JPS61110474A - Semiconductor photocoupler - Google Patents

Semiconductor photocoupler

Info

Publication number
JPS61110474A
JPS61110474A JP59231901A JP23190184A JPS61110474A JP S61110474 A JPS61110474 A JP S61110474A JP 59231901 A JP59231901 A JP 59231901A JP 23190184 A JP23190184 A JP 23190184A JP S61110474 A JPS61110474 A JP S61110474A
Authority
JP
Japan
Prior art keywords
light
emitting element
optical path
light emitting
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59231901A
Other languages
Japanese (ja)
Inventor
Hirokazu Fujisawa
藤沢 弘和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59231901A priority Critical patent/JPS61110474A/en
Publication of JPS61110474A publication Critical patent/JPS61110474A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor photocoupler having ready practical use, high withstand voltage, high current transmitting efficiency and less electric irregular characteristics by interposing or holding a transparent solid optical path material having high reflecting surface on the outside between a light emitting element and a photoreceptor. CONSTITUTION:Solid optical path materials 16 aligned in the arbitrary constant length are interposed or held through a transparent silicon resin 15 between a light emitting element 11 and a photoreceptor 12 to obtain a semiconductor photocoupler having less current transmitting characteristic irregularity, wide interval of the element 11 and the photoreceptor 12 and high withstand voltage. Further, the outside of the material 16 is coated by a coating material 33 having high reflectivity for the wavelength of the light emitted from the element 11, and the light emitted from the element 11 is less absorbed to the boundary between the outside epoxy resin 17 or the material 16, and efficiently arrived on the photoreceiving surface of the photoreceptor 12.

Description

【発明の詳細な説明】 く帝業上の利用分野〉 本発明は半導体光結合装置に関し、とくにその内部構造
に関するものでろる。
DETAILED DESCRIPTION OF THE INVENTION Field of Application The present invention relates to a semiconductor optical coupling device, and particularly relates to its internal structure.

〈従来技術とその問題点〉 半導体光結曾filth発光素子、および受光素子とを
単一のパッケージ内に組込−+、を気的信号を光を媒体
として伝達するもので、入出力間が覗気的に絶縁されて
おり、信号が一方向にのみ伝達されるところから、近年
の各棟嘴報処f!!A憎器の急速な発達、pよび家庭電
化製品の高度化等に伴なって、様々な用途に用いら1て
さている。特に入出力間のイノターフエース、パルス、
トランス、j)るいはリレーの代用として、また伝送1
!21Mのノイズ除去対策等においては、工業的に既に
多量の半導体光結合fiatが用いられている。
<Prior art and its problems> Semiconductor photoconductive filth light-emitting element and light-receiving element are integrated into a single package, and a gas signal is transmitted using light as a medium, and the input and output are connected. Since it is voyeuristically insulated and the signal is transmitted only in one direction, in recent years each building's beak information station f! ! With the rapid development of A/P and the sophistication of home appliances, they are no longer being used for a variety of purposes. Innoturf ace, pulse, especially between input and output.
transformer, j) or as a substitute for a relay, and for transmission 1
! A large amount of semiconductor optical coupling FIAT has already been used industrially as a noise removal measure for 21M.

従来、半導体光結合装置の構造は第4図にその断面図を
示すように各々個別の発光素子側リード45、受光素子
側リード46にダイボッディングされた発光素子41.
および受光素子42を一定間隔に対向させ、これら発光
素子41.および受光素子42の間隙に透光性の7リコ
/樹脂43を充填し、こルを通常用いられているエボキ
7樹脂44等で射出したものである。光結合装置の入出
力間の耐圧をlIj]上させるためには、発光素子、受
光素子の間隔を充分に広くとることが有効であるが、通
常はQ、5rnm  程度であることが多い。その理由
は、通常使用されている透光性のシリコン樹脂が高温で
固化される際に粘度が小さくなるため、間隙が広くなる
とシリコン樹脂は元の形状が保てなくなり、中間部がく
びれたり、あるいは切れたりすることが多くなり、一般
に1〜2 mm以上にすることが困難であることによる
ものである。
Conventionally, a semiconductor optical coupling device has a structure in which a light emitting element 41 .
and light-receiving elements 42 are arranged to face each other at regular intervals, and these light-emitting elements 41 . The gap between the light-receiving elements 42 is filled with translucent 7lico/resin 43, and this is injected with a commonly used epoxy 7 resin 44 or the like. In order to increase the breakdown voltage between the input and output of the optical coupling device by lIj], it is effective to make the distance between the light emitting element and the light receiving element sufficiently wide, but this is usually about Q, 5rnm. The reason for this is that the viscosity of commonly used translucent silicone resin decreases when it solidifies at high temperatures, so when the gap widens, the silicone resin cannot maintain its original shape, causing the middle part to become constricted. Otherwise, it often breaks, and it is generally difficult to make it more than 1 to 2 mm.

弗5図は、粥4図に示され九半導体光結合装置の欠点で
あるリードフレームの組み合わせを必要とせず、組立工
程を簡略化した半導体光結合装置の断面図を示すもので
ある。これは発光側リード55、受光側リード56に発
光素子51.2よび受光素子52をそれぞれ銀ペースト
でダイボンブイノブし、直径が25〜30μの金線によ
り1発光。
Figure 5 shows a cross-sectional view of a semiconductor optical coupling device that does not require the combination of lead frames, which is a drawback of the semiconductor optical coupling device shown in Figure 4, and simplifies the assembly process. In this, a light emitting element 51.2 and a light receiving element 52 are bonded to a light emitting side lead 55 and a light receiving side lead 56 using silver paste, respectively, and a gold wire having a diameter of 25 to 30 .mu.m is used to emit one light.

受光双方の電極とり−ドフV−ムとをワイヤボンディン
グした後透光性のシリコン樹脂53により発光側、受光
側双方のベレットヲコーティングしてこれ全接続して光
路とし、さらにエポキシ樹脂54により封止したもので
るる。これは、前記の半導体光結合装置と異なす、リー
ドフレームが1枚ですむことから組立工程の作業は容易
になるものの、党略材料としては前記の半導体光結合装
置に用いたものと同等のシリコン樹脂を用いているため
、発光側、受光側の互いの間隙を広くしたい場合には透
光性のシリコン樹脂が筒部で固化される際に粘度が小さ
くなることによって中間部の樹脂が生れ下り、前記例と
同様に形状維持が困難となる。このため、発光、受光双
方の間隔v’′1通常、1mmμ上にすることかで@な
い。
After wire bonding the electrodes on both sides of the light receiving side and the dome V, the pellets on both the light emitting side and the light receiving side are coated with a transparent silicone resin 53, and these are all connected to form an optical path, and then sealed with an epoxy resin 54. The one that stopped appears. This is different from the semiconductor optical coupler described above because it requires only one lead frame, which simplifies the assembly process, but the material used is the same as that used in the semiconductor optical coupler. Since resin is used, if you want to widen the gap between the light-emitting side and the light-receiving side, the viscosity decreases when the translucent silicone resin solidifies in the cylindrical part, and the resin in the middle part is formed. , it becomes difficult to maintain the shape as in the previous example. For this reason, the interval v''1 between both the light emission and light reception is normally set to be 1 mmμ higher.

また、シリコン樹脂53の形状は個々に異なる上止、エ
ポキシ樹8’m54のモールド後、シリコン樹脂53と
エポキシ樹脂54との界面が剥離し鴇く、電流伝達特性
のバラツキが大きい。第6図は第5図に示された光結合
装置の欠点である1発元素子。
In addition, the shape of the silicone resin 53 is different from one another, and after molding the epoxy resin 8'm54, the interface between the silicone resin 53 and the epoxy resin 54 peels off, resulting in large variations in current transmission characteristics. FIG. 6 shows a one-shot element, which is a drawback of the optical coupling device shown in FIG.

受光素子の間隔を広くとれず、充分に高耐圧化しにくわ
という問題点を改良した光結曾装置の断面を示している
。(米国特許第445Q461 )第6図VCspいて
61は発光素子、62は受光素子、64はガラス等で作
られたゆ状の光路材、63は発光素子と党略材、および
受光素子と光路材のそれぞれの間の光学的なカッ1りン
グ階となる透明のシリコン樹脂、65は光の反射材でめ
り、酸化チタンを混合した白色のシリコンゴム、66は
通常用いられているエポキシ樹脂、めるいはシリコン樹
脂でろる。また67は発光素子側リード、68は受光素
子側のリードであり、前記エポキシ、6るいはシリコン
樹脂による封止によって固定されている。こrtは、前
述した2つの従来例とは異なり、棒状の光路材を有して
いるところから発光素子。
This is a cross-sectional view of a photoconcentration device that has improved the problem of not being able to widen the spacing between the light-receiving elements and making it difficult to achieve a sufficiently high withstand voltage. (US Patent No. 445Q461) In Fig. 6 VCsp, 61 is a light-emitting element, 62 is a light-receiving element, 64 is a rectangular optical path material made of glass or the like, 63 is a light-emitting element and a material, and a light-receiving element and an optical path material. 65 is a transparent silicone resin that serves as an optical cutter between each layer, and 65 is a white silicone rubber mixed with titanium oxide, which is coated with a light reflecting material. 66 is a commonly used epoxy resin, and a metal The color is covered with silicone resin. Further, 67 is a lead on the light emitting element side, and 68 is a lead on the light receiving element side, which are fixed by sealing with the epoxy, 6 or silicone resin. Unlike the two conventional examples mentioned above, this light-emitting element has a rod-shaped optical path material.

受光素子との間隔を充分に広くとることができ。The distance between the light receiving element and the light receiving element can be sufficiently wide.

光結合装置の耐圧を向上させる上で大きな効果を果して
いるが、光路材の周囲に白色シリコ/ゴム等の反射材を
コーティングする必要かめることから1元結8%置の組
立工程は依然として従来例と基本的に同じく、コーティ
ングのための樹脂のボッティフグ設備等を必要とする。
Although this method has a great effect on improving the pressure resistance of optical coupling devices, the assembly process of one element and 8% position is still the conventional method because it requires coating a reflective material such as white silicone/rubber around the optical path material. Basically, it also requires equipment such as resin bottifuge equipment for coating.

また、コーテイング材となる7リコ/ゴム等は、樹脂筺
の多少に工って形状が変り、わるいは外側のエポキシ等
の封止樹脂との界面の剥離が起り易く、電流伝達特性の
バラツキを生じ易い等の欠点は解消嘔れていない。
In addition, the coating material, such as 7lico/rubber, changes its shape depending on the shape of the resin casing, or it tends to peel off at the interface with the sealing resin such as epoxy on the outside, resulting in variations in current transfer characteristics. The shortcomings, such as those that occur easily, have not been resolved.

く発明の目的〉 本発明の目的は上記の工つな欠点を改はし、実用化が容
易な高耐圧で、かつ(流伝達@率が高く。
OBJECT OF THE INVENTION The purpose of the present invention is to improve the above-mentioned difficult drawbacks, to provide a high pressure resistance that is easy to put into practical use, and a high flow transmission rate.

電気的特性のバラツキの少ない半導体光結合装置を提供
することにめる。
The present invention aims to provide a semiconductor optical coupling device with less variation in electrical characteristics.

〈発明の構成〉 本発明に↓れは発光素子と受光素子とを対向させ、発光
素子、受光素子間に透光性の固体の光路材を狭持、また
は保持し、固体光路材により1発元素子と受光素子との
間隔が任意の一定間隔に狭持、または保持されることt
−特徴とする半導体光結合装置が得られる。
<Structure of the Invention> In the present invention, a light-emitting element and a light-receiving element are opposed to each other, a light-transmitting solid optical path material is sandwiched or held between the light-emitting element and the light-receiving element, and one light beam is emitted by the solid optical path material. The distance between the element and the light receiving element is held or maintained at an arbitrary constant distance.
- A semiconductor optical coupling device with characteristics can be obtained.

また、本発明によれば前述したと同様な半導体光結合装
買において、受光素子と相対向している発光素子から発
光された光の波長に対して、L!1反@率を有するコー
テイング材でコーティングもれた11体の党略材が発光
素子、受光素子間に任意の一定間隔で狭持、または保持
されることを勾りにとした半導体光結合装置をも得られ
る。
Further, according to the present invention, in a semiconductor optical coupling device similar to that described above, L! This is a semiconductor optical coupling device in which 11 parts coated with a coating material having an anti@ ratio of 1 are sandwiched or held at arbitrary fixed intervals between a light emitting element and a light receiving element. You can also get

く本発明の作用〉 本発明によれば、発光素子、受光素子間にFI−tの一
定長にそろえられた固体の光路材を狭持、またげ保持す
ることにより、−形影状の光路材を用いているたりに、
電流伝達特性のバラツキが少すく、発光素子、受光素子
間隔が広くと1高納圧の半導体光結合装置が得られる。
Effects of the Present Invention> According to the present invention, by sandwiching and holding a solid optical path material aligned to a constant length of FI-t between a light emitting element and a light receiving element, a -shaped optical path material can be formed. When using
If the variation in current transfer characteristics is small and the spacing between the light emitting element and the light receiving element is wide, a semiconductor optical coupling device with a high internal voltage can be obtained.

さらに本発明によれば、受光素子と相対向した発光素子
から発光される光の波長に対して高反射率を有するコー
テイング材でコーティングされた固体の光路材が1発光
素子、受光素子間に狭持、または保持されることに工す
1発光素子から発光された光は、光路材の中に入射し、
光路材壁面で有効に反射し、外側のエポキシ樹脂、また
は光路材との界面で吸収されることが少なく、受光素子
の受光面上に効率tく到達することが可能となる。
Furthermore, according to the present invention, a solid optical path material coated with a coating material having a high reflectance for the wavelength of light emitted from the light emitting element facing opposite to the light receiving element is provided between one light emitting element and the light receiving element. Light emitted from one light emitting element that is designed to be held or held enters the optical path material,
It is effectively reflected on the wall surface of the optical path material, is less likely to be absorbed by the outer epoxy resin or at the interface with the optical path material, and can efficiently reach the light receiving surface of the light receiving element.

と記のように、本発明によれば、電流伝達特性等の電気
特性のバラツキが小さく、耐圧も充分高く、光路材t−
2おう反射材等のポツティングも不要で組立も各lIJ
な半導体光結合装置が侍らする。
As described above, according to the present invention, variations in electrical characteristics such as current transfer characteristics are small, the withstand voltage is sufficiently high, and the optical path material t-
2. No need to pot reflective materials etc. and assembly is easy.
A semiconductor optical coupling device will be provided.

く実施例〉 以下に本発明の詳細を、実施例にもとづき、弔l−〜$
3図に従って説明する。
Examples> The details of the present invention will be described below based on examples.
This will be explained according to Figure 3.

(l!施絶倒、) 第1図は本発明の実施例1の断面図金示すものでめる。(l! Shizentai,) FIG. 1 is a cross-sectional view of Embodiment 1 of the present invention.

11は発光素子でわり1本実施例1では(JaAs赤外
発光素子を用いている。12は受光素子であり、本実施
例1においては8iのホトトランジスタを用いた。大き
さはそ1ぞれ0.4X0.4XO,2mm、  0.8
X0.8X0.2mm である。13に銀ペーストで発
光素子、および受光素子をそれぞれ発光素子側リード1
8.受光素子側リード191Cダイボンディングしてい
る。14は直径25μの金線であり1発光素子のt極と
発光素子側リード18の別の端子とを接続し、また受光
素子の1極と受光素子側リード19の別の端子とを接続
している。
Reference numeral 11 is a light emitting element, and in Example 1, a JaAs infrared light emitting element is used. Reference numeral 12 is a light receiving element, and in Example 1, an 8i phototransistor is used. 0.4X0.4XO, 2mm, 0.8
It is X0.8X0.2mm. 13, connect the light emitting element and the light receiving element with silver paste to the light emitting element side lead 1.
8. The light receiving element side lead 191C is die bonded. Reference numeral 14 denotes a gold wire with a diameter of 25μ, which connects the t-pole of one light-emitting element and another terminal of the light-emitting element side lead 18, and also connects one pole of the light-receiving element and another terminal of the light-receiving element-side lead 19. ing.

16は光路材でろり1本実施例IK&いては、通常よく
用いられているホウケイ酸ガラスを用い化。
16 is an optical path material, and 1 example IK & 1 uses borosilicate glass, which is commonly used.

これは可視またに近赤外領域の光に対し、透明でめり、
本実施例においてその形状は、第3図(a)に示す工う
に、光の透過部分の断面32の大きさが0.4X0.4
mm  でらり、長さが、1mm の円柱状の党略材3
1t−用いている。また光路材の側面33rj:金属酸
化物ft混合した白色ガラスのコーティング部分でめり
、光路材31と一体になっており可視、または近赤外域
の光に対して反射率が大きくなっている。15は透光性
のシリコン樹脂でろり、光路材16を発光素子11.受
光素子12によって狭持する際に発光素子側受光素子側
双方にコーティングして2@、光路材16を介してvc
y#させるとともに、発光素子から放射さまた波長94
0口mの光を効率的に光路材中に導き、文光素子の受光
面に光路材中エリ有効に光を到達させるものでろる。1
7は通常工〈用いられているエポキシ樹脂であり、リー
ド18.19に一定間隔に固定し、党略材9発光素子、
受光素子等を被漬するものである。
It is transparent to visible and near-infrared light, and
In this embodiment, the shape of the cross section 32 of the light transmitting portion is 0.4×0.4 as shown in FIG.
mm cylindrical material 3 with a length of 1 mm
1t - used. Further, the side surface 33rj of the optical path material is coated with white glass mixed with metal oxide ft, and is integrated with the optical path material 31, and has a high reflectance for light in the visible or near infrared region. 15 is coated with a transparent silicone resin, and the light path material 16 is connected to the light emitting element 11. When sandwiched between the light receiving elements 12, coat both the light emitting element side and the light receiving element side, and apply vc through the optical path material 16.
y# and the wavelength 94 emitted from the light emitting element.
It is possible to efficiently guide the light of 0 mm into the optical path material and to make the light effectively reach the light receiving surface of the writing element in the optical path material. 1
7 is a commonly used epoxy resin, which is fixed to the leads 18 and 19 at regular intervals, and the material 9 is a light emitting element;
It immerses the light receiving element etc.

本実施例1における光結合装置は以下のように作製され
ろ。発光素子ぺVブト11金銀ベースト13にLす1発
光素子側リードフレーム18にダイボンディングし、受
光素子側も同様にダイボンディングして、その後それぞ
れのリードフレームを200℃で熱処理、し銀ペースト
を固化させる。固化を完了したら属僚25μの金$11
4にエリワイヤボンディングを行う。次に受光素子12
の受光面にとりコン樹脂15を少量性fさせfc後、光
路材16を固定する。その後、発光素子110発光面に
も同一のシリコン刹脂15を少覆付4させた後、これを
受光側リードフレームと組合わせ1発光部、受光部とを
対向させ、さらにトランスファーモールド法によりエポ
キシ、lH詣17にエリ耐重した後、発党側、受光側リ
ードフレームのタイバー切断、ハンダメッキ等の工程を
経て、′@光素子側リード18.受光素子側リード19
と・と杉)茂し、完成されるものr6る。
The optical coupling device in Example 1 is manufactured as follows. The light-emitting element panel 11 is die-bonded to the gold-silver base 13, L1 is die-bonded to the light-emitting element side lead frame 18, and the light-receiving element side is also die-bonded in the same way.Then, each lead frame is heat-treated at 200°C, and a silver paste is applied. Let solidify. Once solidification is complete, the employee will receive 25μ of gold for $11.
4. Perform area wire bonding. Next, the light receiving element 12
After applying a small amount of resin 15 to the light receiving surface of the light receiving surface, the optical path material 16 is fixed. After that, the light emitting surface of the light emitting element 110 is covered with a small amount of silicone resin 15, and then this is combined with the light receiving side lead frame, the light emitting part and the light receiving part are made to face each other, and then epoxy resin is applied by transfer molding. , 17. After being subjected to heavy loads, the lead frames on the transmitting side and the receiving side undergo tie bar cutting, solder plating, etc., and then the optical element side leads 18. Light receiving element side lead 19
To... and Sugi) Shigeru, the one that will be completed r6ru.

(実施例2) 第2図は本発明の実施rl 2の断面図を示すものであ
る。21は発光素子であり、本実施例2においてはGa
As赤外発光素子を用いe、22r;[受光素子であり
、本実施例2においてはSiのホトトランジスタを用い
た。大きさは各々0.4 X 0.4 X O,2mm
、0.8X0.8X0.2mmでめる。23は銀ペース
トでめり、発光素子、受光素子を七〇それ、同一のリー
ドフレーム上べ形成されている発光素子側リード28.
受光素子側リード29にグイボンディングしている。2
4は直径が25μの金線でろり。
(Example 2) FIG. 2 shows a cross-sectional view of implementation rl 2 of the present invention. 21 is a light emitting element, and in this Example 2, Ga
An As infrared light-emitting element was used e, 22r; [a light-receiving element, and in Example 2, a Si phototransistor was used. Size: 0.4 x 0.4 x O, 2mm each
, 0.8X0.8X0.2mm. 23 is a light emitting element side lead 28 which is molded with silver paste, and a light emitting element and a light receiving element are formed on the same lead frame.
It is bonded to the lead 29 on the light receiving element side. 2
4 is filled with gold wire with a diameter of 25μ.

補光素子の電極と発光素子側リード28の端子とを艦続
し、また受光素子の電極と受光素子側り−ド29の端子
とt−1f続する。26はホウケイ酸ガラス製の光路材
でめり、可視または近赤外領域の光に対し透明である。
The electrode of the light auxiliary element is connected to the terminal of the light emitting element side lead 28, and the electrode of the light receiving element is connected to the terminal of the light receiving element side lead 29 at t-1f. Reference numeral 26 is an optical path material made of borosilicate glass, which is transparent to visible or near-infrared light.

その形状は!3図(b)の34に示すように板状でめり
、長さ3mm、光の透過部分の断面36は0.4X0.
2mm2である。また発光素子、および受光素子と接着
面35については。
What is its shape? As shown at 34 in FIG. 3(b), it is plate-shaped and has a length of 3 mm, and the cross section 36 of the light transmitting part is 0.4 x 0.
It is 2mm2. Regarding the light emitting element, the light receiving element and the adhesive surface 35.

弔3図に示すとおり、側山部とは異なって、白色ガラス
のコーティング部33は当然除去されている。25は透
光性のシリコン樹脂でメリ、発光素子210発光面、お
よび受光素子22の受光面に少量付着させ、光路材26
の両端を一着させ1発光素子から放!iされる940n
mの波長の光を光路材中に導き、受光素子の受光面に光
路材中より有効に光を到達させることができる。27は
、一般によく用いられている通常のエポキシ樹脂でらり
As shown in Figure 3, unlike the side peaks, the white glass coating 33 has naturally been removed. Reference numeral 25 is a light-transmitting silicone resin, and a small amount is attached to the light-emitting surface of the light-emitting element 210 and the light-receiving surface of the light-receiving element 22.
Put both ends together and release from one light emitting element! 940n to be i
It is possible to guide light with a wavelength of m into the optical path material, and to make the light effectively reach the light receiving surface of the light receiving element from within the optical path material. 27 is a common epoxy resin that is commonly used.

リード28,29 fニ一定の間隔に固定し、光路材。Leads 28 and 29 f are fixed at a constant interval and serve as optical path material.

発光素子、受光素子等を被覆し、固定するものである。It covers and fixes light-emitting elements, light-receiving elements, etc.

本実施例2に2ける光結合装置の作#は、リードフレー
ムが発光側、受光側とも、同−千口上に配利されたリー
ドフレームを用いていることと。
The optical coupling device according to the second embodiment uses a lead frame arranged on the same side on both the light emitting side and the light receiving side.

光路材部分の形状が実施例1とは異なるため、グイボン
ディング、ワイヤポンディングが1回で済み、党略材の
接着が容易になる等の利点がある池は、基本的な作製工
程については実施例1と同様でろる。
Since the shape of the optical path material part is different from Example 1, only one wire bonding and wire bonding is required, and the basic manufacturing process has the advantage of making it easier to bond the structural materials. It's similar to example 1.

〈発明の@果〉 以上、図面に工つて詳細に説明した工うに、本発明によ
れば発光素子、受光素子間に圧叡の一定長の固体の光路
材を狭持、まfcは保持させることにより、耐圧の高い
半導体元結せ装置を容易VC得ることができる。また光
路材が固体であるために。
<Results of the Invention> As described above in detail with reference to the drawings, according to the present invention, a solid optical path material having a fixed length of pressure is held between the light emitting element and the light receiving element. As a result, a semiconductor bonding device with high breakdown voltage can be easily obtained. Also, because the optical path material is solid.

光路の形状も一定でめり、耐圧のバラツキ、お工びC流
伝達特性のバラツ中も小さい上、従来例のエラに光路材
をおおう反射材のボンディング等が不要で組立が容易な
高品質の光結合装置が得られる。さらに本発明にぶる光
路材は外側面に効率の良い反射面を有しているため、従
来のように光路材シリコン樹脂と外側のエポキシ樹脂と
の界面での吸収がなく、効率よく受光面に光が到達し、
を流伝達効率の大さい光結合装置が容易に得られる。
The shape of the optical path is constant and there are small variations in pressure resistance and C flow transmission characteristics, and there is no need to bond reflective material to cover the optical path material in the conventional example, making it a high quality product that is easy to assemble. An optical coupling device is obtained. Furthermore, since the optical path material according to the present invention has a highly efficient reflective surface on the outer surface, there is no absorption at the interface between the optical path material silicone resin and the outer epoxy resin, and the light receiving surface is efficiently reflected. the light reaches
An optical coupling device with high flow transmission efficiency can be easily obtained.

また本発明の実施例においては、素材として、GaAs
赤外発光素子、および8iホトトランジスタを用いたが
、これらの材料に限らず、池のGaAsh、InGaA
s  等の化合吻半導体に広く変形路用させ得ることは
言う迄もない。
Further, in the embodiments of the present invention, GaAs is used as the material.
Although an infrared light emitting element and an 8i phototransistor were used, materials such as Ike's GaAsh, InGaA, etc.
It goes without saying that compound semiconductors such as S2 can be used in a wide variety of deformation paths.

さらに、本発明の実施例においては光路材としてホウケ
イ酸ガラスを用いたが、外側のエポキシ鋼脂と同様なプ
ラスチック材料?用いることも可能である。また側面に
反射面を有しない党略材を用いて、外側のエポキシ樹脂
を白色に着色したものを用いても本発明と同等な結果が
得られ、これも本発明に属するところでめる。また1本
爽施例においては1チヤンネル型の光結合装置について
説明したが、あらゆる複数の組合わせの多チヤンネル型
の光結合haについても適用可能であることはぎう迄も
ない。
Furthermore, in the embodiment of the present invention, borosilicate glass was used as the optical path material, but could it be made of a plastic material similar to the outer epoxy steel? It is also possible to use Furthermore, the same results as the present invention can be obtained by using a material having no reflective surface on the side surface and the outer epoxy resin being colored white, and this is also included in the present invention. Furthermore, although a one-channel type optical coupling device has been described in this embodiment, it goes without saying that the present invention can also be applied to any combination of multi-channel type optical coupling devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、弔2図は本発明の半導体光結合装置の断面図、
#43図(a)、(b)は本発明の半辱体光結合装置に
用いた党略材例C料視図、弔4図、躬5図。 !s6図は従来例の断面図である。 11、21.41.51.61・・・・・発光素子、1
2,22゜42、52.62・・・・・・受光素子、 
 13.23・・・・・・銀ベースト、1も24・・・
・・・金線、15.25.43.53.63・・・・・
・シリコン!(脂、 16.26.3+、 34.64
・・・・・・光路材、  17.27.44.54.6
G・・・・・・エポキシ樹脂。 18.28,45.55+  67・・・・・・発光側
リード、19゜29、46.56.68・・・・・・受
光側リード、 32・・・・・・断面、33・・・・・
コーティング部、35・旧・・P2着面、65・・・・
・・白色シリコンゴム。 「(埋入 弁理士  内 原   皆 ” H−L:+
、。 1゜ 豪(回   ′y“JIPj II−t−¥−20 渣3籾
1 and 2 are cross-sectional views of the semiconductor optical coupling device of the present invention,
#43 Figures (a) and (b) are a perspective view of an example C of an abbreviated material used in the semicircular body optical coupling device of the present invention, Figures 4 and 5. ! Figure s6 is a sectional view of the conventional example. 11, 21.41.51.61...Light emitting element, 1
2, 22° 42, 52.62... Light receiving element,
13.23...Silver base, 1 is also 24...
...Gold wire, 15.25.43.53.63...
·silicon! (fat, 16.26.3+, 34.64
・・・・・・Optical path material, 17.27.44.54.6
G... Epoxy resin. 18.28, 45.55+ 67... Light emitting side lead, 19°29, 46.56.68... Light receiving side lead, 32... Cross section, 33...・・・
Coating part, 35, old...P2 surface, 65...
・White silicone rubber. "(Embedded Patent Attorney Minami Uchihara" H-L:+
,. 1゜Au (time ′y“JIPj II-t-¥-20 residue 3 paddy

Claims (1)

【特許請求の範囲】[Claims]  発光素子と受光素子とを対向させ、該発光素子、該受
光素子間に透光性の固体の光路材を有し、該固体光路材
を狭持、または保持している半導体光結合装置において
、前記固体光路材が、前記受光素子と相対向した前記発
光素子から放射された光の波長に対して高反射率を有す
るコーティング材料でコーティングされていることを特
徴とする半導体光結合装置。
A semiconductor optical coupling device in which a light-emitting element and a light-receiving element are opposed to each other, a light-transmitting solid optical path material is provided between the light-emitting element and the light-receiving element, and the solid-state optical path material is sandwiched or held, A semiconductor optical coupling device characterized in that the solid optical path material is coated with a coating material having a high reflectance for the wavelength of light emitted from the light emitting element facing the light receiving element.
JP59231901A 1984-11-02 1984-11-02 Semiconductor photocoupler Pending JPS61110474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59231901A JPS61110474A (en) 1984-11-02 1984-11-02 Semiconductor photocoupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59231901A JPS61110474A (en) 1984-11-02 1984-11-02 Semiconductor photocoupler

Publications (1)

Publication Number Publication Date
JPS61110474A true JPS61110474A (en) 1986-05-28

Family

ID=16930816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59231901A Pending JPS61110474A (en) 1984-11-02 1984-11-02 Semiconductor photocoupler

Country Status (1)

Country Link
JP (1) JPS61110474A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296761A (en) * 2007-05-31 2008-12-11 Nirasawa Seihan Kk Sled
JP2010161202A (en) * 2009-01-08 2010-07-22 Renesas Electronics Corp Optically coupled device and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296761A (en) * 2007-05-31 2008-12-11 Nirasawa Seihan Kk Sled
JP2010161202A (en) * 2009-01-08 2010-07-22 Renesas Electronics Corp Optically coupled device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2000101147A (en) Semiconductor device and manufacture thereof
EP0127401A1 (en) Electro-optical element package
JP2000173947A (en) Plastic package
JPS61110474A (en) Semiconductor photocoupler
JPS63274188A (en) Optical coupling element
JPS58127474A (en) Silid state image pickup device
JPH03105950A (en) Package of semiconductor integrated circuit
JPH08250762A (en) Reflection optical coupling device
JP3824696B2 (en) Photocoupler and manufacturing method thereof
JPS55143045A (en) Semiconductor device
JPS6482554A (en) Resin-sealed semiconductor device
JPS62143485A (en) Photocoupler
JP3914289B2 (en) Photodetector
JPS61276273A (en) Switching element
JPH0211794Y2 (en)
JPH02103967A (en) Package for optical sensor
JPH11177125A (en) Device for optical communication and its manufacture
JPH0349403Y2 (en)
JPS63200551A (en) Lead frame
JPS60206183A (en) Semiconductor optical coupling device
JPS6447063A (en) Structure of lead frame
JP2511148Y2 (en) Optical coupling element
JP2528023Y2 (en) Optical coupling device
JPS61225879A (en) Solid-state relay device
KR940006582B1 (en) Ceramic semicondoctor package structure and manufacturing method thereof