JPS61114122A - Range measuring device - Google Patents

Range measuring device

Info

Publication number
JPS61114122A
JPS61114122A JP23511284A JP23511284A JPS61114122A JP S61114122 A JPS61114122 A JP S61114122A JP 23511284 A JP23511284 A JP 23511284A JP 23511284 A JP23511284 A JP 23511284A JP S61114122 A JPS61114122 A JP S61114122A
Authority
JP
Japan
Prior art keywords
light
distance
optical position
infrared beam
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23511284A
Other languages
Japanese (ja)
Inventor
Masaki Shimada
雅樹 嶋田
Yoshio Murai
村井 芳夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP23511284A priority Critical patent/JPS61114122A/en
Publication of JPS61114122A publication Critical patent/JPS61114122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To prevent an error in range measurement during photography in the presence of high-brightness light such as tungsten light by shielding the nonphotodetection part of a position photodetector in a range measuring device which photodetects reflected infrared beam light from a body to be measured by the position photodetector. CONSTITUTION:A position photodetection unit 10 has a semiconductor photodetection position detecting element 11 in the center of the front surface of a frame 10a. The reflected infrared beam light projected as spot light on the element 11 varies with the distance to the subject, but even if the subject varies from short range to infinite range, there is a part where the reflected infrared beam is not projected. A light shield member 12 which is hatched is applied to the part to reduce the incidence of external light. Thus, noises in the output current of the element 11 are reduced and the possibility of an error in range measurement is reduced even in an atmosphere wherein bright external light such as tungsten light is used.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は高輝度照明の下での撮影時の誤測距を防止した
測距装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a distance measuring device that prevents erroneous distance measurement during photographing under high-intensity illumination.

(ロ)従来技術 近年自動焦点カメラや自動焦点調整式のビデオカメラが
開発され、撮影が大変楽になったが、このようなカメラ
において被写体像の合焦を光学的をこ検知する方法には
、被写体像のシャープさを検出するボケ像検出式、左右
2つの被測定物の重なりを検出する二重像合致検出式、
あるいは上下像合致検出式、被測定物に向けて発射した
光線の反射光を利用して基線長と見込み角より三角測量
式に距離を求める光線距離式など種々の方式が知られて
いる。
(b) Prior art In recent years, autofocus cameras and autofocus video cameras have been developed, making photography much easier. A blurred image detection method that detects the sharpness of the subject image, a double image coincidence detection method that detects the overlap of the two left and right objects,
Alternatively, various methods are known, such as a top and bottom image coincidence detection method, and a ray distance method that uses the reflected light of a light beam emitted towards the object to be measured to calculate the distance by triangulation from the baseline length and viewing angle.

第2図は光線距離式による測距の原理を示しており、赤
光コントロールパルスにより駆動される赤外発光ダイオ
ード1から投光レンズ2を通して被写体3に赤外線の細
いビームを投射する。被写体3より反射される赤外光ビ
ームは受光レンズ4を通して光位置検出器5上にスポッ
ト光として受光される。光位置検出器5は、第3図(イ
)に示すように、2つの電[i Pl、 、  P2に
それぞれ接続された充電流出力端子5a、5bと共通電
極端子5cとを有するホトダイオードで、検出器5上で
の赤外スポット光の位置dは、投光レンズ2から被写体
3までの距離を1、受光レンズ4の焦点距離をf1投光
、受光レンズ2.4の光軸間の距離(基線長と呼ばれて
いる)をSとすれば、 f d=Sx− ! となり、赤外スポット光の結像位置は被写体3までの距
離11こより変わることがわかる。一方、光位置検出器
5の出力端子5a、5bがら出力する光電流I]、12
の大きさは赤外スポット光の結像位置により変化し、次
の関係式で表わされる。ここでCは光位置検出器5の受
光面の長さである。
FIG. 2 shows the principle of distance measurement using the ray distance method, in which a narrow infrared beam is projected onto a subject 3 through a projection lens 2 from an infrared light emitting diode 1 driven by a red light control pulse. The infrared light beam reflected from the subject 3 is received as a spot light on the optical position detector 5 through the light receiving lens 4. The optical position detector 5, as shown in FIG. 3(a), is a photodiode having charging output terminals 5a, 5b and a common electrode terminal 5c connected to two electric currents [i Pl, , P2, respectively, and a common electrode terminal 5c. The position d of the infrared spot light on the detector 5 is determined by the distance from the light emitting lens 2 to the subject 3 being 1, the focal length of the light receiving lens 4 being f1, and the distance between the optical axes of the light receiving lenses 2 and 4. (called the baseline length) is S, then f d=Sx-! It can be seen that the imaging position of the infrared spot light changes as the distance to the subject 3 increases by 11 degrees. On the other hand, the photocurrent I output from the output terminals 5a and 5b of the optical position detector 5], 12
The size varies depending on the imaging position of the infrared spot light, and is expressed by the following relational expression. Here, C is the length of the light receiving surface of the optical position detector 5.

−(−’+ fs ) / (−j −fs)この関係
を図示すると第3図(ロ)のようになりI2/11はほ
ぼ1.//fに比例することがわかる。
-(-'+ fs ) / (-j -fs) This relationship is illustrated in Figure 3 (b), where I2/11 is approximately 1. //It can be seen that it is proportional to f.

上式かられかるように、■2/11#よ基5is1受光
レンズ4の焦点距離f1光位置検出器5の受光面長さC
のみによって決まるので被写体の反射率の違いや赤外発
光ダイオード1の経時劣化などによるスポット光の強弱
には関係なく測距が可能になる。また第3図(ロ)から
れかるように、被写体までの距離が小さくなるほど出力
値が大きく、変化も大きくなるので精度の高い測距がで
きる。
As can be seen from the above formula, ■2/11#, base 5is1 focal length f1 of light receiving lens 4, light receiving surface length C of optical position detector 5
Therefore, distance measurement is possible regardless of the strength of the spot light due to differences in the reflectance of the subject or deterioration of the infrared light emitting diode 1 over time. Furthermore, as can be seen from FIG. 3(b), the smaller the distance to the object, the larger the output value and the larger the change, allowing for highly accurate distance measurement.

このように光線距離式測距方法は測距が純粋に電気的に
行なわれ何ら機械的な機構や動作は必要でないためにコ
ンパクトで信頼性の高い測距システムを実現することが
できるが、実際の測距は戸外や室内照明下で行なわれる
場合が多いので、測距に当ってはそれらの外来光と発光
ダイオードからの赤外ビーム光とを区別する必要がある
。そのために、従来発光ダイオードは波長が800〜9
50 m1mの赤外線を発光するものを用い、さらに光
位置検出器の受光面の前に可視光カット用のフィルタを
入れるが、これだ= 3 = けでは太陽光や白熱光に対しては役に立たないので、発
光ダイオードをパルス駆動したり交流点灯したりしてそ
の変化分のみを取り出すようにして外来光と区別したり
、光位置検出器の出力電流を電圧に変換した後対数変換
して処理したりして誤測距を避けるようにしている。
In this way, the optical distance measurement method performs distance measurement purely electrically and does not require any mechanical mechanism or operation, making it possible to realize a compact and highly reliable distance measurement system. Since distance measurement is often carried out outdoors or under indoor lighting, it is necessary to distinguish between such extraneous light and the infrared beam light from the light emitting diode. For this reason, conventional light emitting diodes have wavelengths of 800 to 9
I use one that emits infrared rays of 50 ml and 1 m, and I also put a filter to cut visible light in front of the light receiving surface of the optical position detector, but this = 3 = It is useless against sunlight and incandescent light. Therefore, it is possible to distinguish it from external light by driving the light emitting diode in pulses or by turning it on with alternating current to extract only the change in light, or by converting the output current of the optical position detector into voltage and then processing it by logarithmically converting it. I try to avoid erroneous distance measurements by doing this.

このような方法をとれば、多くの場合外来光と赤外ビー
ム光とを区別することはできるが、被写体が強いタング
ステン光で照明された場合は光位置検出器の出力電流に
リップルがのってしまいノイズとなって誤測距するおそ
れがある。
Using this method, it is possible to distinguish between extraneous light and infrared beam light in many cases, but if the subject is illuminated with strong tungsten light, ripples may be added to the output current of the optical position detector. This may cause noise and cause incorrect distance measurement.

(ハ)発明の目的および構成 本発明は、上記の点にかんがみてなされたもので、自動
焦点調整式のカメラまたはビデオカメラにおいてタング
ステン光などの高輝度照明下での撮影時の誤測距を防止
することを目的とし、この目的を達成するために、光位
置検出器の非受光部を遮光するように構成した。
(c) Object and structure of the invention The present invention has been made in view of the above points, and is an object of the present invention to prevent erroneous distance measurement when photographing under high brightness lighting such as tungsten light in an automatic focusing camera or video camera. In order to achieve this goal, the optical position detector is constructed so that the non-light receiving portion is shielded from light.

に)実施例 以下本発明を図面に基づいて説明する。) Example The present invention will be explained below based on the drawings.

第1図は本発明による測距装置に用いる光位置検出ユニ
ットを示す。
FIG. 1 shows an optical position detection unit used in a distance measuring device according to the present invention.

光位置検出ユニットIOは枠10aの正面中央に半導体
装置検出素子11を配設して成る。
The optical position detection unit IO includes a semiconductor device detection element 11 disposed at the center of the front surface of a frame 10a.

この光位置検出素子11上にスポット光として投射され
る反射赤外ビーム光は被写体までの距離によって変化す
るが、被写体が近距離から無限遠まで変化しても反射赤
外ビーム光が投射しない部分がある。そこで、この部分
に斜線で図示したような遮光部材12を当てることによ
り外来光の入射を減らすようにする。遮光部材12とし
ては、遮光紙、遮光塗料などが考えられる。
The reflected infrared beam light projected as a spot light onto the optical position detection element 11 changes depending on the distance to the subject, but even if the subject changes from close distance to infinity, the reflected infrared beam light is not projected on the part. There is. Therefore, by applying a light shielding member 12 as shown by diagonal lines to this portion, the incidence of external light is reduced. As the light shielding member 12, light shielding paper, light shielding paint, etc. can be considered.

このような遮光部材を設けるほかに、光位置検出素子1
1を固定する窓を小さくする方法も考えられる。
In addition to providing such a light shielding member, the optical position detection element 1
Another possible method is to make the window for fixing 1 smaller.

このように光位置検出素子の非受光部分を遮光すること
により、素子の出力電流に含まれるノイズ分が減少し、
タングステン光のような明るい外来光を用いた環境下に
おいても出力電流にリップルがのったり出力電流の処理
回路のアンプ系が飽和しにくくなるため誤測距が可能性
が奢るしく減少する。
By shielding the non-light-receiving portion of the optical position detection element in this way, the noise included in the output current of the element is reduced.
Even in an environment where bright external light such as tungsten light is used, ripples are added to the output current and the amplifier system of the output current processing circuit is less likely to be saturated, so the possibility of erroneous distance measurement is greatly reduced.

従来の測距方式では被写体が無限遠に近づいた場合は受
光光量が減少し光位置検出素子からの出力電流り、12
が小さくなるため誤測距し易い。そのため出力電流11
..1.、があるレベル以下になったら無限遠と判断し
ている。本発明の装置番こおいては反射赤外ビーム光が
投射する光位置検出素子上の無限遠相当位置を遮光する
ことにより確実に無限遠の判断ができる。
In conventional distance measuring methods, when the subject approaches infinity, the amount of received light decreases, and the output current from the optical position detection element decreases to 12
Because the distance becomes small, it is easy to mismeasure the distance. Therefore, the output current 11
.. .. 1. , it is determined that if it falls below a certain level, it is at infinity. In the apparatus of the present invention, infinity can be reliably determined by shielding the position corresponding to infinity on the optical position detection element onto which the reflected infrared beam is projected.

(ホ)発明の効果 以」−説明したように、本発明は、赤外ビーム光を被測
定物に向けて投射し1被測定物からの反射赤外ビーム光
を光位置検出器で受光し、その受光位置に基づいて被測
定物までの距離を測定する測距装置台こおいて、光位置
検出器の非受光部を遮光するようGこしたので、輝度の
高いタングステン光などの外来光の環境下で撮影しても
光位置検出器に入射する外来ノイズを減少することがで
き誤測距を防止することができる。
(E) Effects of the Invention As explained, the present invention projects an infrared beam toward an object to be measured and receives the reflected infrared beam from the object with an optical position detector. , the rangefinder stand that measures the distance to the object based on the light receiving position is installed, and the non-light receiving part of the optical position detector is set to G to block light, so that extraneous light such as high brightness tungsten light is removed. Even when photographing in an environment of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による測距装置に用いる光位置検出ユニ
ットの一実施例の斜視図、第2図は測距の原理を説明す
る図、第3図(イ)は光位置検出器の一実施例、(ロ)
は(イ)に示した光位置検出器の距離と出力電流との関
係を示す特性図である。 l・・・赤外発光ダイオード 2・・・投光レンズ    3・・・被写体4・・・受
光レンズ    5・・・光位置検出器10・・・光位
置検出ユニット
FIG. 1 is a perspective view of an embodiment of the optical position detection unit used in the distance measuring device according to the present invention, FIG. 2 is a diagram explaining the principle of distance measurement, and FIG. Example, (b)
FIG. 2 is a characteristic diagram showing the relationship between the distance and output current of the optical position detector shown in FIG. l... Infrared light emitting diode 2... Light emitting lens 3... Subject 4... Light receiving lens 5... Optical position detector 10... Optical position detection unit

Claims (1)

【特許請求の範囲】[Claims] 被測定物にスポット光を投光する投光手段と、前記被測
定物で反射したスポット光を受光するように前記投光手
段から所定距離の位置に配置された受光手段とを有し、
該受光手段として光位置検出器を用いた測距装置におい
て、前記光位置検出器の受光面の非受光部分を遮光した
ことを特徴とする測距装置。
comprising a light projecting means for projecting a spot light onto an object to be measured, and a light receiving means disposed at a predetermined distance from the light projecting means so as to receive the spot light reflected by the object to be measured;
A distance measuring device using an optical position detector as the light receiving means, characterized in that a non-light receiving portion of a light receiving surface of the optical position detector is shielded from light.
JP23511284A 1984-11-09 1984-11-09 Range measuring device Pending JPS61114122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23511284A JPS61114122A (en) 1984-11-09 1984-11-09 Range measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23511284A JPS61114122A (en) 1984-11-09 1984-11-09 Range measuring device

Publications (1)

Publication Number Publication Date
JPS61114122A true JPS61114122A (en) 1986-05-31

Family

ID=16981231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23511284A Pending JPS61114122A (en) 1984-11-09 1984-11-09 Range measuring device

Country Status (1)

Country Link
JP (1) JPS61114122A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206211A (en) * 1988-02-10 1989-08-18 Nikon Corp Sensing apparatus of light for measuring distance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540942A (en) * 1978-09-14 1980-03-22 Nec Corp Range finder
JPS5582903A (en) * 1978-12-14 1980-06-23 Bosch Gmbh Robert Distance measuring apparatus
JPS58191915A (en) * 1982-05-04 1983-11-09 Minolta Camera Co Ltd Optical position sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5540942A (en) * 1978-09-14 1980-03-22 Nec Corp Range finder
JPS5582903A (en) * 1978-12-14 1980-06-23 Bosch Gmbh Robert Distance measuring apparatus
JPS58191915A (en) * 1982-05-04 1983-11-09 Minolta Camera Co Ltd Optical position sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01206211A (en) * 1988-02-10 1989-08-18 Nikon Corp Sensing apparatus of light for measuring distance

Similar Documents

Publication Publication Date Title
KR0164865B1 (en) Flash illumination system and method incorporating indirect reflecting surface detection
JPH027A (en) Range-finding device for camera
US5315342A (en) Automatic focus and indirect illumination camera system
JPH0151819B2 (en)
JP3382739B2 (en) Underwater camera
JPH0559405B2 (en)
JPS61114122A (en) Range measuring device
US5159378A (en) Light projector for range finding device
EP0113984A1 (en) Portable video camera with automatic focusing device
JPS6120808A (en) Range measuring instrument
GB2095505A (en) Automatic focusing
JPS58106410A (en) Distance detector
JPS59201009A (en) Auto focus detecting device
JP2000330001A (en) Range finder
JPH0473130B2 (en)
JP3297497B2 (en) Distance measuring device
JP3431200B2 (en) camera
JPH01222235A (en) Camera
JPH0517484B2 (en)
JP2731159B2 (en) Camera multipoint ranging device
JPS6167012A (en) Focus detecting device
JPS58156910A (en) Detector for focusing state
JPH06137863A (en) Range measurement device
JPS62280726A (en) Distance measuring instrument for camera
JPS61226735A (en) Automatic focus adjusting device for camera