor, oil temperature, winding temperature, and life loss rate.

出力制御部10においては、演算部8の出力と記憶部9
の内容を比較し、負荷率、油温度1巻線温度、寿命損失
率の内一つでもしゃ新係数を越えていれば、電極接触器
11&〜11nを順次開放′し、すべてが投入係数を下
まわれば、電磁接触器116〜11nを順次閉じること
により、冷凍装置、空調装置1a〜1nを制御する。
In the output control section 10, the output of the calculation section 8 and the storage section 9
If any one of the load factor, oil temperature, winding temperature, and life loss rate exceeds the new coefficient, the electrode contactors 11&~11n are sequentially opened and all of them meet the input coefficient. If it falls below, the refrigeration equipment and air conditioners 1a to 1n are controlled by sequentially closing the electromagnetic contactors 116 to 11n.

従来の変圧器の制御装置は以上のように構成されておシ
、変圧器保護の目的のみの制御であるため、冷凍空調装
置の使用電力を抑制するためには、設定頻度が多く手間
がかかるうえ、設定値を誤ると必要な冷凍、空調が行わ
れなかったシ、電力を抑制できないなどの欠点があった
Conventional transformer control devices are configured as described above, and since the control is only for the purpose of protecting the transformer, it requires frequent settings and is time-consuming in order to reduce the power consumption of the refrigeration and air conditioning equipment. Moreover, if the set values are incorrect, the necessary refrigeration and air conditioning may not be performed, and electricity consumption may not be suppressed.

〔発明の概要〕[Summary of the invention]

この発明はかかる欠点を改善する目的でなされたもので
、変圧器の保護に必要な設定値として冷凍空調温度の変
化を制御装置にフィードバックして変圧器の負荷が小さ
い場合にも冷凍装置、空調装置への電力供給制御を制御
装置によりデマンドコントロールできるようにすること
により使用電力を抑制することのできる冷凍空調用電力
供給制御装置を提案するものである、 〔発明の実施例〕 以下、この発明の冷凍空調用電力供給制御装置の実施例
について図面に基づき説明する。第2図れその一実施例
の構成を示すブロック図である。
This invention was made with the purpose of improving this drawback, and the change in the refrigeration and air conditioning temperature is fed back to the control device as a set value necessary for protecting the transformer, so that even when the load on the transformer is small, the refrigeration equipment and the air conditioning This invention proposes a power supply control device for refrigeration and air conditioning that can suppress power consumption by enabling demand control of power supply to the device by a control device. [Embodiments of the Invention] This invention will be described below. An embodiment of the power supply control device for refrigeration and air conditioning will be described based on the drawings. FIG. 2 is a block diagram showing the configuration of an embodiment of the present invention.

この第一、2図において、重複説明を、避けるために、
第1mと同一部分には同一符号を付してその説明を省略
し、第1図とは異なる部分を重点的に述べる。
In these first and second figures, in order to avoid duplicate explanation,
The same parts as those in FIG. 1m are given the same reference numerals, and the explanation thereof will be omitted, and the parts different from those in FIG. 1 will be mainly described.

この第2図を第1図と比較しても明らかなように、第2
図では、温度測牟センサ15が新たに設けられたもので
ある。すなわち、この温度測定センサ15は冷凍装置、
空調装置18〜1nによシ冷却される部屋の温度を検出
するものであシ、その検出出力は周囲温度値人力部13
に送出するようになっている。その他の構成は第1図と
同様である。
As is clear from comparing this Figure 2 with Figure 1,
In the figure, a temperature sensor 15 is newly provided. That is, this temperature measurement sensor 15 is a refrigeration device,
It detects the temperature of the room cooled by the air conditioners 18 to 1n, and its detection output is the ambient temperature value human power section 13.
It is designed to be sent to The other configurations are the same as in FIG. 1.

次に、以上のように構成されたこの発明の冷凍空調用電
力供給制御装置の動作について説明する。
Next, the operation of the refrigeration and air conditioning power supply control device of the present invention configured as described above will be explained.

この動作の説明に際しても、この発明の特徴をなす部分
のみを主体的に述べることにする。
In explaining this operation, only the features of the present invention will be mainly described.

冷凍空調装置ia〜1nを運転すると部屋の温度が変化
するが、塩度測定センサ15によシ検出された周囲温度
値入力部13へ入力される。
When the refrigeration and air conditioners ia to 1n are operated, the temperature of the room changes, and the ambient temperature value detected by the salinity measurement sensor 15 is input to the input section 13.

一方、設定部7においては、あらかじめ制御温度Tを設
定すると記憶部9にiの値が保管されている、温度測定
センサ15の値を演算部8で比較し、Ta≦(T−α工
)の場合は上述の 式における定格容量をβ%小さい値
に変更する0 、その後、を時間経過し、再び測定温度Tsと制御温度
Tを比較し、Ts≦(T−αl)であれば再び定縞容量
をさらにβ%小さい値に変更する。
On the other hand, in the setting section 7, when the control temperature T is set in advance, the value of the temperature measurement sensor 15, whose value of i is stored in the storage section 9, is compared in the calculation section 8, and Ta≦(T-α engineering). In the case of 0, change the rated capacity in the above formula to a value smaller by β%.After that, the measured temperature Ts and the control temperature T are compared again, and if Ts≦(T−αl), the rated capacity is determined again. The fringe capacitance is further changed to a smaller value by β%.

さらに、を時間後Ts≧(T +a?り ”t’あれば
、定格容量をβ%大きい値に変更する。さらに、を時間
後にTa≧(T+α2)であれば、定格容量をβ%大き
い値に変更する。ただし初期に入力された容量以上の値
はとれない。また、(T+α2)>Tl!>(T−αl
)でふれば定格容量は変更しない。上述のT、α1.α
2.βは任意の値として設定部1に入力できる。
Furthermore, if Ts ≥ (T + a? t') after the time, the rated capacity is changed to a value larger by β%.Furthermore, if Ta ≥ (T + α2) after the time, the rated capacity is changed to a value larger by β%. However, it cannot take a value greater than the initially input capacity.Also, (T+α2)>Tl!>(T-αl
), the rated capacity will not change. The above T, α1. α
2. β can be input into the setting section 1 as an arbitrary value.

上記実施例ではβを%としたが、KvAなどの絶対値で
あってもよい。また変更後の定格容量がいつでも読みと
れたシ記憶できる装置にすることも可能である。さらに
門圧器2は油入の他、乾式への流用も可能である。
Although β is expressed as a percentage in the above embodiment, it may be an absolute value such as KvA. It is also possible to use a device that can read and store the changed rated capacity at any time. Furthermore, the gate pressure regulator 2 can be used not only in oil but also in a dry type.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、変圧器の保護に必要な
設定値として、冷凍空調温度の変化を、変圧器の負荷と
なる冷凍装置、空調装置の電源投入、しゃ断制御を行う
制御装置にフィードバックして、変圧器の負荷が小さい
場合にも冷凍装置。
As explained above, this invention feeds back changes in the refrigeration and air conditioning temperature to the control device that performs power-on and shut-off control of the refrigeration equipment and air conditioner, which serve as loads on the transformer, as set values necessary for protecting the transformer. refrigeration system even when the load on the transformer is small.

空調装置への電力供給制御を制御装置によシデマンドコ
ントロールできるようにしたので、年間の冷凍空調の最
大負荷に対して最小の変圧器容量で済む電源設備とする
ことができる上冬期などの最小負荷に変化しても変圧器
の容量を負荷相応の最小容量として扱う制御を行うこと
ができるとともに、使用電力を抑制できる冷凍空調用の
デマンドコントロールの機能も得られる効果がある。
Since the power supply to the air conditioner can be demand-controlled by the control device, the power supply equipment can be configured to require the minimum transformer capacity for the maximum annual load of refrigeration and air conditioning. Even if the load changes, the capacity of the transformer can be controlled to be the minimum capacity corresponding to the load, and it also has the effect of providing a demand control function for refrigeration and air conditioning that can suppress power consumption.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷凍空調用電力供給制御装置のブロック
図、第2図紘この発明の冷凍空調用電力供給制御装置の
一実施例のプにツク図である。 1a〜1n・・・冷凍装置、空調装置、2・・・油入変
圧器、3・・・電力線、4・・・変圧器電流変換装置、
6・・・変圧器電流値入力部、7・・・設定部、8・・
・演算部、9・・・記憶部、10・・・出力制御部、1
18〜11n・・・電磁接触器、12・・・温度測定用
センサ、°13・・・周囲温度値入力部、14・・・制
御装置、15・・・温度測定センサ なお、図中同一符号は同一また位相当部分を示す。 ・代理人 大岩 増雄 (ほか2名) 第1図 第2図 手続補正書(自発) 1.事件の表示   特願昭59−134588号2、
発明の名称   冷凍空調用電力供給制御装置3、補正
をする者 代表者片山仁へ部 5、補正の対象 (1)明細書の特許請求の範囲の欄 (2)明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書の特許請求の範囲を別紙の通、り補正する
。 (2)明細書第4頁の式(2) と補正する。 7、添付書類 (1)補正後の特許請求の範囲の 全文を記載した書面      1通 補正後の特許請求の範囲 の全文を記載した書面 2、特許請求の範囲 複数個の冷凍装置、空調装置、この冷凍装置。 空調装置に電力を供給する変圧器、ζつ変°圧器と上記
冷凍装置、空調装置間に接続されこの冷凍装置、空調装
装置への電力の供給およびしゃ断を行う電磁接触器、上
記変圧器の周囲温度を検出する変圧器周囲温度測定用セ
ンサ、上記冷凍装置、空調装置により冷却される部屋の
温度を検出する温度測定用センサ、上記変圧器の電流と
上記変圧器周囲温度測定用センサの検出出力および温度
測定用センサの検出出力ならびにあらかじめ設定された
上記変圧器の定格容量、定格電圧、相数1時定数。 損失比、最高点油温上昇とにより変圧器の定格容量に対
するその負荷率、絶縁温度1巻線温度、寿命損失を演算
して上記電磁接触器の開閉制御を行って変圧器の定格容
量を変更する制御装置を備えてなる冷凍空調用電力供給
制御装置。
FIG. 1 is a block diagram of a conventional power supply control device for refrigeration and air conditioning, and FIG. 2 is a schematic diagram of an embodiment of the power supply control device for refrigeration and air conditioning according to the present invention. 1a to 1n... Refrigeration device, air conditioner, 2... Oil-immersed transformer, 3... Power line, 4... Transformer current converter,
6...Transformer current value input section, 7...Setting section, 8...
- Arithmetic unit, 9... Storage unit, 10... Output control unit, 1
18 to 11n...Magnetic contactor, 12...Temperature measurement sensor, °13...Ambient temperature value input section, 14...Control device, 15...Temperature measurement sensor Note that the same reference numerals are used in the drawings. indicate the same or equivalent parts.・Agent Masuo Oiwa (and 2 others) Figure 1 Figure 2 Procedure amendment (voluntary) 1. Indication of the incident: Patent Application No. 134588/1988 2,
Title of the invention Refrigeration and air conditioning power supply control device 3, Person making the amendment Representative Hitoshi Katayama Department 5, Subject of amendment (1) Claims column of the specification (2) Detailed description of the invention in the specification Column 6, Contents of amendment (1) The claims of the specification are amended as shown in the attached sheet. (2) Correct the formula (2) on page 4 of the specification. 7. Attached documents (1) A document stating the entire text of the amended scope of claims. 1 document stating the entire text of the amended scope of claims. 2. Claims Multiple refrigeration equipment, air conditioning equipment, This refrigeration device. A transformer that supplies power to the air conditioner, a transformer and the above-mentioned refrigeration system, an electromagnetic contactor that is connected between the air conditioner and supplies and cuts off power to the refrigeration system and the air conditioner, and a A sensor for measuring the ambient temperature of a transformer that detects the ambient temperature, a sensor for measuring the temperature that detects the temperature of a room cooled by the above-mentioned refrigeration device and an air conditioner, and a sensor for measuring the current of the above-mentioned transformer and the ambient temperature of the above-mentioned transformer. The detected output of the output and temperature measurement sensor, and the preset rated capacity, rated voltage, and 1-phase time constant of the transformer. The rated capacity of the transformer is changed by controlling the opening and closing of the magnetic contactor by calculating the load factor for the rated capacity of the transformer, the insulation temperature, the temperature of one winding, and the life loss based on the loss ratio and the rise in oil temperature at the highest point. A power supply control device for refrigeration and air conditioning, comprising a control device for controlling.

Claims (1)

【特許請求の範囲】[Claims] 複数個の冷凍装置、空調装置、この冷凍装置、空調装置
に電力を供給する変圧器、この変圧器と上記冷凍装置、
空調装置間に接続されこの冷凍装置、空調装置への電力
の供給およびしや断を行う電磁接触器、上記変圧器の周
囲温度を検出する変圧器周囲温度測定用センサ、上記冷
凍装置、空調装置により冷却される部屋の温度を検出す
る温度測定用センサ、上記変圧器の電流と上記変圧器周
囲温度測定用センサの検出出力および温度測定用センサ
の検出出力ならびにあらかじめ設定された上記変圧器の
定格容量、定格電圧、相数、時定数、損失比、最高点油
温上昇とにより変圧器の定格容量に対するその負荷率、
絶縁温度、巻線温度、寿命損失を演算して上記電磁接触
器の開閉制御を行つて変圧器の定格容量を変更する制御
装置を備えてなる冷凍空調用電力供給制御装置。
A plurality of refrigeration devices, an air conditioner, a transformer that supplies power to the refrigeration device and the air conditioner, this transformer and the refrigeration device,
An electromagnetic contactor that is connected between the air conditioners and supplies and cuts off power to the refrigeration device and the air conditioner, a transformer ambient temperature measurement sensor that detects the ambient temperature of the transformer, the refrigeration device, and the air conditioner. a temperature measurement sensor that detects the temperature of the room cooled by the transformer, the current of the transformer, the detection output of the sensor for measuring the ambient temperature of the transformer, the detection output of the temperature measurement sensor, and the preset rating of the transformer. The load factor relative to the rated capacity of the transformer is determined by the capacity, rated voltage, number of phases, time constant, loss ratio, and maximum oil temperature rise.
A power supply control device for refrigeration and air conditioning, comprising a control device that calculates insulation temperature, winding temperature, and life loss to control opening and closing of the electromagnetic contactor to change the rated capacity of a transformer.
JP59134588A 1984-06-27 1984-06-27 Control device of power supply for freezing and air conditioning Pending JPS6111827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59134588A JPS6111827A (en) 1984-06-27 1984-06-27 Control device of power supply for freezing and air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59134588A JPS6111827A (en) 1984-06-27 1984-06-27 Control device of power supply for freezing and air conditioning

Publications (1)

Publication Number Publication Date
JPS6111827A true JPS6111827A (en) 1986-01-20

Family

ID=15131887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59134588A Pending JPS6111827A (en) 1984-06-27 1984-06-27 Control device of power supply for freezing and air conditioning

Country Status (1)

Country Link
JP (1) JPS6111827A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553132A (en) * 1978-10-14 1980-04-18 Mitsubishi Electric Corp Stationary inductor load monitor
JPS5719538A (en) * 1980-07-09 1982-02-01 Matsushita Electric Ind Co Ltd Controlling system for load of air conditioner
JPS5795139A (en) * 1980-12-02 1982-06-12 Tokyo Electric Power Co Power load controller
JPS58154212A (en) * 1982-03-10 1983-09-13 Toshiba Corp Apparatus for supervising and controlling operation of transformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553132A (en) * 1978-10-14 1980-04-18 Mitsubishi Electric Corp Stationary inductor load monitor
JPS5719538A (en) * 1980-07-09 1982-02-01 Matsushita Electric Ind Co Ltd Controlling system for load of air conditioner
JPS5795139A (en) * 1980-12-02 1982-06-12 Tokyo Electric Power Co Power load controller
JPS58154212A (en) * 1982-03-10 1983-09-13 Toshiba Corp Apparatus for supervising and controlling operation of transformer

Similar Documents

Publication Publication Date Title
AU2010229741B2 (en) System and method for estimating an efficiency of a power device
EP3278420B1 (en) Method of controlling an uninterruptible power supply system to optimize component life
US4828016A (en) Programmable electronic thermostat with means for enabling economical recovery
US20170294846A1 (en) Voltage regulation for multi-phase power systems
JPS6111827A (en) Control device of power supply for freezing and air conditioning
EP2346137A2 (en) Arrangement for charging batteries
Genin et al. Diagnostic monitoring in a distribution network
JPS59112607A (en) Temperature monitoring device for transformer and choke coil
Slomovitz Electronic compensation of voltage transformers
JPH11164558A (en) Ac voltage regulating apparatus
Walldorf et al. The use of real-time monitoring and dynamic ratings for power delivery systems and the implications for dielectric materials
Norris The thermal rating of transformers
WO2018186470A1 (en) Monitoring assistance system, monitoring assistance method, and monitoring assistance program
JPS59126611A (en) Controller for transformer cooler
EP3098894B1 (en) Apparatus for calculating charging/discharging conditions employable in sodium-sulfur secondary battery
JPH024146A (en) Power feed control device for air conditioning
JP2527147B2 (en) Relay overload protection relay method
Jangam et al. Transformer Parameters Monitoring System using MATLAB Simulink
US3327128A (en) Protection circuitry utilizing artificial loading
JPH0376569B2 (en)
Mbamaluikem et al. An Automatic Temperature Monitoring and Control System for Electric Power Distribution Panel
US2196413A (en) Current limiting device
JPH01227664A (en) Protective system and device for inverter
JP2021182796A (en) Demand controller
JPH0576180A (en) Displaying method for trouble of converter