JPS6110718A - Karman vortex flowmeter - Google Patents

Karman vortex flowmeter

Info

Publication number
JPS6110718A
JPS6110718A JP13092784A JP13092784A JPS6110718A JP S6110718 A JPS6110718 A JP S6110718A JP 13092784 A JP13092784 A JP 13092784A JP 13092784 A JP13092784 A JP 13092784A JP S6110718 A JPS6110718 A JP S6110718A
Authority
JP
Japan
Prior art keywords
flow path
pipe
bypass
vortex
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13092784A
Other languages
Japanese (ja)
Inventor
Noriomi Miyoshi
紀臣 三好
Michihiko Tsuruoka
鶴岡 亨彦
Mutsumi Nanun
睦 南雲
Tokuta Inoue
井上 悳太
Keiji Aoki
啓二 青木
Masaki Mitsuyasu
正記 光安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Toyota Motor Corp
Original Assignee
Fuji Electric Co Ltd
Toyota Motor Corp
Fuji Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Toyota Motor Corp, Fuji Electric Manufacturing Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13092784A priority Critical patent/JPS6110718A/en
Publication of JPS6110718A publication Critical patent/JPS6110718A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices

Abstract

PURPOSE:To eliminate the instrumental error of a flowmeter by a low-cost means, by arranging a columnar member in at least one flow path of two or more flow paths provided in a pipe, and making the cross sectional area of at least one remaining flow path variable. CONSTITUTION:A flow straightening grid 4 is provided in the upstream of a pipe 1. At a constricted part 5 at the downstream of the pipe 1, the pipe is branched into a main flow path 6 and a bypass 7, which are combined at an expanded part 8. Karman vortex, which is yield by a vortex yielding body 2 that is inserted in the flow path 6, is detected by vortex detecting part 3. The opening area of the bypass 7 is varied by an adjusting screw 9, which is provided in the bypass 7 through an O ring 10. The flow rates of the pipe 1, the flow path 6 and the bypass are made to be QT, QM and QB. The flow rate QT is computed by using the expressions I and II based on the vortex frequency (f) obtained by the detecting part 3. The dispersions in proportional constants K and K' based on the instrumental error of a flowmeter are corrected by a ratio QB/QM.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、流体の流れの中に挿入した柱状物体の下流側
両側面に発生するカルマン渦列の周波数を検出して、流
体の流速または流量を計測するカルマン渦流量計に関す
る。
Detailed Description of the Invention [Technical field to which the invention pertains] The present invention detects the frequency of the Karman vortex street generated on both downstream sides of a columnar object inserted into a fluid flow, and determines the fluid flow velocity or Related to Karman vortex flowmeter for measuring flow rate.

〔従来技術とその問題点〕[Prior art and its problems]

この種の流量針においては、流体の流速のある範囲では
、流速V(m/s)と柱状物体から発生する渦周波数f
(Hz)との間に比例関係が成立することが広く知られ
ている。すなわち、流れの中に挿入した柱状物体の代表
長さをdとすると、この関係は次式で表される。
In this type of flow needle, in a certain range of fluid flow speed, the flow speed V (m/s) and the vortex frequency f generated from the columnar object are
(Hz) It is widely known that a proportional relationship holds true between Hz and Hz. That is, if the representative length of the columnar object inserted into the flow is d, this relationship is expressed by the following equation.

f=st □          ・・・・・・(1)
また、流体の流れる管路の断面積をA Cm” )、流
量をQ (m” /sec )とすると、上記(1)式
は次式の如く表現することができる(V=Q/A)。
f=st □ ・・・・・・(1)
Furthermore, if the cross-sectional area of the pipe through which the fluid flows is A Cm") and the flow rate is Q (m"/sec), the above equation (1) can be expressed as the following equation (V=Q/A) .

ここで、SLはストロ−ハル数と呼ばれる無次元数で、
柱状体の形状によってほぼ定まる定数である。したがっ
て、 なる関係が成立する。すなわち、渦周波数fに比例定数
Kを掛ければ流量Qが求まることがわかる。
Here, SL is a dimensionless number called Strouhal number,
This is a constant that is approximately determined by the shape of the columnar body. Therefore, the following relationship holds true. That is, it can be seen that the flow rate Q can be found by multiplying the vortex frequency f by the proportionality constant K.

ところが、この比例定数Kに含まれる柱状体の代表長さ
dおよび流路の断面積Aは、製作時の寸法公差内のバラ
ツキを持っているので、比例定数にも個々の流量計毎に
異なる。このため、個々の流量計毎に異なる係数で流量
を算出せねばならず、実用性に問題がある。□そこで、
この比例定数の器差を少なくする方法として、柱状体の
代表長さdおよび流路の断面積Aの製作精度を上げる方
法が考えられるが、流量の計測精度(例えば、±1〜2
%)よりも少くとも1桁小さくする必要があり、非常な
コストアップになるという欠点がある。
However, the representative length d of the columnar body and the cross-sectional area A of the flow path included in this proportionality constant K vary within the dimensional tolerance during manufacturing, so the proportionality constant also differs for each flowmeter. . Therefore, the flow rate must be calculated using different coefficients for each individual flowmeter, which poses a problem in practicality. □So,
As a method to reduce the instrumental error of this proportionality constant, it is possible to increase the manufacturing accuracy of the representative length d of the columnar body and the cross-sectional area A of the flow path.
%), which has the disadvantage of significantly increasing costs.

〔発明の目的〕[Purpose of the invention]

本発明はかかる事情のもとになされたもので、従来方法
のごとく構成部品の精度を上げるのではなく、より安価
な手段によってこの種流量計の器差を無くすことを目的
とする。
The present invention has been made under these circumstances, and instead of increasing the accuracy of component parts as in the conventional method, it is an object of the present invention to eliminate the instrumental error of this type of flowmeter by a cheaper means.

〔発明の要点〕[Key points of the invention]

本発明は、測定流体を流すための管路内に大部分の流体
が流れるメイン流路と、一部が流れるバイパス流路との
二つの流路を形成し、メイン流路にカルマン渦発生体を
設けるとともに、バイパス流路の断面積を可変にしてメ
イン流路の流速を制御することにより、測定流体の流量
と渦周波数との比例定数を個々の流量計毎に、簡単に調
整できるようにしたものである。
The present invention forms two channels, a main channel through which most of the fluid flows, and a bypass channel through which a portion of the fluid flows, in a conduit for flowing the measurement fluid, and a Karman vortex generator is installed in the main channel. At the same time, the cross-sectional area of the bypass flow path is varied to control the flow velocity of the main flow path, making it possible to easily adjust the proportionality constant between the flow rate of the measured fluid and the vortex frequency for each individual flowmeter. This is what I did.

〔発明の実施例〕[Embodiments of the invention]

以下、図面により本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例を示す全体構成図、第1A図は
第1図のA−AwAに沿う断面図、第2図は流量特性を
示す特性図、第3図は流量と渦周波数との関係を示す特
性図である。第1図において、1は測定流体を流すため
の管路、2はカルマン渦を発生させるための渦発生体、
3は渦検出部である。4は整流格子で、管路1の上流の
流れの乱れや偏りを無くすためのもので、管路入口に設
けられている。管路1は、この整流格子4の下流に設け
られた縮小部5のさらに下流において、断面がほぼ矩形
状で前記渦発生体2が挿入されたメイン流路6と、バイ
パス流路7とに分岐されており、この二つの流路は拡大
部8で合流する。なお、メイン流路6およびバイパス流
路7の断面形状は、第1A図に示されており、ここで、
9はバイパス流路7の開口面積を変えるための調整ネジ
であり、10はこのネジ部9からの流体の流通を無くす
ためのOリングである。
Fig. 1 is an overall configuration diagram showing an embodiment of the present invention, Fig. 1A is a sectional view along A-AwA in Fig. 1, Fig. 2 is a characteristic diagram showing flow characteristics, and Fig. 3 is a flow rate and vortex frequency. FIG. In FIG. 1, 1 is a pipe for flowing the measurement fluid, 2 is a vortex generator for generating a Karman vortex,
3 is a vortex detection section. Reference numeral 4 denotes a rectifying grid, which is provided at the entrance of the pipe to eliminate disturbances and imbalances in the flow upstream of the pipe 1. Further downstream of the reduced portion 5 provided downstream of the rectifying grid 4, the pipe line 1 is divided into a main flow passage 6 having a substantially rectangular cross section and into which the vortex generator 2 is inserted, and a bypass flow passage 7. The two channels are branched and meet at the enlarged portion 8. Note that the cross-sectional shapes of the main flow path 6 and the bypass flow path 7 are shown in FIG. 1A, and here,
Reference numeral 9 is an adjustment screw for changing the opening area of the bypass passage 7, and reference numeral 10 is an O-ring for eliminating fluid flow from the threaded portion 9.

次に、動作を説明する。先に説明したように、管路1に
流入する測定流体は、メイン流路6とバイパス流路7と
に分流する。ここで、管路1への流入流量をQア、メイ
ン流路6.バイパス流路7の流量をそれぞれQM 、Q
sとすると、次式が成立する。
Next, the operation will be explained. As described above, the measurement fluid flowing into the pipe line 1 is divided into the main flow path 6 and the bypass flow path 7. Here, the inflow flow rate to the pipe line 1 is Qa, the main flow passage 6. The flow rates of bypass channel 7 are QM and Q, respectively.
When s is assumed, the following equation holds true.

QT = QM + QB          ・・・
・・・(4)一方、渦検出部3によって検出される渦周
波数fは、実際は、メイン流路6の流量QMに比例する
ので、この比例定数をに′とすると、 f=に′Q、            ・・・・・・(
5)が成立する。したがって、(4)、 (51式より
f =K ′QM =K ’ (Qt  Qi )が得
られ、したがって(5)式は、 f=KQア             ・・・・・・(
7)と表わすことができる。なお、(7)式の比例定数
には、 QM ・・・・・・(8) にて表わされる。以上のことから、Qll/Qイが流量
に依らず一定であれば、渦周波数fは管路1に流入する
全流量QTに比例するので、Ql/QI4の比を変えれ
ば流量計の比例定数Kを変えられることが解る。
QT = QM + QB...
(4) On the other hand, the vortex frequency f detected by the vortex detector 3 is actually proportional to the flow rate QM of the main flow path 6, so if this proportionality constant is denoted by ', then f='Q,・・・・・・(
5) holds true. Therefore, f = K'QM = K' (Qt Qi) is obtained from equation (4) and (51), and therefore, equation (5) is as follows:
7). Note that the proportionality constant in equation (7) is expressed as QM (8). From the above, if Qll/Qi is constant regardless of the flow rate, the vortex frequency f is proportional to the total flow rate QT flowing into pipe 1, so changing the ratio of Ql/QI4 will change the proportionality constant of the flowmeter. It turns out that K can be changed.

ところで、この種流体流路に流れる流量はその出入口の
圧力差で定まり、流体力学上よ(知られた次の関係が成
立する。すなわち、圧力差をΔP、流量をQとすると、 ここで、ξは圧力損失係数と呼ばれるもので、流路の形
状1表面粗さ等によって定まる定数である。
By the way, the flow rate flowing through this type of fluid flow channel is determined by the pressure difference between the inlet and outlet, and the following relationship, which is known from fluid dynamics, holds true. In other words, if the pressure difference is ΔP and the flow rate is Q, then, ξ is called a pressure loss coefficient, and is a constant determined by the shape, surface roughness, etc. of the flow path.

この関係は、流路内に柱状体等の障害物がある場合でも
ほぼ成立することを、本発明者らは実験により確認して
いる。
The present inventors have confirmed through experiments that this relationship substantially holds true even when there is an obstacle such as a columnar body in the flow path.

この圧力差と流量との関係(以下、流量特性と称す。)
は、第2図に示すようになる。そして、第1図からも明
らかなように、メイン流路6とバイパス流路7の各出入
口の圧力差ΔPは同じであるから、それぞれの流路に流
れる流量は、ΔPが一定の直線とそれぞれの流路の流量
特性曲線との交点で定まる流量Q、。I QIOとなり
、第2図からも明らかなように、流量比QIIO/QM
。は一定となる。管路1に流入する流量に依らず出入口
の圧力差はメイン流路6とバイパス流路7とで一定なの
で、流量比QBO/QMOもまた流量に依らず一定とな
り、渦周波数fは第3図の如く、全流量QTに比例する
ことが解る。ここで、バイパス流路7の開口面積を調整
ネジ9によって、例えば絞ると1バイパス流路の流量特
性は第2図に示される曲線BからB′に変わり、従って
流量はQ、。からGlg。
The relationship between this pressure difference and flow rate (hereinafter referred to as flow rate characteristics)
is as shown in FIG. As is clear from FIG. 1, the pressure difference ΔP at each inlet and outlet of the main flow path 6 and the bypass flow path 7 is the same, so the flow rate flowing into each flow path is determined by a straight line with a constant ΔP. The flow rate Q, determined by the intersection with the flow rate characteristic curve of the flow path. I QIO, and as is clear from Figure 2, the flow rate ratio QIIO/QM
. becomes constant. Since the pressure difference between the inlets and outlets is constant between the main flow path 6 and the bypass flow path 7 regardless of the flow rate flowing into the pipe line 1, the flow rate ratio QBO/QMO is also constant regardless of the flow rate, and the vortex frequency f is as shown in Fig. 3. It can be seen that it is proportional to the total flow rate QT. If the opening area of the bypass flow path 7 is narrowed down, for example, by the adjustment screw 9, the flow rate characteristic of the bypass flow path changes from curve B to curve B' shown in FIG. 2, and therefore the flow rate becomes Q. From Glg.

に低下する。すなわち、先の(8)式におけるQm/Q
Mの比が変わり、バイパス流路の開口面積が変わるため
、たとえに′値にバラツキがあってもに値を一定の値に
設定することができる。なお、第3図は全流量と渦周波
数との関係を示したもので、バイパス流路の面積を変え
ることにより、渦周波数fと全流量Q (QT )とが
比例性を保ったまま、その比例定数の値が変わることが
解る。
decreases to That is, Qm/Q in the above equation (8)
Since the ratio of M changes and the opening area of the bypass flow path changes, even if there is variation in the value, it is possible to set the value to a constant value. Furthermore, Figure 3 shows the relationship between the total flow rate and the vortex frequency. By changing the area of the bypass flow path, the vortex frequency f and the total flow rate Q (QT) can be changed while maintaining their proportionality. It can be seen that the value of the proportionality constant changes.

以上のように、本発明による調整の方法は、原理上ある
任意の1点の流量について所定の渦周波数となるように
調整ネジを動かすのみで′よいから、非常に容易に個々
の流量針の器差を無くすことが可能となる。
As described above, the adjustment method according to the present invention is very easy to adjust because it is only necessary to move the adjustment screw so that the flow rate at any one point has a predetermined vortex frequency. It becomes possible to eliminate instrumental differences.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、個々の流量計の部品の寸法公差に伴う
渦周波数と流量との比例定数の器差を無くす方法として
、部品の寸法精度を高めるのでは無く、管路に流入する
流体を流体の大部分が流入するメイン流路と、流体の一
部分が流入するバイパス流路とに分流し、例えば、バイ
パス流路の断(開口)面積を変えることにより、これに
流れる流量を調整して、結果的に渦周波数と流量との比
例定数を調整するようにしたもので、部品の寸法精度に
ばらつきがあっても、これに関係なく簡単かつ安価に調
整が可能となり、したがって、コストを大幅に低減でき
る利点がもたらされる。
According to the present invention, as a method of eliminating instrumental differences in the proportionality constant between vortex frequency and flow rate due to dimensional tolerances of individual flowmeter components, the fluid flowing into the pipe line is The flow is divided into a main flow path into which most of the fluid flows and a bypass flow path into which a portion of the fluid flows.For example, by changing the cross section (opening) area of the bypass flow path, the flow rate flowing therein is adjusted. As a result, the proportionality constant between the vortex frequency and the flow rate is adjusted, and even if there are variations in the dimensional accuracy of the parts, it can be easily and inexpensively adjusted, and therefore costs can be significantly reduced. This provides the advantage of reducing the

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す全体構成図、第1A図は
第1図のA−A線に沿う断面図、第2図は流量特性を示
す特性図、第3図は流量と渦周波数との関係を示す特性
図である。 符号説明 1・・・管路、2・・・渦発生体(柱状物体)、3・・
・渦検出部、4・・・整流格子、5・・・縮小部、6・
・・メイン流路、7・・・バイパス流路、8・・・拡大
部、9・・・調整ネジ、10・・・0リング。 代理人 弁理士 並 木 昭 夫 代理人 弁理士 松 崎   清 第111il tJEIA図
Fig. 1 is an overall configuration diagram showing an embodiment of the present invention, Fig. 1A is a sectional view taken along line A-A in Fig. 1, Fig. 2 is a characteristic diagram showing flow characteristics, and Fig. 3 is a flow rate and vortex. FIG. 3 is a characteristic diagram showing the relationship with frequency. Code explanation 1... Pipeline, 2... Vortex generator (column-shaped object), 3...
・Vortex detection section, 4... Rectification grating, 5... Reduction section, 6.
...Main flow path, 7...Bypass flow path, 8...Enlarged portion, 9...Adjustment screw, 10...0 ring. Agent Patent Attorney Akio Namiki Agent Patent Attorney Kiyoshi Matsuzaki 111il tJEIA Map

Claims (1)

【特許請求の範囲】[Claims] 測定流体を流すための管路内に少なくとも2つ以上の流
路を形成し、そのうちの少なくとも1つの流路にはカル
マン渦を発生させるための柱状部材を配置する一方、残
りの流路の少なくとも1つにはその流路の断面積を可変
にする可変部材と、該可変部材の調整を前記管路外から
行なうための調整部材とを設けてなることを特徴とする
カルマン渦流量計。
At least two or more channels are formed in the pipe for flowing the measurement fluid, and a columnar member for generating a Karman vortex is disposed in at least one of the channels, while at least one of the remaining channels is One is a Karman vortex flowmeter characterized by comprising a variable member that changes the cross-sectional area of the flow path, and an adjustment member that adjusts the variable member from outside the pipe.
JP13092784A 1984-06-27 1984-06-27 Karman vortex flowmeter Pending JPS6110718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13092784A JPS6110718A (en) 1984-06-27 1984-06-27 Karman vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13092784A JPS6110718A (en) 1984-06-27 1984-06-27 Karman vortex flowmeter

Publications (1)

Publication Number Publication Date
JPS6110718A true JPS6110718A (en) 1986-01-18

Family

ID=15045977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13092784A Pending JPS6110718A (en) 1984-06-27 1984-06-27 Karman vortex flowmeter

Country Status (1)

Country Link
JP (1) JPS6110718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016673A1 (en) * 1989-05-23 1990-11-29 Mitsubishi Motors Corp Vortex flow measuring device
US10574630B2 (en) 2011-02-15 2020-02-25 Webroot Inc. Methods and apparatus for malware threat research

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4016673A1 (en) * 1989-05-23 1990-11-29 Mitsubishi Motors Corp Vortex flow measuring device
US10574630B2 (en) 2011-02-15 2020-02-25 Webroot Inc. Methods and apparatus for malware threat research

Similar Documents

Publication Publication Date Title
US5535633A (en) Differential pressure sensor for respiratory monitoring
US6128962A (en) Three-phase fluid flow measurement system and method
US5052229A (en) Vortex flowmeter
KR940007793Y1 (en) Fluid flow meter
US5218872A (en) Fluidic flowmeter for use with disturbed fluids
JPS6110718A (en) Karman vortex flowmeter
JP3100926B2 (en) Eddy current sensor with turbulent grid
JP4582623B2 (en) Flowmeter
JPH10320057A (en) Flow rate control valve device
JP2002214002A (en) Flow meter
JP3408341B2 (en) Flow meter
JP2002340632A (en) Flowmeter
JP3122981B2 (en) Reversible flow measurement device
GB1438147A (en) Method and device for measuring the flow rate of a fluctuating or intermittent fluid flow
JPS58201026A (en) Vortex flow meter
JP3596948B2 (en) Flow measurement system
JPS5530625A (en) Liquid meter
JP2004093392A (en) Pulsation absorption structure of electronic gas meter
JPH08247807A (en) Flowmeter
JPS6044607B2 (en) vortex flow meter
JPS58219418A (en) Vortex flowmeter
WO2004001343A3 (en) Vortex flowmeter
JP2002214003A (en) Flow meter
JPS6076620A (en) Method and apparatus for measuring flow rate of fluid
JPS58219419A (en) Vortex flowmeter