JPS6097247A - Continuous liquid-concentration measuring device - Google Patents

Continuous liquid-concentration measuring device

Info

Publication number
JPS6097247A
JPS6097247A JP20554983A JP20554983A JPS6097247A JP S6097247 A JPS6097247 A JP S6097247A JP 20554983 A JP20554983 A JP 20554983A JP 20554983 A JP20554983 A JP 20554983A JP S6097247 A JPS6097247 A JP S6097247A
Authority
JP
Japan
Prior art keywords
liquid
concentration
voltage
electrodes
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20554983A
Other languages
Japanese (ja)
Inventor
Takehiko Araki
荒木 武彦
Santarou Nakajima
中島 賛太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIWA DENKI KK
Seiwa Electric Mfg Co Ltd
Original Assignee
SEIWA DENKI KK
Seiwa Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEIWA DENKI KK, Seiwa Electric Mfg Co Ltd filed Critical SEIWA DENKI KK
Priority to JP20554983A priority Critical patent/JPS6097247A/en
Publication of JPS6097247A publication Critical patent/JPS6097247A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To measure the concentration of liquid accurately in a short time, by applying a pulse voltage across electrodes. CONSTITUTION:In a pulse-voltage applying means 1, a switching circuit 12 is turned On by a square wave formed by a one-shot pulse generating circuit 15. A square pulse voltage (e) having a short pulse width is applied across A and C of a liquid-concentration detecting means 2. In the part between B and C of electrodes (P) of the liquid-concentration means 2, which is immersed in the liquid, impedance, which is determined by the liquid concentration, is present. When a divided voltage e' between B and C of the square pulse voltage (e) is measured, the liquid concentration can be detected. The potential difference e' between the electrodes is compared with a preset reference voltage 18 in a measuring means 3, operation is performed, and the measured data is outputted to an output circuit 20. In this constitution, disturbance in electrode potential due to fluidness is not present even though the liquid is flowing. Gas is not yielded and polarization does not occur at the time of measurement.

Description

【発明の詳細な説明】 く技術分野〉 本発明は、流体の濃度測定装置に関する。[Detailed description of the invention] Technical fields> The present invention relates to a fluid concentration measuring device.

〈従来技術〉 従来、液体の濃度を測定、監視するために、定量分析、
水素イオン濃度測定、比重測定、電気導電率測定等の装
置が使用されてきた。
<Prior art> Conventionally, in order to measure and monitor the concentration of liquid, quantitative analysis,
Instruments such as hydrogen ion concentration measurement, specific gravity measurement, and electrical conductivity measurement have been used.

定量分析には測定対象試料の調整が必要で連続測定には
装置が複雑且つ高価となる、水素イオン濃度測定は連続
測定には通しているが、電極構造が複雑且つ特殊なもの
となる、比重測定はパンチ処理を要し連続測定には向か
ない、電気導電測定は、濃度測定対象の液体が流動する
場合、測定用の電極表面の液体が乱れ、また、電極に分
極が生じ、くり返し測定時は非定常性を生じやすい、等
の欠点があった。
Quantitative analysis requires preparation of the sample to be measured, and continuous measurement requires complicated and expensive equipment. Hydrogen ion concentration measurement can be performed continuously, but the electrode structure is complicated and special. Measurement requires punching and is not suitable for continuous measurement.In electrical conductivity measurement, when the liquid to be measured for concentration flows, the liquid on the surface of the measurement electrode is disturbed, and the electrode becomes polarized, causing problems during repeated measurements. has disadvantages such as the tendency to cause unsteadiness.

〈発明の目的さ 本発明は上記の従来技術の欠点を改善し、液体の濃度を
くり返し連続的に測定、監視する装置を安価に提供する
ことを目的とする。
[Object of the Invention] It is an object of the present invention to improve the above-mentioned drawbacks of the prior art and to provide an inexpensive device for repeatedly and continuously measuring and monitoring the concentration of a liquid.

〈発明の構成〉 本発明の、流体の連続濃度測定装置は、測定すべき液体
に一対の電極を浸し、その電極間のインピーダンスを電
気測定する装置において、上記電極間にパルス電圧を印
加するよう構成したことを特徴とする。
<Structure of the Invention> The continuous fluid concentration measuring device of the present invention is a device that immerses a pair of electrodes in a liquid to be measured and electrically measures the impedance between the electrodes, in which a pulse voltage is applied between the electrodes. It is characterized by having been configured.

〈実施例〉 本発明の実施例を、第1図に示す電気回路ブロック図お
よび、その他の各図により示す。
<Example> An example of the present invention is illustrated by the electric circuit block diagram shown in FIG. 1 and other figures.

実施例の濃度測定装置は、パルス電圧eを発生しこれを
出力する電圧印加手段1と、濃度を測定すべき液体に浸
した濃度検出用の一対の電極(ρ)と補助抵抗(RA)
の直列回路ABCより成りパルス電圧印加手段1のパル
ス電圧出力Cを受け電極(plの電極間BCより電極間
電位差C′を濃度検出信号として出力する液体濃度の検
出手段2と、検出手段2の出力C′を比較回路17に受
けこれを予め設定された基準電圧18と比較し更に必要
により演算回路19により演算を施し出力回路20に向
けて出力する測定手段3により構成される。
The concentration measuring device of the embodiment includes a voltage applying means 1 that generates and outputs a pulse voltage e, a pair of concentration detection electrodes (ρ) immersed in a liquid whose concentration is to be measured, and an auxiliary resistor (RA).
A liquid concentration detection means 2 which receives the pulse voltage output C of the pulse voltage application means 1 and outputs the inter-electrode potential difference C' as a concentration detection signal from the electrodes BC between the electrodes (pl); The measurement means 3 receives the output C' in a comparator circuit 17, compares it with a preset reference voltage 18, performs arithmetic operations in an arithmetic circuit 19 if necessary, and outputs the result to an output circuit 20.

上記検出手段2における電極(1))の構造の一例を第
3図に示す。電極PはA−A断面図に示すような同心円
筋の棒状であって、導電性液体中で使用するので、耐蝕
性の導電体、例えば、黒鉛やステンレス網製とする。
An example of the structure of the electrode (1) in the detection means 2 is shown in FIG. The electrode P has a concentric rod shape as shown in the sectional view taken along line A-A, and since it is used in a conductive liquid, it is made of a corrosion-resistant conductor, such as graphite or stainless steel mesh.

また上記パルス電圧印加手段1の構成につき更に詳述す
ると、同手段は、電源11と、これに接続されるスイッ
チング回路12およびその制御回路により構成される。
Further, to describe the configuration of the pulse voltage applying means 1 in more detail, the means is constituted by a power source 11, a switching circuit 12 connected to the power source 11, and a control circuit thereof.

スイッチング回路12は回路を0N−OFF開閉するス
イッチ要素13と電源11からの入力の極性を転換する
極性転換要素14から成り、各要素にはそれぞれ各要素
を制御するワンショットパルス発生回路15と極性転換
制御回路16が接続される。
The switching circuit 12 consists of a switch element 13 that opens and closes the circuit ON-OFF, and a polarity change element 14 that changes the polarity of the input from the power supply 11. Each element has a one-shot pulse generation circuit 15 that controls each element, and a polarity change element 14 that changes the polarity of the input from the power supply 11. A conversion control circuit 16 is connected.

次に作用につき説明する。Next, the effect will be explained.

パルス電圧印加手段1において、ワンショットパルス発
生回路15で生成された方形波によりスイッチング回路
12がONされて短時間のパルス幅を持つ方形パルス電
圧eが、検出手段2の回路AC間に印加される。同回路
中、濃度を測定する液体に浸した電極(ρ)の極間BC
には、液体の濃度により定まるインピーダンスが生じ、
これが補助抵抗(RA)と直列に接続され、この直列接
続回路ABCに方形パルス電圧Cが印加されるため、方
形パルス電圧Cの80間の分圧値e′を測定すれば、こ
れにより、液体濃度を検出することができる。検出手段
2が、上記電極間電位差e′を液体濃度の検出信号とし
て出力すると、測定手段3は比較回路17においてこれ
を受け、予め設定された基準電圧18と比較し、或いは
必要により、演算回路19において同比較結果に更に演
算を加え数値化し、これらを液体濃度の判定データ、或
いは測定データとして出力回路に出力する。
In the pulse voltage application means 1, the switching circuit 12 is turned on by the square wave generated by the one-shot pulse generation circuit 15, and a square pulse voltage e having a short pulse width is applied between the circuit AC of the detection means 2. Ru. In the same circuit, BC between electrodes (ρ) immersed in the liquid whose concentration is to be measured
An impedance determined by the concentration of the liquid occurs,
This is connected in series with the auxiliary resistor (RA), and the rectangular pulse voltage C is applied to this series connection circuit ABC. Therefore, if the partial pressure value e' between 80 and 80 of the rectangular pulse voltage C is measured, the liquid Concentration can be detected. When the detection means 2 outputs the interelectrode potential difference e' as a liquid concentration detection signal, the measurement means 3 receives it in the comparison circuit 17 and compares it with a preset reference voltage 18, or if necessary, sends it to an arithmetic circuit. In step 19, the comparison results are further subjected to calculations, converted into numerical values, and outputted to the output circuit as liquid concentration determination data or measurement data.

このようにして−回の濃度測定が完結する。この測定を
くり返し連続的に行なうには、前述の印加パルス電圧e
を、第4図(alに示すように、継続的に、検出手段2
の入力回路ACに印加する。
In this way, -th concentration measurement is completed. In order to repeatedly and continuously perform this measurement, the above-mentioned applied pulse voltage e
As shown in FIG. 4 (al), the detection means 2
is applied to the input circuit AC.

第2図は、本実施例による測定結果であり、電極(pl
の電極間電位差C′が液体濃度に反比例することを示ず
。本データは、電極間電位差を検出し、これに演算等の
処理を施すことにより液体の濃度が容易に測定できるこ
とを示している。
FIG. 2 shows the measurement results according to this example.
It is not shown that the interelectrode potential difference C' is inversely proportional to the liquid concentration. This data shows that the concentration of the liquid can be easily measured by detecting the potential difference between the electrodes and performing calculations and other processing on this.

通常、電極に電圧を印加する場合、電圧印加直後に、電
気化学反応が始まる。先ず電極近傍に、短時間、イオン
の吸着が生じ、ついで、電極表面でイオン析出が生じ、
陽極でガスが発生し、陰極で金属が析出する。このため
、電極表面に液体の流動がある場合はイオン析出に乱れ
が生じ、電極間の電位差に影響を与える。その結果、液
体の濃度測定が困難となり、測定の再現性も得られない
Normally, when a voltage is applied to an electrode, an electrochemical reaction begins immediately after the voltage is applied. First, ion adsorption occurs for a short time near the electrode, then ion precipitation occurs on the electrode surface,
Gas is generated at the anode and metal is deposited at the cathode. Therefore, when there is a flow of liquid on the electrode surface, ion precipitation is disturbed, which affects the potential difference between the electrodes. As a result, it becomes difficult to measure the concentration of the liquid, and the reproducibility of the measurement cannot be achieved.

しかし本発明では、電極への電圧印加が極めて短時間に
終わり、この間の電極での反応は電極近傍の微量のイオ
ン吸着と、同じく微量の静電容器の充電が生ずるだけで
ある。従って、この程度の電極反応では、液体の流動に
よる電極の電位の乱れは生ぜず、本発明の装置により、
液体が流動する場合でも、液体の濃度を正確に測定する
ことができる。又、測定時にガス発生や分極も生じない
However, in the present invention, the voltage application to the electrode is completed in an extremely short time, and the reactions at the electrode during this time only result in a small amount of ion adsorption near the electrode and a similarly small amount of charging of the electrostatic container. Therefore, with this level of electrode reaction, the electrode potential is not disturbed by the flow of the liquid, and the device of the present invention allows
Even when the liquid is flowing, the concentration of the liquid can be accurately measured. Furthermore, no gas generation or polarization occurs during measurement.

上記実施例において、電源11の電圧がスイッチング回
路12を通し検出手段2の入力回路ACに、ワンショッ
トの方形パルス電圧eとなって印加される場合、更に、
極性転換制御回路16を作動させると、これにより、検
出手段2に印加される電圧Cの極性を転換させることが
できる。
In the above embodiment, when the voltage of the power supply 11 is applied to the input circuit AC of the detection means 2 through the switching circuit 12 as a one-shot rectangular pulse voltage e, further:
When the polarity switching control circuit 16 is activated, the polarity of the voltage C applied to the detection means 2 can be switched.

第4図(b)に示すように、各濃度測定毎に、この印加
電圧の極性を転換させるか、或は、同図(C)に示すよ
うに、−回の測定期間中に極性を転換させれば、電極表
面を、たえずフレッシュな状態に保持することができる
。従って、電極表面における分析や析出反応を、更に抑
制でき、正確な濃度測定が可能となる。
As shown in Figure 4(b), the polarity of this applied voltage is changed for each concentration measurement, or as shown in Figure 4(C), the polarity is changed during - measurement period. By doing so, the electrode surface can be kept constantly fresh. Therefore, analysis and precipitation reactions on the electrode surface can be further suppressed, allowing accurate concentration measurement.

本発明における電極構造は、実施例で示した同心形状の
ほか、平行対同型等自由な構造のものを使用でき、比較
演算手段は、コンパレータ等の集積回路、或いは、マイ
クロコンピュータ回路等積々の回路により実現できる。
In addition to the concentric shape shown in the embodiments, the electrode structure in the present invention can be of a free structure such as parallel versus isomorphic, and the comparison calculation means can be an integrated circuit such as a comparator or a microcomputer circuit. This can be realized using a circuit.

また液体濃度の検出手段については、実施例では電極間
インピーダンスと補助抵抗を直列に接続した回路に一定
の大きさのパルス電圧を印加し、電極間の電位差を検出
する場合につき説明したが、この代わりに、例えば、定
電流のパルスを上記回路に印加し、電極間に電位差を生
成してそれを検出すること等も可能である。
Regarding the liquid concentration detection means, in the embodiment, a pulse voltage of a certain magnitude is applied to a circuit in which an interelectrode impedance and an auxiliary resistor are connected in series, and the potential difference between the electrodes is detected. Alternatively, it is also possible, for example, to apply a constant current pulse to the circuit to generate a potential difference between the electrodes and detect it.

〈発明の効果〉 本発明による濃度測定装置を使用すれば、濃度を測定す
る電極には、極めて短時間のパルス状電圧が印加さるの
で、液体の流動による電極表面の乱れや分極作用は極め
て短時間に終結し、測定精度に殆ど影響を与えない。従
って、本装置により、液体の濃度を極めて短時間に、或
は、くり返えし連続的に、正確に測定監視することがで
きる。
<Effects of the Invention> When the concentration measuring device according to the present invention is used, an extremely short pulsed voltage is applied to the electrode for measuring the concentration, so disturbances and polarization effects on the electrode surface due to liquid flow are extremely short. It takes a long time and has little effect on measurement accuracy. Therefore, with this device, it is possible to accurately measure and monitor the concentration of a liquid in a very short period of time or repeatedly and continuously.

【図面の簡単な説明】[Brief explanation of drawings]

図面はすべて本発明の実施例を示す。 第1図は、電気回路ブロック図、第2図は本発明実施例
の作用説明図、第3図は電極構造を示す説明図、第4図
は検出手段に印加する電圧波形を示すタイムチャートで
ある。 ■−パルス電圧印加手段 2−検出手段3−測定手段 
11−電源 12−スイッチング回路 15・・−ワンショットパルス発生回路16−極性転換
制御回路 17−比較回路 19−演算回路 20〜 出力回路
All drawings depict embodiments of the invention. Fig. 1 is an electric circuit block diagram, Fig. 2 is an explanatory diagram of the operation of the embodiment of the present invention, Fig. 3 is an explanatory diagram showing the electrode structure, and Fig. 4 is a time chart showing the voltage waveform applied to the detection means. be. ■-Pulse voltage application means 2-Detection means 3-Measurement means
11-Power supply 12-Switching circuit 15...-One-shot pulse generation circuit 16-Polarity change control circuit 17-Comparison circuit 19-Arithmetic circuit 20~ Output circuit

Claims (1)

【特許請求の範囲】 (11測定すべき液体に一対の電極を浸し、その電極間
のインピーダンスを電気測定する装置において、上記電
極間にパルス電圧を印加するよう構成したことを特徴と
する、流体の連続濃度測定装置。 (2)各測定ごとに、電極に印加するパルス電圧の極性
を転換させるよう構成した、特許請求の範囲第1項記載
の流体の連続濃度測定装置。 (3)−回の測定期間中に電極に与えるパルス電圧の極
性を転換させるよう構成した、特許請求の範囲第1項記
載の流体の連続濃度測定装置。
[Scope of Claims] (11) An apparatus for electrically measuring impedance between a pair of electrodes by immersing them in a liquid to be measured, characterized in that a pulse voltage is applied between the electrodes. (2) The continuous concentration measuring device for a fluid according to claim 1, which is configured to change the polarity of the pulse voltage applied to the electrode for each measurement. (3) - times 2. The continuous fluid concentration measuring device according to claim 1, wherein the device is configured to change the polarity of the pulse voltage applied to the electrode during the measurement period.
JP20554983A 1983-10-31 1983-10-31 Continuous liquid-concentration measuring device Pending JPS6097247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20554983A JPS6097247A (en) 1983-10-31 1983-10-31 Continuous liquid-concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20554983A JPS6097247A (en) 1983-10-31 1983-10-31 Continuous liquid-concentration measuring device

Publications (1)

Publication Number Publication Date
JPS6097247A true JPS6097247A (en) 1985-05-31

Family

ID=16508726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20554983A Pending JPS6097247A (en) 1983-10-31 1983-10-31 Continuous liquid-concentration measuring device

Country Status (1)

Country Link
JP (1) JPS6097247A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412746A2 (en) * 1989-08-08 1991-02-13 Lawrence W. Klein Fluid testing device and method
JPH0526407A (en) * 1991-07-18 1993-02-02 Tokyo Denki Kogyo Kk Hot water quality control device
JP2014098699A (en) * 2012-11-13 2014-05-29 Korea Atomic Energy Research Inst Method for measuring electrical conductivity and system for measuring electrical conductivity using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412746A2 (en) * 1989-08-08 1991-02-13 Lawrence W. Klein Fluid testing device and method
EP0412746A3 (en) * 1989-08-08 1991-07-24 Lawrence W. Klein Fluid testing device and method
JPH0526407A (en) * 1991-07-18 1993-02-02 Tokyo Denki Kogyo Kk Hot water quality control device
JP2014098699A (en) * 2012-11-13 2014-05-29 Korea Atomic Energy Research Inst Method for measuring electrical conductivity and system for measuring electrical conductivity using the same
US9618468B2 (en) 2012-11-13 2017-04-11 Korea Hydro & Nuclear Power Co., Ltd. Method for measuring electrical conductivity and electrical conductivity measuring system using the same

Similar Documents

Publication Publication Date Title
US3924175A (en) D.C. system for conductivity measurements
CN100385231C (en) Electrochemical noise technique for corrosion
US5006786A (en) Device for in situ monitoring of corrosion rates of polarized or unpolarized metals
US7772854B2 (en) High-conductivity contacting-type conductivity measurement
EP0645623B1 (en) Method of monitoring acid concentration in plating baths
US4488939A (en) Vapor corrosion rate monitoring method and apparatus
JPH07198643A (en) Method for measuring resistance of solution, method for measuring corrosion rate of metal surface using method thereof and device therefor
Štulík et al. Continuous voltammetric measurements with solid electrodes: Part I. A flow-through cell with tubular electrodes employing pulse polarization of the electrode system
US3635681A (en) Differential conductivity-measuring apparatus
JPH071289B2 (en) Method and apparatus for measuring conductivity without influence of polarization
EP0598380B1 (en) Method of monitoring constituents in plating baths
Gründler et al. The Technology of Hot‐Wire Electrochemistry
JPS6097247A (en) Continuous liquid-concentration measuring device
JP2006349450A (en) Concentration measuring device
JP2001174436A (en) Method and apparatus for measuring ion concentration
US3631338A (en) Method and apparatus for determining galvanic corrosion by polarization techniques
Hack et al. Influence of electrolyte resistance on electrochemical measurements and procedures to minimize or compensate for resistance errors
JPH10111274A (en) Residual chlorine meter
JP2523608B2 (en) Phase difference detection method in AC applied polarization reaction
Bishop et al. Differential electrolytic potentiometry with periodic polarisation. Part XXI. Introduction and instrumentation
JPS6313486Y2 (en)
JPH0658333B2 (en) Conductivity measuring method and measuring apparatus therefor
JPH07318529A (en) Corrosion rate meter
RU2216726C2 (en) Facility measuring specific resistance of liquid media and ground
JPH0352019B2 (en)