JPS61114818A - Apparatus for forming solid configuration - Google Patents

Apparatus for forming solid configuration

Info

Publication number
JPS61114818A
JPS61114818A JP59237055A JP23705584A JPS61114818A JP S61114818 A JPS61114818 A JP S61114818A JP 59237055 A JP59237055 A JP 59237055A JP 23705584 A JP23705584 A JP 23705584A JP S61114818 A JPS61114818 A JP S61114818A
Authority
JP
Japan
Prior art keywords
resin material
container
resin
photocurable resin
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59237055A
Other languages
Japanese (ja)
Inventor
Takashi Morihara
隆 森原
Fumitaka Abe
安部 文▲たか▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59237055A priority Critical patent/JPS61114818A/en
Publication of JPS61114818A publication Critical patent/JPS61114818A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth

Abstract

PURPOSE:To shorten remarkably the time required for smoothing a liquid photo-curable resin material, by providing on a resin holding container a smoothing plate having a length corresponding to the length of one of the sides of the container. CONSTITUTION:A resin supplying section 35 is provided with a squeegee 34 having a length approximately corresponding to the width of a container in the direction orthogonal to the direction in which the container 30 will be moved. The squeegee 34 is positioned at a prescribed height (h) measured from the bottom surface of the container 30. The main scanning position of a laser beam 22 is spaced a distance l apart from the squeegee 34 in the sub- scanning direction. After a certain amount of a liquid photo-curable resin material 31 is supplied from a resin supply section 36, the resin holding container 30 is moved to smooth the resin material by a smoothing plate 34 to cause the resin material layer to have a prescribed thickness, and the curing by exposure is carried out. When the smoothing plate 34 reaches the other end of the holding container 30, the curing by exposure is completed. Then the resin holding container 30 is lowered by a distance corresponding to the thickness of the resin material layer, and is returned to its original prescribed position, and the level adjustment is carried out such that an ftheta lens 28 is positioned at the focus position. The step is repeated, the resulting solid cured resin image is removed, and the liquid photo-curable resin material 31 is washed away.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光硬化型樹脂にレーザビーム照射手段を用いて
選択的に露光硬化を行い、3次元立体情報を表示する立
体模型形状を形成する立体形状形成装置に係り、特に光
硬化型樹脂材の供給手段の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention selectively exposes and cures a photocurable resin using a laser beam irradiation means to form a three-dimensional model shape that displays three-dimensional three-dimensional information. The present invention relates to a three-dimensional shape forming apparatus, and particularly to an improvement in a means for supplying a photocurable resin material.

3次元的な立体情報を表示する方法として、ホログラフ
ィ−による立体視表示、透視図表示、投影図表示及び等
高線表示等が開発され、一般に広く用いられている。こ
れらはホログラフィ−を除いて、何れも3次元情報を2
次元情報に変換する手順が含まれており、表示した立体
形状を直感的に把握し、充分に理解し得るには必ずしも
満足し得る技法とは言えない。
As methods for displaying three-dimensional stereoscopic information, stereoscopic display using holography, perspective view display, projection view display, contour line display, etc. have been developed and are generally widely used. With the exception of holography, all of these methods can convert three-dimensional information into two
It includes a procedure for converting into dimensional information, and is not necessarily a satisfactory technique for intuitively grasping and fully understanding the displayed three-dimensional shape.

この点、前記ホログラフィ−は視覚的、直感的に上記の
技法より極めて有利であるが、立体形状を得るのに再生
装置が必要であり、又、実在しない仮想物体を表示する
ことが困難で有る。
In this respect, the holography is visually and intuitively more advantageous than the above techniques, but it requires a reproduction device to obtain a three-dimensional shape, and it is difficult to display non-existent virtual objects. .

このようなことから立体情報を直感的に把握し理解し易
く表示するためには、模型等の立体形状を作成すること
が最善であることから、立体模型形状を形成する方法と
して、樹脂材収容容器内に光硬化型樹脂材を段階的に供
給し、該樹脂材供給毎にその光硬化型樹脂材をレーザビ
ーム照射手段等により選択的に光硬化させて複雑な立体
模型形状を積層状に形成する方法が提案されている。
For this reason, in order to grasp 3D information intuitively and display it in an easy-to-understand manner, it is best to create a 3D shape such as a model. A photocurable resin material is supplied into a container in stages, and each time the resin material is supplied, the photocurable resin material is selectively photocured using a laser beam irradiation means or the like to form a complex three-dimensional model shape in a layered manner. A method has been proposed.

しかしこのような従来の形成方法にあっては、光硬化型
樹脂材を段階的に供給するのに、オーバーフロ一方式を
用いているため、供給に長時間を要し、全形成工程時間
に大きく影響する問題があり、樹脂供給時間の短縮が要
望されている。
However, in such conventional forming methods, an overflow method is used to supply the photocurable resin material in stages, which requires a long time for supplying and reduces the total forming process time. There are problems that greatly affect this, and there is a desire to shorten the resin supply time.

〔従来の技術〕[Conventional technology]

従来、光硬化型樹脂材を用い、レーザビーム照射手段に
よって3次元的な立体情報を表示する模型形状を形成す
る方法としては、第7図に示すように液状の光硬化型樹
脂材3を充満した収容容器1内の昇降支持台2を所定寸
法分降下して該昇降支持台2上に一要分の光硬化型樹脂
材4をオーバーフローさせることにより供給する。
Conventionally, as a method of forming a model shape that displays three-dimensional stereoscopic information by using a photocurable resin material using a laser beam irradiation means, as shown in FIG. 7, a liquid photocurable resin material 3 is filled. The elevating support table 2 in the storage container 1 is lowered by a predetermined distance, and one portion of the photocurable resin material 4 is supplied by overflowing onto the elevating support table 2.

しかる後、−要分の光硬化型樹脂材4に対して、例えば
作成すべき模型形状を高さ方向に幾かの輪切り状に分割
した断面情報パターン信号の内の第1情報パターン信号
によってレーザビーム5、又は光硬化型樹脂材4側をX
、 Y方向に移動走査してビーム照射を行い、選択的に
露光硬化せしめて第1硬化樹脂Ff4aを形成する。
After that, - the required photocurable resin material 4 is laser-irradiated with a first information pattern signal among cross-sectional information pattern signals obtained by dividing the model shape to be created into several slices in the height direction. Beam 5 or photocurable resin material 4 side
, beam irradiation is performed by moving and scanning in the Y direction, and selectively exposing and curing to form the first cured resin Ff4a.

次に第8図に示すように再び前記昇降支持台2を所定寸
法分降下し、該昇降支持台2上の前記第1硬化樹脂層4
a上に新たな二層目の光硬化型樹脂材6を前記同様に供
給し、該光硬化型樹脂材6に対して第9図に示すように
第2情報パターン信号によって同様にレーザビーム5を
照射して、選択的に露光硬化せしめ、第2硬化樹脂層6
aを形成する。
Next, as shown in FIG. 8, the lifting support 2 is lowered again by a predetermined distance, and the first cured resin layer 4 on the lifting support 2 is lowered again.
A new second layer of photocurable resin material 6 is supplied on top of a in the same manner as above, and the photocurable resin material 6 is similarly exposed to the laser beam 5 by the second information pattern signal as shown in FIG. is selectively exposed and cured to form a second cured resin layer 6.
form a.

以下同様にして第10図に示すように該昇降支持台2上
の前記第2硬化樹脂層6a上に、更に新たな三層目の光
硬化型樹脂材7を供給し、該光硬化型樹脂材7に対して
第11図に示すように第3情報パターン信号によってレ
ーザビーム5を照射して、選択的に露光硬化せしめ、第
3硬化樹脂層7aを形成することにより、最終的に該液
状の光硬化型樹脂材3中に積層状の立体硬化樹脂像が形
成される。
Thereafter, in the same manner as shown in FIG. 10, a new third layer of photocurable resin material 7 is further supplied onto the second cured resin layer 6a on the lifting support table 2, and the photocurable resin As shown in FIG. 11, the material 7 is irradiated with the laser beam 5 according to the third information pattern signal to selectively cure the material 7 by exposure to form a third cured resin layer 7a, and finally the liquid A laminated three-dimensional cured resin image is formed in the photocurable resin material 3 .

この立体硬化樹脂像を液状光硬化型樹脂材3中より取り
出し、希アルカリ洗浄溶液で該液状光硬化型樹脂材3を
洗い流すことによって、第12図に示すように所望とす
る3次元的な立体情報を表示する模型形状8を作成して
いる。
This three-dimensional cured resin image is taken out from the liquid photocurable resin material 3, and by washing away the liquid photocurable resin material 3 with a dilute alkaline cleaning solution, a desired three-dimensional solid is created as shown in FIG. A model shape 8 for displaying information is being created.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記形成方法における液状光硬化型樹脂
材3の供給方法が、−要分だけ降下した昇降支持台2上
、或いは該昇降支持台2上の既に形成された硬化樹脂層
48又は6a上に、第8図、第10図に示すように液状
光硬化型樹脂材4又は6を自然に流れ込ませる、所謂オ
ーバーフロ一方式により供給しているため、平坦な供給
樹脂面を得るのに該液状光硬化型樹脂材30粘度との関
係と相俟って、かなりの供給時間を必要としている。
However, the method of supplying the liquid photocurable resin material 3 in the above-mentioned forming method is such that the liquid photocurable resin material 3 is supplied onto the elevating support 2 that has been lowered by a certain amount, or onto the cured resin layer 48 or 6a that has already been formed on the elevating support 2. As shown in FIGS. 8 and 10, the liquid photocurable resin material 4 or 6 is supplied by the so-called overflow method, in which it flows naturally. Coupled with the relationship with the viscosity of the photocurable resin material 30, a considerable supply time is required.

従って、上記のように立体形状を積層状に形成する場合
には、該液状光硬化型樹脂材3の全供給時間が、−要分
の樹脂材供給時間の層数倍となり、全形成工程時間に大
きく影響する問題がある。
Therefore, when forming a three-dimensional shape in a layered manner as described above, the total supply time of the liquid photocurable resin material 3 is - the number of layers times the resin material supply time for the essential resin material, and the total forming process time is There is a problem that has a big impact on

又、用いられる液状光硬化型樹脂材3の粘度が高くなる
と供給時間が増大することは勿論のこと、各液状光硬化
型樹脂材層の厚さを薄く制御することが困難となり、形
成工程の高速化、高精度化に大きな障害となっている。
In addition, as the viscosity of the liquid photocurable resin material 3 increases, not only does the supply time increase, but it also becomes difficult to control the thickness of each liquid photocurable resin layer, which slows down the formation process. This is a major obstacle to increasing speed and precision.

更に、既に露光硬化された硬化樹脂層4a、 6b上に
液状光硬化型樹脂材3を供給する場合、各硬化樹脂層の
体積、又は表面積が一定でないため、各樹脂屡形成毎の
樹脂材供給時間が異なり、当該立体形状の全形成工程の
制御が容易でないといった欠点があった。
Furthermore, when supplying the liquid photocurable resin material 3 onto the cured resin layers 4a and 6b that have already been exposed and cured, since the volume or surface area of each cured resin layer is not constant, the supply of the resin material every time each resin layer is formed. There were disadvantages in that the time required was different and that it was not easy to control the entire process of forming the three-dimensional shape.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、樹脂収容容器に収容された液状光硬化型
樹脂材に、レーザ光学系によりビーム照射を行って、該
光硬化型樹脂材を選択的に硬化せしめ、立体形状を形成
する装置において、上記樹脂収容容器上に、該容器の何
れ、が一方の容器幅に対応する長さの平滑板を、樹脂供
給口より樹脂収容容器に供給される液状光硬化型樹脂材
に対して、前記平滑板をその長さ方向と水平に直交する
方向に移動させて平滑面を有する均一な層厚とする構成
より成る本発明による立体形状形成装置によって解決さ
れる。
The above problem occurs in an apparatus that selectively hardens a liquid photocurable resin material housed in a resin storage container by irradiating a beam with a laser optical system to form a three-dimensional shape. , on the resin storage container, each of the containers is provided with a smooth plate having a length corresponding to the width of one of the containers, with respect to the liquid photocurable resin material supplied to the resin storage container from the resin supply port. This problem is solved by the three-dimensional shape forming apparatus according to the present invention, which is configured to move a smooth plate in a direction horizontally orthogonal to the length direction of the smooth plate to form a uniform layer thickness having a smooth surface.

〔作用〕[Effect]

即ち、樹脂収容容器上に該容器の移動方向と直交する容
器幅に対応する長さの平滑板と、光硬化型樹脂材を供給
する複数の樹脂供給口とを平列配置した構成とし、立体
形状を形成するに際し、前記樹脂供給口より光硬化型樹
脂材を樹脂収容容器内に供給し、その供給される光硬化
型樹脂材に対して所定高さに保持された平滑板を当接せ
しめることにより、樹脂収容容器に対して供給される光
硬化型樹脂材の層厚が、短時間で容易に所定層厚に均一
化されると共に、その表面も平滑面とすることが可能と
なる。
That is, a smooth plate having a length corresponding to the width of the container perpendicular to the moving direction of the container and a plurality of resin supply ports for supplying a photocurable resin material are arranged in parallel on the resin storage container, and the three-dimensional When forming the shape, a photocurable resin material is supplied into the resin storage container from the resin supply port, and a smooth plate held at a predetermined height is brought into contact with the supplied photocurable resin material. As a result, the layer thickness of the photocurable resin material supplied to the resin storage container can be easily made uniform to a predetermined layer thickness in a short time, and the surface thereof can also be made smooth.

従って、上記平滑面とされて行く光硬化型樹脂材の表面
に追従して順次レーザ光学系によりビーム照射を選択的
に行い、更に以上のような操作を繰り返すと、所望とす
る立体形状を高速に作成することができる。
Therefore, by sequentially selectively irradiating the beam with the laser optical system following the surface of the photocurable resin material that is becoming a smooth surface, and repeating the above operations, the desired three-dimensional shape can be formed at high speed. can be created.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る立体形状形成装置の一実施例を示
す概略構成斜視図である。
FIG. 1 is a schematic perspective view showing an embodiment of a three-dimensional shape forming apparatus according to the present invention.

同図において21はレーザビーム22を出射するレーザ
装置、23は例えば音響光学効果、電気光学効果、或い
は磁気光学効果等の機能素子を用いた光変調器、24は
反射鏡、25.26はレンズ、27は回転多面鏡、28
は回転多面鏡27によって走査されるレーザビーム22
を、照射面に対して等速度走査を行う機能を有するfθ
レンズであり、該fθレンズ28によって照射面にレー
ザビーム22の焦点を設定することができ、該焦点での
レーザビーム径を微小径とすることができると共に、ビ
ームエネルギーの集中照射が可能となる。29は走査用
反射鏡である。
In the figure, 21 is a laser device that emits a laser beam 22, 23 is an optical modulator using a functional element such as an acousto-optic effect, an electro-optic effect, or a magneto-optic effect, 24 is a reflecting mirror, and 25 and 26 are lenses. , 27 is a rotating polygon mirror, 28
is the laser beam 22 scanned by the rotating polygon mirror 27
fθ, which has the function of uniformly scanning the irradiated surface.
The fθ lens 28 allows the focus of the laser beam 22 to be set on the irradiation surface, and the diameter of the laser beam at the focus can be made minute, and the beam energy can be irradiated in a concentrated manner. . 29 is a scanning reflecting mirror.

又、30は液状光硬化性樹脂材31を収容する樹脂収容
容器、32は支持台、33は該支持台32を矢印Aの方
向に移動走査すると共に、矢印Bで示す上下方向にも微
動調整出来る副走査機構部であり、更に前記樹脂収容容
器30上には、該容器30の移動方向と直交する容器幅
に略相等する長さのスキージ34と、液状光硬化型樹脂
材31を供給する複数の樹脂供給口36を備えた樹脂材
供給部35が図示のように並列配置した構成とされて、
いる。
Further, 30 is a resin storage container containing a liquid photocurable resin material 31, 32 is a support stand, and 33 is a support stand 32 that is moved and scanned in the direction of arrow A, and also finely adjusted in the up and down direction as shown by arrow B. Further, on the resin storage container 30, a squeegee 34 having a length approximately equal to the width of the container perpendicular to the moving direction of the container 30 and a liquid photocurable resin material 31 are supplied. The resin material supply section 35 having a plurality of resin supply ports 36 is arranged in parallel as shown in the figure.
There is.

上記レーザ装置21から出射されたレーザビーム22は
光度11器23で変調され、レンズ25.26により適
当なビーム径に変換されると共に、回転多面鏡27によ
って偏向され、更にfθレンズ28によって等速走査さ
れ、走査用反射鏡29により樹脂収容容器30の液状光
硬化型樹脂材31表面上の走査線Cに焦点を結ぶ形で照
射される。
A laser beam 22 emitted from the laser device 21 is modulated by a luminous intensity detector 23, converted to an appropriate beam diameter by lenses 25 and 26, deflected by a rotating polygon mirror 27, and then at a constant velocity by an fθ lens 28. The light is scanned and irradiated by the scanning reflecting mirror 29 in a focused manner onto the scanning line C on the surface of the liquid photocurable resin material 31 of the resin container 30 .

さて、上記した装置を適用して3次元的な立体情報を表
示する所望の立体模型形状を形成するには、先ず第2図
に示すように支持台32上に載置された樹脂収容容器3
0内にスキージ34を該容器3oの底面より所定高さh
に離間配置すると共に、fθレンズ28の焦点位置も前
記所定高さh面に調節する。又、レーザビーム22の主
走査位置を前記スキージ34と副走査方向に間隔lだけ
離間して定める。
Now, in order to form a desired three-dimensional model shape for displaying three-dimensional three-dimensional information by applying the above-described apparatus, first, as shown in FIG.
Place the squeegee 34 into the container 3o at a predetermined height h from the bottom of the container 3o.
At the same time, the focal position of the fθ lens 28 is also adjusted to the predetermined height h plane. Further, the main scanning position of the laser beam 22 is set apart from the squeegee 34 by a distance l in the sub-scanning direction.

次に、例えば樹脂材供給部35の複数の樹脂供給口、本
実施例では2つの樹脂供給口36より一定量の液状光硬
化型樹脂材31の供給後、前記樹脂収容容器30を副走
査機構部33により矢印Aの方向に移動させる。
Next, after a certain amount of liquid photocurable resin material 31 is supplied from, for example, a plurality of resin supply ports of the resin material supply section 35, two resin supply ports 36 in this embodiment, the resin container 30 is moved to the sub-scanning mechanism. 33 in the direction of arrow A.

この際に供給される前記樹脂材31は第3図に示すよう
に平滑板34によって所定層厚に平滑にならされ、て行
き、樹脂収容容器30が移動開始位置より間隔2以上移
動した時点より、該液状光硬化型樹脂材層31に対して
、図示しない形状信号制御回路からの出力する信号、例
えば作成すべき立体模型形状を幾つかに輪切り状に分割
した断面情報パターン信号に基づいて、変調されたレー
ザビーム22の走査による光照射により順次選択的に露
光硬化が行われる。
The resin material 31 supplied at this time is smoothed to a predetermined thickness by a smoothing plate 34 as shown in FIG. , based on a signal outputted from a shape signal control circuit (not shown) to the liquid photocurable resin material layer 31, for example, a cross-sectional information pattern signal obtained by dividing the three-dimensional model shape to be created into several slices. Exposure and curing is sequentially and selectively performed by light irradiation by scanning with the modulated laser beam 22.

即ち、平滑板34によって樹脂材31を所定層厚に平滑
化することと、該樹脂材層31に対するレーザビーム2
2の主走査による露光硬化等が略同時に並行して行われ
る。
That is, the resin material 31 is smoothed to a predetermined layer thickness by the smoothing plate 34, and the laser beam 2 is applied to the resin material layer 31.
Exposure and curing by the second main scanning are performed substantially simultaneously and in parallel.

やがて第4図に示すように平滑板34が該収容容器3δ
の他端に達すると共に、露光硬化が終了すると同時に樹
脂収容容器30の移動も停止する。
Eventually, as shown in FIG.
Upon reaching the other end, the movement of the resin container 30 also stops at the same time as the exposure curing ends.

次に第5図に示すように次層形成分として液状光硬化型
樹脂材31の供給・露光硬化を行う樹脂材要分の厚さ寸
法だけ副走査機構部33により樹脂収容容器30を矢印
Bの方向に降下させると共に、該樹脂収容容器30を第
6図に示すように当初の所定位置へ迅速に戻し、更に次
層の表面が走査反射鏡29を介してfθレンズ28の焦
点位置となるようにレベル調整を行う。
Next, as shown in FIG. 5, the resin storage container 30 is moved by arrow B by the sub-scanning mechanism 33 by the thickness of the resin material that is to be supplied and exposed to cure the liquid photocurable resin material 31 as a component to form the next layer. At the same time, the resin container 30 is quickly returned to the initial predetermined position as shown in FIG. Adjust the level accordingly.

尚、この時、先の樹脂材31供給での余剰樹脂材はその
まま次層形成に用いられる。
At this time, the surplus resin material from the previous supply of the resin material 31 is used as it is for forming the next layer.

以下、上記第2図乃至第6図により説明した工程を同様
に繰り返して露光硬化樹脂層を順次積層形成し、この積
層状の立体硬化樹脂像を液状光硬化型樹脂材31中より
取り出し、例えば希アルカリ洗浄溶液等により液状光硬
化型樹脂材31を洗い流すことによって、所望とする3
次元的な立体情報を表示する立体模型形状を比較的短時
間で効率よく形成することが可能となる。
Thereafter, the steps explained with reference to FIGS. 2 to 6 above are repeated in the same way to sequentially form exposed and cured resin layers, and this layered three-dimensional cured resin image is taken out of the liquid photocurable resin material 31, for example. By washing away the liquid photocurable resin material 31 with a dilute alkaline cleaning solution or the like, the desired
It becomes possible to efficiently form a three-dimensional model shape that displays dimensional three-dimensional information in a relatively short time.

即ち、本実施例においては液状光硬化型樹脂材31の層
厚の均−化及び平滑化と、レーザビーム22照射による
露光硬化とが殆ど同時に並行して行われるので、副走査
方向の液状光硬化型樹脂材31面に対する露光領域幅を
Lとした時、Lに対してlを小さくすることにより、液
状光硬化型樹脂材31の平滑化時間は殆ど無視すること
ができ、露光時間と樹脂収容容器30を当初の所定位置
への返戻操作時間等のみの短時間で立体形状を形成する
ことが出来る。
That is, in this embodiment, the equalization and smoothing of the layer thickness of the liquid photocurable resin material 31 and the exposure curing by irradiation with the laser beam 22 are performed almost simultaneously in parallel, so that the liquid light in the sub-scanning direction is When the exposure area width for the surface of the curable resin material 31 is L, by making l smaller than L, the smoothing time of the liquid photocurable resin material 31 can be almost ignored, and the exposure time and resin A three-dimensional shape can be formed in a short time, such as the time required to return the container 30 to its original predetermined position.

尚、樹脂収容容器30に対する2層目以後の樹脂材31
供給としては、該樹脂収容容器30を当初の所定位置へ
返戻操作する際に並行して行うようにしても良く、供給
された液状光硬化型樹脂材の層厚の均−化及び平滑化が
より迅速に行われ、当該立体形状の形成時間の短縮がよ
り効果的になされる。
Note that the resin material 31 for the second and subsequent layers with respect to the resin container 30
The supply may be performed in parallel with the operation of returning the resin storage container 30 to its original predetermined position, and the layer thickness of the supplied liquid photocurable resin material can be equalized and smoothed. This can be done more quickly, and the time required to form the three-dimensional shape can be more effectively shortened.

又、以上の実施例では平滑板34及び樹脂供給口36に
対して樹脂収容容器30を平行移動させる場合の例につ
いて説明したが、本発明はこの例に附定されるものでは
無く、例えば樹脂収容容器30に対して平滑板34及び
樹脂供給口36を平行移動させ、かつ樹脂収容容器30
内の液状光硬化型樹脂材31に対してレーザビーム22
をX、Y方向に走査して照射するように変形して実施で
きることは勿論であり、同様の効果が得られる。
Further, in the above embodiment, an example in which the resin storage container 30 is moved parallel to the smooth plate 34 and the resin supply port 36 has been described, but the present invention is not attached to this example, and for example, the resin container 30 is The smooth plate 34 and the resin supply port 36 are moved parallel to the storage container 30, and the resin storage container 30
The laser beam 22 is applied to the liquid photocurable resin material 31 inside.
Of course, it can be modified to scan and irradiate in the X and Y directions, and the same effect can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る立体形状
形成装置によれば、樹脂収容容器に対する液状光硬化型
樹脂材の平滑化に要する時間が著しく短縮されると共に
、粘度の大きい液状光硬化型樹脂材等に対しても短時間
で、かつ容易に、均一な薄い層厚の樹脂材層に平滑化す
ることが可能となる等、所望とする3次元的な立体情報
を表示する立体模型形状を液状光硬化型樹脂材により高
速に、かつ精度良く形成することが可能となる優れた利
点を有する。
As is clear from the above description, according to the three-dimensional shape forming apparatus according to the present invention, the time required to smooth the liquid photocurable resin material with respect to the resin storage container is significantly shortened, and the liquid photocurable resin material with high viscosity is A three-dimensional model that displays desired three-dimensional three-dimensional information, such as making it possible to smooth mold resin materials into a resin material layer with a uniform thin layer in a short time and easily. It has an excellent advantage of being able to form shapes quickly and accurately using a liquid photocurable resin material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る立体形状形成装置の一実施例を示
す概略構成斜視図、 第2図乃至第6図は本発明に係る立体形状形成装置によ
り立体形状を形成する動作の 一実施例を示す要部断面図、 第7図乃至第12図は従来の立体模型形状の形成方法を
説明するための要部断面図であ る。 図中、21はレーザ装置、22はレーザビーム、23は
光変調器、24は反射鏡、25.26はレンズ、27は
回転多面鏡、28はrθレンズ、29は走査用反射鏡、
30は樹脂収容容器、31は液状光硬化型樹脂材、32
は支持台、33は副走査機構部、34は平滑板、35は
樹脂材供給部、36は複数の樹脂供給口をそれぞれ示す
。 第1図 第2図    第3図 第6図 クツ 第9因 第11図 第10図
FIG. 1 is a schematic perspective view showing an embodiment of a three-dimensional shape forming apparatus according to the present invention, and FIGS. 2 to 6 are examples of operations for forming a three-dimensional shape by the three-dimensional shape forming apparatus according to the present invention. FIGS. 7 to 12 are sectional views of essential parts for explaining a conventional method of forming a three-dimensional model shape. In the figure, 21 is a laser device, 22 is a laser beam, 23 is an optical modulator, 24 is a reflecting mirror, 25 and 26 are lenses, 27 is a rotating polygon mirror, 28 is an rθ lens, 29 is a scanning reflecting mirror,
30 is a resin storage container, 31 is a liquid photocurable resin material, 32
33 is a support stand, 33 is a sub-scanning mechanism section, 34 is a smooth plate, 35 is a resin material supply section, and 36 is a plurality of resin supply ports. Figure 1 Figure 2 Figure 3 Figure 6 Shoes 9 Causes 11 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 樹脂収容容器に収容された液状光硬化型樹脂材に、レー
ザ光学系によりビーム照射を行って、該光硬化型樹脂材
を選択的に硬化せしめ、立体形状を形成する装置におい
て、上記樹脂収容容器上に、該容器の何れか一方の容器
幅に対応する長さの平滑板を配置し、樹脂供給口より樹
脂収容容器に供給される液状光硬化型樹脂材に対して、
前記平滑板をその長さ方向と水平に直交する方向に移動
させて平滑面を有する均一な層厚とすることを特徴とす
る立体形状形成装置。
In an apparatus for forming a three-dimensional shape by irradiating a liquid photocurable resin material housed in a resin storage container with a beam using a laser optical system to selectively cure the photocurable resin material, the resin storage container A smooth plate with a length corresponding to the width of one of the containers is placed on top of the container, and the liquid photocurable resin material is supplied from the resin supply port to the resin storage container.
A three-dimensional shape forming apparatus characterized in that the smooth plate is moved in a direction horizontally orthogonal to the length direction of the smooth plate to form a uniform layer thickness having a smooth surface.
JP59237055A 1984-11-09 1984-11-09 Apparatus for forming solid configuration Pending JPS61114818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237055A JPS61114818A (en) 1984-11-09 1984-11-09 Apparatus for forming solid configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237055A JPS61114818A (en) 1984-11-09 1984-11-09 Apparatus for forming solid configuration

Publications (1)

Publication Number Publication Date
JPS61114818A true JPS61114818A (en) 1986-06-02

Family

ID=17009744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237055A Pending JPS61114818A (en) 1984-11-09 1984-11-09 Apparatus for forming solid configuration

Country Status (1)

Country Link
JP (1) JPS61114818A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171069A2 (en) * 1984-08-08 1986-02-12 3D SYSTEMS, INC. (a California corporation) Method and apparatus for production of three-dimensional objects by stereolithography
JPH0236926A (en) * 1989-05-01 1990-02-06 Uvp Inc Method and device for preparing three-dimensional body
EP0361847A2 (en) * 1988-09-26 1990-04-04 3D Systems, Inc. Recoating of stereolithographic layers
US4942001A (en) * 1988-03-02 1990-07-17 Inc. DeSoto Method of forming a three-dimensional object by stereolithography and composition therefore
EP0414215A2 (en) * 1989-08-24 1991-02-27 E.I. Du Pont De Nemours And Company Solid imaging method utilizing compositions comprising thermally coalescible materials
US5014207A (en) * 1989-04-21 1991-05-07 E. I. Du Pont De Nemours And Company Solid imaging system
US5135379A (en) * 1988-11-29 1992-08-04 Fudim Efrem V Apparatus for production of three-dimensional objects by photosolidification
EP0515562A1 (en) * 1990-02-15 1992-12-02 3D Systems, Inc. Method of and apparatus for forming a solid three-dimensional article from a liquid medium
US5174931A (en) * 1988-09-26 1992-12-29 3D Systems, Inc. Method of and apparatus for making a three-dimensional product by stereolithography
DE4134265A1 (en) * 1991-10-16 1993-04-22 Eos Electro Optical Syst STEREOGRAPHY DEVICE AND METHOD
WO1993024303A1 (en) * 1992-05-28 1993-12-09 Cmet, Inc. Photohardening molding apparatus with improved recoating process and photohardening molding method
WO1994022664A1 (en) * 1993-04-05 1994-10-13 Cmet, Inc. Photohardening molding apparatus with recoater travelling stroke regulating mechanism
US5358673A (en) * 1990-02-15 1994-10-25 3D Systems, Inc. Applicator device and method for dispensing a liquid medium in a laser modeling machine
US5474719A (en) * 1991-02-14 1995-12-12 E. I. Du Pont De Nemours And Company Method for forming solid objects utilizing viscosity reducible compositions
US5626919A (en) * 1990-03-01 1997-05-06 E. I. Du Pont De Nemours And Company Solid imaging apparatus and method with coating station
US5651934A (en) * 1988-09-26 1997-07-29 3D Systems, Inc. Recoating of stereolithographic layers
US5902537A (en) * 1995-02-01 1999-05-11 3D Systems, Inc. Rapid recoating of three-dimensional objects formed on a cross-sectional basis
JP2002280173A (en) * 2001-03-21 2002-09-27 Tdk Corp Manufacturing method for composite substrate, and composite substrate and el element provided thereby
EP1614488A1 (en) * 2004-07-06 2006-01-11 General Electric Company Casting method using a synthetic model produced by stereolithography
US7084370B2 (en) 2002-05-03 2006-08-01 Bego Medical Ag Method for making products by freeform laser sintering
US7413001B2 (en) 2003-07-10 2008-08-19 General Electric Company Synthetic model casting
US7919152B2 (en) * 2008-01-07 2011-04-05 Objet Geometries Ltd. Method and apparatus for curing waste containing photopolymeric components
US10821668B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by- layer
US10821669B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by-layer

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0171069A2 (en) * 1984-08-08 1986-02-12 3D SYSTEMS, INC. (a California corporation) Method and apparatus for production of three-dimensional objects by stereolithography
EP0171069B1 (en) * 1984-08-08 1993-11-18 3D SYSTEMS, INC. (a California corporation) Method and apparatus for production of three-dimensional objects by stereolithography
US4942001A (en) * 1988-03-02 1990-07-17 Inc. DeSoto Method of forming a three-dimensional object by stereolithography and composition therefore
EP0681904A3 (en) * 1988-09-26 1996-02-07 3D Systems Inc Stereolithographic apparatus with means to measure and control the level of fluid.
US5651934A (en) * 1988-09-26 1997-07-29 3D Systems, Inc. Recoating of stereolithographic layers
EP0681904A2 (en) * 1988-09-26 1995-11-15 3D Systems, Inc. Stereolithographic apparatus with means to measure and control the level of fluid
WO1990003255A1 (en) * 1988-09-26 1990-04-05 3D Systems, Inc. Recoating of stereolithographic layers
EP0681905A1 (en) * 1988-09-26 1995-11-15 3D Systems, Inc. Recoating of stereolithographic layers
US6048487A (en) * 1988-09-26 2000-04-11 3D Systems, Inc. Recoating stereolithographic layers
US5174931A (en) * 1988-09-26 1992-12-29 3D Systems, Inc. Method of and apparatus for making a three-dimensional product by stereolithography
US5891382A (en) * 1988-09-26 1999-04-06 3D System, Inc. Recoating of stereolithographic layers
EP0361847A2 (en) * 1988-09-26 1990-04-04 3D Systems, Inc. Recoating of stereolithographic layers
US5135379A (en) * 1988-11-29 1992-08-04 Fudim Efrem V Apparatus for production of three-dimensional objects by photosolidification
US5014207A (en) * 1989-04-21 1991-05-07 E. I. Du Pont De Nemours And Company Solid imaging system
JPH0236926A (en) * 1989-05-01 1990-02-06 Uvp Inc Method and device for preparing three-dimensional body
JPH0419020B2 (en) * 1989-05-01 1992-03-30 Suriideii Shisutemuzu Inc
EP0414215A2 (en) * 1989-08-24 1991-02-27 E.I. Du Pont De Nemours And Company Solid imaging method utilizing compositions comprising thermally coalescible materials
US5358673A (en) * 1990-02-15 1994-10-25 3D Systems, Inc. Applicator device and method for dispensing a liquid medium in a laser modeling machine
EP0515562A1 (en) * 1990-02-15 1992-12-02 3D Systems, Inc. Method of and apparatus for forming a solid three-dimensional article from a liquid medium
US6174156B1 (en) 1990-03-01 2001-01-16 Dsm N.V. Solid imaging apparatus and method with coating station
US6340297B1 (en) * 1990-03-01 2002-01-22 Dsm N.V. Solid imaging apparatus with coating station
US5626919A (en) * 1990-03-01 1997-05-06 E. I. Du Pont De Nemours And Company Solid imaging apparatus and method with coating station
US6733267B2 (en) 1990-03-01 2004-05-11 Dsm Desotech, Inc. Solid imaging apparatus and method with coating station
US5474719A (en) * 1991-02-14 1995-12-12 E. I. Du Pont De Nemours And Company Method for forming solid objects utilizing viscosity reducible compositions
DE4134265A1 (en) * 1991-10-16 1993-04-22 Eos Electro Optical Syst STEREOGRAPHY DEVICE AND METHOD
US5582876A (en) * 1991-10-16 1996-12-10 Eos Gmbh Optical Systems Stereographic apparatus and method
US5432045A (en) * 1992-05-28 1995-07-11 Cmet, Inc. Photo-solidification modeling apparatus and photo-solidification modeling method having an improved recoating process
WO1993024303A1 (en) * 1992-05-28 1993-12-09 Cmet, Inc. Photohardening molding apparatus with improved recoating process and photohardening molding method
WO1994022664A1 (en) * 1993-04-05 1994-10-13 Cmet, Inc. Photohardening molding apparatus with recoater travelling stroke regulating mechanism
US5902537A (en) * 1995-02-01 1999-05-11 3D Systems, Inc. Rapid recoating of three-dimensional objects formed on a cross-sectional basis
JP2002280173A (en) * 2001-03-21 2002-09-27 Tdk Corp Manufacturing method for composite substrate, and composite substrate and el element provided thereby
JP4669621B2 (en) * 2001-03-21 2011-04-13 アイファイヤー アイピー コーポレイション Manufacturing method of composite substrate, composite substrate obtained by this manufacturing method, EL element
US7084370B2 (en) 2002-05-03 2006-08-01 Bego Medical Ag Method for making products by freeform laser sintering
US7381921B2 (en) 2002-05-03 2008-06-03 Bego Medical Gmbh Method for making products by freeform laser sintering
US7413001B2 (en) 2003-07-10 2008-08-19 General Electric Company Synthetic model casting
EP1614488A1 (en) * 2004-07-06 2006-01-11 General Electric Company Casting method using a synthetic model produced by stereolithography
US7919152B2 (en) * 2008-01-07 2011-04-05 Objet Geometries Ltd. Method and apparatus for curing waste containing photopolymeric components
US10821668B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by- layer
US10821669B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by-layer
US11623398B2 (en) 2018-01-26 2023-04-11 General Electric Company Multi-level vat for additive manufacturing

Similar Documents

Publication Publication Date Title
JPS61114818A (en) Apparatus for forming solid configuration
JPS61114817A (en) Apparatus for forming solid configuration
JPS6340650B2 (en)
EP0351413B1 (en) Method and apparatus for production of three-dimensional objects by photosolidification
JPS61225012A (en) Formation of three-dimensional configuration
JPS61116322A (en) Three-dimensional shape forming device
JPS61217219A (en) Three-dimensional configuration forming device
JPS61116320A (en) Three-dimensional shape forming device
JPH10249943A (en) Apparatus for stereo lithography
JPH02153722A (en) Optical molding method
JPS63141725A (en) Apparatus for forming three dimensional shape
JPS63141724A (en) Forming three dimensional shape
JPH0224121A (en) Optical shaping method
US5238497A (en) Apparatus for shaping solid profile resin bodies
JPS61116321A (en) Three-dimensional shape forming device
JPH0577323A (en) Forming apparatus for three-dimensional shape
JP3641276B2 (en) 3D image forming method
JPS63145016A (en) Device for forming solid shape
JPS6299753A (en) Formation of three-dimensional shape
JPH02108519A (en) Formation of three-dimensional shape and device therefor
JP3170832B2 (en) Optical molding method
JPH02103127A (en) Method and apparatus for forming three-dimensional configuration
KR100236566B1 (en) Multi photosolidification method and apparatus
JPH0514839Y2 (en)
JPS6223719A (en) Apparatus for forming three dimensional shape