JPS6095939A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPS6095939A
JPS6095939A JP20458683A JP20458683A JPS6095939A JP S6095939 A JPS6095939 A JP S6095939A JP 20458683 A JP20458683 A JP 20458683A JP 20458683 A JP20458683 A JP 20458683A JP S6095939 A JPS6095939 A JP S6095939A
Authority
JP
Japan
Prior art keywords
layer
insulating film
region
forming
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20458683A
Other languages
Japanese (ja)
Inventor
Takeshi Takanori
高乗 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP20458683A priority Critical patent/JPS6095939A/en
Publication of JPS6095939A publication Critical patent/JPS6095939A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the breakdown of an insulating film due to surge voltage by making the thickness of an inter-layer insulating film on a first conducting path utilizing a diffusion layer the same at that of the insulating film on an epitaxial layer for forming a semiconductor element. CONSTITUTION:An N epitaxial layer 3 is deposited on a P type Si substrate 1 into which N layers 2, 21 are buried, and isolated into insular regions 30, 31 by P layers 4. Openings are bored to an SiO2 film 11 as the surface in approximately the whole region of the region 30 and one part of the region 31, and P is diffused to form N<+> layers 12, 13. An SiO2 film 10 is shaped newly, and a base layer 14 and an emitter layer 15 are formed in the region 31. Stepped sections are formed in the film 10 in the process. Openings are bored on both sides of the N<+> layer 12 and on the layers 13, 14, 15, and Al electrodes 7, 71, 16 and a second conducting path 8, which crosses at right angles with a first conducting part (7-12-71) and is insulated by SiO2 10, are attached. According to the constitution, inter-layer dielectric breakdown due to surge voltage can be prevented because the inter-layer insulating film 10 can be formed thickly in the same manner as the upper section of the N epitaxial layer.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、半導体基板内に作り込まれた第1の導電路
上に絶縁膜を設け、さらに、この上に第2の導電路を形
成し、両者を立体的に交差させた場合の絶縁膜のサージ
破壊を防ぐことができ、また、半導体基板内に作シ込ま
れる導電路を低抵抗とすることが可能な半導体集積回路
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention provides an insulating film on a first conductive path formed in a semiconductor substrate, further forms a second conductive path on this, and connects both. This invention relates to a method for manufacturing semiconductor integrated circuits that can prevent surge breakdown of insulating films when they intersect three-dimensionally, and that can make conductive paths formed in semiconductor substrates have low resistance. be.

従来例の構成とその問題点 半導体集積回路においては、2つの導電路が交差するこ
とが多々あり、両者を立体的に交差させる場合、一方の
導電路をトランジスタのエミッタと同時にシリコン基板
内に形成されるn膨拡散層で形成し、他方の導電路をn
膨拡散層の上を覆う酸化シリコン膜上に配線層を設けて
形成することにより両者を立体的に交差させる方法が広
く採用されている。
Conventional configurations and their problems In semiconductor integrated circuits, two conductive paths often intersect, and when they cross three-dimensionally, one conductive path is formed in the silicon substrate at the same time as the emitter of the transistor. The other conductive path is formed by an n-swelled diffusion layer, and the other conductive path is
A widely used method is to form a wiring layer on a silicon oxide film covering the swelling diffusion layer so that the two intersect three-dimensionally.

第1図は、この方法で形成された2つの導電路の立体交
差部の構造例を示す断面図であり、p形単結晶シリコン
基板1に埋め込み層2を形成し、さらに、n形シリコン
エピタキシャル層3を成長させ、この後n形シリコンエ
ピタキシャル層3を頁通し、p形単結晶シリコン基板1
まで達する深さのp形分離層4を形成して、n形シリコ
ンエピタキシャル層を所定数の島領域とし、この島領域
の1つの中にトランジスタのベース領域を形成する工程
で同時にp膨拡散層6を形成し、さらに、このp膨拡散
層の中にトランジスタのエミッタ領域を形成する工程で
、同時に高濃度のn膨拡散層6を形成し、最後にn膨拡
散層6の両側にコンタクト窓をあけて配線層7と71の
一端を接続するとともに、n膨拡散層6の上に位置する
絶縁膜9の上に、このn膨拡散層6と直交する関係で配
線層8を形成することによって、配線層7、n膨拡散層
6および配線層71で形成される導電路と、配線層8で
形成される導電路を立体的に交差させた構造が得られて
いる。
FIG. 1 is a cross-sectional view showing an example of the structure of a three-dimensional intersection of two conductive paths formed by this method. layer 3 is grown, after which the n-type silicon epitaxial layer 3 is passed through the p-type single crystal silicon substrate 1.
In the process of forming a p-type isolation layer 4 with a depth reaching up to In the step of forming the emitter region of the transistor in this p-swelled diffusion layer, a highly concentrated n-swelled diffusion layer 6 is formed at the same time, and finally contact windows are formed on both sides of the n-swelled diffusion layer 6. One end of the wiring layers 7 and 71 are connected to each other with a gap between them, and a wiring layer 8 is formed on the insulating film 9 located on the n-swelled diffusion layer 6 in a relationship perpendicular to the n-swelled diffusion layer 6. As a result, a structure is obtained in which the conductive path formed by the wiring layer 7, the n-swelled diffusion layer 6, and the wiring layer 71 intersects the conductive path formed by the wiring layer 8 in three dimensions.

ところで、この製造方法では、n膨拡散層6を作るとき
、その上のシリコン表面を覆っている酸化シリコン膜は
除去され、n膨拡散層6を形成する過程で酸化シリコン
膜9が形成されるため、n形シリコンエピタキシャル層
3の上にある酸化シリコン膜10(厚さ約1μm)と比
べてn膨拡散層6を覆う酸化シリコン膜9(厚さ0.1
〜0.6/J m )は薄くなる。したがって酸化シリ
コン膜9で絶縁されている2つの導電路の間にサージ電
圧がかかった場合、両者を絶縁している酸化シリコン膜
9にサージ破壊が起る不都合が生じる。
By the way, in this manufacturing method, when forming the n-swelled diffusion layer 6, the silicon oxide film covering the silicon surface thereon is removed, and the silicon oxide film 9 is formed in the process of forming the n-swelled diffusion layer 6. Therefore, compared to the silicon oxide film 10 (thickness approximately 1 μm) on the n-type silicon epitaxial layer 3, the silicon oxide film 9 (thickness 0.1 μm) covering the n-swelled diffusion layer 6 is
~0.6/J m) becomes thinner. Therefore, when a surge voltage is applied between the two conductive paths insulated by the silicon oxide film 9, the silicon oxide film 9 insulating the two conductive paths is inconveniently damaged.

発明の目的 本発明は、上記の不都合を排除することができる半導体
集積回路の製造方法、すなわち、2つの導電路の立体的
交差に関係している拡散層上の酸化シリコン膜の厚みを
サージ破壊の起り難い厚みとすることができ、さらに、
シリコン基板内に形成される半導体の抵抗値を低くする
ことができる半導体集積回路の製造方法を提供するもの
である。
Object of the Invention The present invention provides a method for manufacturing a semiconductor integrated circuit that can eliminate the above-mentioned disadvantages, that is, the thickness of the silicon oxide film on the diffusion layer related to the three-dimensional intersection of two conductive paths is destroyed by surge damage. It can be made to a thickness that is unlikely to occur, and furthermore,
The present invention provides a method for manufacturing a semiconductor integrated circuit that can reduce the resistance value of a semiconductor formed in a silicon substrate.

発明の構成 本発明の半導体集積回路の製造方法は、−導電形の半導
体基板上に形成されたこれとは逆導電形のエピタキシャ
ル層を複数個の島領域に分離し、同島領域の少くとも1
つの中に、絶縁膜をマスクとして、これと同一導電形の
高濃度の領域を形成したのち、上記の絶縁膜をすべて除
去後、表面全域へ新たに絶縁膜を形成し、次いで、前記
島領域のトランジスタ形成用島領域の中にベース領域お
よびエミッタ領域を形成し、こののち、前記高濃度領域
の両側およびトランジスタのエミッタ、ベース、コレク
タ領域上の絶縁膜を同時に、しかも損択的に除去してコ
ンタクト窓を形成し、同コンタクト窓内および高濃度領
域のコンタクト窓間の絶縁膜上に電極を形成する工程を
経て、2つの導電路の立体的な交差部を作シ込むもので
ある。
Structure of the Invention The method for manufacturing a semiconductor integrated circuit of the present invention includes dividing an epitaxial layer of a conductivity type opposite to that formed on a semiconductor substrate of a -conductivity type into a plurality of island regions, and at least one of the island regions.
Using an insulating film as a mask, a high concentration region of the same conductivity type as this is formed in the island, and after removing all of the above insulating film, a new insulating film is formed over the entire surface, and then a new insulating film is formed on the entire surface. A base region and an emitter region are formed in the island region for transistor formation, and then the insulating film on both sides of the high concentration region and on the emitter, base, and collector regions of the transistor is removed at the same time and selectively. A three-dimensional intersection of two conductive paths is created through the steps of forming a contact window, and forming an electrode within the contact window and on an insulating film between the contact windows in a high concentration region.

この方法によれば、従来のトランジスタ形成の工程を変
更することなく交差する2つの導電路間の絶縁膜の厚さ
を厚くすることができ、この絶縁膜をサージ破壊から守
ることができる。
According to this method, the thickness of the insulating film between two intersecting conductive paths can be increased without changing the conventional process of forming a transistor, and this insulating film can be protected from surge damage.

実施例の説明 以下に本発明にかかる半導体集積回路の製造方法の一実
施例を第2図〜第5図を参照1.て説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the method for manufacturing a semiconductor integrated circuit according to the present invention will be described below with reference to FIGS. 2 to 5.1. I will explain.

まず、p形単結晶シリコン基板1の中に、酸化シリコン
膜をマスクとしてアンチモン(sb)あるいは砒素(八
8)をスピンオン法やイオン注入法あるいはカプセル法
により選択的にドープしてn形埋め込み層2と21を形
成し、こののち表面の酸化シリコン膜をすべて除去し、
引き続いて表り 面全域に比抵抗が0.5〜奮Ω儂のn形シリコン層3を
0.5〜10μmの厚さにエピタキシャル成長させる。
First, an n-type buried layer is formed by selectively doping antimony (sb) or arsenic (88) into a p-type single crystal silicon substrate 1 using a silicon oxide film as a mask using a spin-on method, ion implantation method, or capsule method. 2 and 21, and then remove all the silicon oxide film on the surface.
Subsequently, an n-type silicon layer 3 having a resistivity of 0.5 to 10 Ω is epitaxially grown over the entire surface surface to a thickness of 0.5 to 10 μm.

次いで、n形シリコンエピタキシャル層の表面全域に厚
さが0.3〜2μmの酸化シリコン膜11を形成する。
Next, a silicon oxide film 11 having a thickness of 0.3 to 2 μm is formed over the entire surface of the n-type silicon epitaxial layer.

n形埋め込み層2と21の周囲を取りまくようにして酸
化7リコン膜11を選択的に除去し、露出させたn形エ
ピタキシャル層の中へ、熱拡散法あるいはイオン注入法
によりボロン(B)をドーグしてp形分離領域4を形成
し、n形シリコンエピタキシャル層3を島領域3oと3
1に分離する(第2図)。
The 7 silicon oxide film 11 is selectively removed surrounding the n-type buried layers 2 and 21, and boron (B) is injected into the exposed n-type epitaxial layer by thermal diffusion or ion implantation. A p-type isolation region 4 is formed by doping, and the n-type silicon epitaxial layer 3 is separated into island regions 3o and 3.
1 (Figure 2).

次に、導電路の立体的交差部を形成するn形シリコンエ
ピタキシャル島領域30のほぼ全域およびトランジスタ
を形成するn形シリコンエビタキリ、リン(P)をドー
プし、n形埋め込み層2と21に達する深さまでリンを
拡散させ高濃度のn影領域12と13を形成する。なお
、n影領域13は、トランジスタ形成時のn形埋め込み
層21に繋るコレクタウオール拡散領域である(第3図
)。
Next, almost the entire area of the n-type silicon epitaxial island region 30 forming the three-dimensional intersection of the conductive paths and the n-type silicon epitaxial region forming the transistor are doped with phosphorus (P), and the n-type buried layers 2 and 21 are doped with phosphorus (P). Phosphorus is diffused to the depth to form high concentration n-shaded regions 12 and 13. Note that the n-shaded region 13 is a collector all diffusion region connected to the n-type buried layer 21 when forming a transistor (FIG. 3).

次に酸化シリコン膜11をすべて除去した後、新たに表
面上に厚さが0.8〜2μmの酸化シリコン膜1oを形
成する。そしてトランジスタ形成用のn形シリコンエピ
タキシャル島領域31の中にベース領域14とエミッタ
領域15を形成する。
Next, after removing the entire silicon oxide film 11, a new silicon oxide film 1o having a thickness of 0.8 to 2 μm is formed on the surface. Then, a base region 14 and an emitter region 15 are formed in the n-type silicon epitaxial island region 31 for forming a transistor.

この工程で酸化シリコン膜には断差が生じる(第4図)
This process creates a gap in the silicon oxide film (Figure 4)
.

この後、高濃度のn影領域12の両側およびトランジス
タのエミッタ、ベース、コレクタ領域にコンタクト窓を
形成し、コンタクト部分およびn影領域12を覆う酸化
シリコン膜10上に高純度のアルミニウムCAl )あ
るいは、シリコンを重量比で1〜2%含んだアルミニウ
ムを用いて電極7.71,16および配線層8を形成す
ることにより第6図で示すように、電極7、n影領域1
2および電極71で形成される第1の導電路と、配線層
8で形成される第2導電路が厚い酸化シリコン膜10で
絶縁されて交差する構造を・もつ半導体集積回路が形成
される。
After this, contact windows are formed on both sides of the highly concentrated n-shadow region 12 and on the emitter, base, and collector regions of the transistor, and high-purity aluminum (CAl) or By forming the electrodes 7, 71, 16 and the wiring layer 8 using aluminum containing 1 to 2% silicon by weight, the electrode 7, the n shadow area 1, as shown in FIG.
A semiconductor integrated circuit having a structure in which a first conductive path formed by 2 and electrode 71 and a second conductive path formed by wiring layer 8 intersect and are insulated by thick silicon oxide film 10 is formed.

発明の効果 本発明によれば、シリコン基板中の拡散層を利用して形
成される第1の導電路と、この拡散層の上部に位置する
配線層で形成される第2の導電路との間にあって、両者
を絶縁する絶縁膜の厚さがn形シリコンエピタキンヤル
層上を覆う絶縁膜の厚さと等しくな9、従来の方法によ
り形成さる絶縁膜よりも極めて厚くなるためサージ電圧
による破壊の問題を排除する効果が奏される。
Effects of the Invention According to the present invention, a first conductive path formed by using a diffusion layer in a silicon substrate and a second conductive path formed by a wiring layer located above the diffusion layer are connected. In between, the thickness of the insulating film that insulates the two is equal to the thickness of the insulating film covering the n-type silicon epitaxial layer9, and because it is much thicker than the insulating film formed by conventional methods, it is difficult to break down due to surge voltage. This has the effect of eliminating this problem.

また、導電路を形成する拡散層は、その不純物濃度が高
く、かつ、拡散深さが深いためシート抵抗が5〜16Ω
/口となり、シート抵抗が16〜20Ω/口のエミッタ
拡散層を導電路とする従来の方法にくらべて導電路の抵
抗値が低い交差部を実現する効果も奏される。
In addition, the diffusion layer that forms the conductive path has a high impurity concentration and a deep diffusion depth, so the sheet resistance is 5 to 16Ω.
The present invention also has the effect of realizing an intersection with a lower resistance value of the conductive path compared to the conventional method in which the conductive path is an emitter diffusion layer having a sheet resistance of 16 to 20 Ω/port.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のエミッタ拡散層を導電路とする2つの
導電路の立体交差部の断面構造図、第2図〜第5図は、
本発明の一実施例にかかる2つの導電路の立体交差部お
よびトランジスタの製造工程の断面図である。 1・・・・・・p形単結晶シリコン基板、2,21・・
・・・・n形埋め込み層、3,30.31・・・・・・
n形シリコンエピタキシャル層、4・・・・・・p形分
離領域、5・・・・・・p膨拡散層、6・・・・・・n
膨拡散層、7,71・・・・・・−導電路、8・・・・
・他の導電路、9・・・・・・n膨拡散層の上の酸化シ
リコン膜、10・・・・・・n形エピタキシャル層上の
酸化シリコン膜、11・・・・・・酸化シリコン膜、1
2・・・・・高濃度n影領域、13・・・・・・コレク
タウオール、14・・・・・・ベース領域、16・・・
・・・エミッタ領域、16・・・・・・トランジスタの
電極。 第 1 ■ 1
FIG. 1 is a cross-sectional structure diagram of a three-dimensional intersection of two conductive paths using a conventional emitter diffusion layer as a conductive path, and FIGS. 2 to 5 are
FIG. 3 is a cross-sectional view of a three-dimensional intersection of two conductive paths and a manufacturing process of a transistor according to an embodiment of the present invention. 1...P-type single crystal silicon substrate, 2, 21...
...N-type buried layer, 3,30.31...
n-type silicon epitaxial layer, 4...p-type isolation region, 5...p-swelling diffusion layer, 6...n
Swelling diffusion layer, 7, 71...-conducting path, 8...
・Other conductive paths, 9... Silicon oxide film on the n-swelled diffusion layer, 10... Silicon oxide film on the n-type epitaxial layer, 11... Silicon oxide membrane, 1
2...High density n shadow area, 13...Collector all, 14...Base area, 16...
...Emitter region, 16...Transistor electrode. 1st ■ 1

Claims (2)

【特許請求の範囲】[Claims] (1)−導電形のシリコン基板上に形成されたこれとは
逆導電形のエピタキシャル層を複数個の島領域に分離し
、同高領域の少くとも1つの中に絶縁膜をマスクとして
、これと同一導電形の高濃度領域を形成する工程、前記
絶縁膜をすべて除去した後、表面全域へ新たに絶縁膜を
形成する工程、前記島領域のトランジスタ形成用島領域
の中にベース領域およびエミッタ領域を形成する工程、
前記高濃度領域の両側およびトランジスタのエミッタ、
ベース、コレクタ領域上の絶縁膜を同時に、しかの絶縁
膜上に電極を形成する工程を具備することを特徴とする
半導体集積(2)路の製造方法。
(1) - An epitaxial layer of a conductivity type opposite to that formed on a silicon substrate of a conductivity type is separated into a plurality of island regions, and an insulating film is used as a mask in at least one of the regions of the same height. a step of forming a high concentration region of the same conductivity type as the insulating film, a step of forming a new insulating film over the entire surface after removing all of the insulating film, and a step of forming a base region and an emitter in the island region for forming a transistor in the island region. a step of forming a region;
both sides of the high concentration region and the emitter of the transistor;
(2) A method for manufacturing a semiconductor integrated circuit, comprising the step of simultaneously forming an insulating film on the base and collector regions and forming an electrode on the insulating film.
(2)島領域直下の半導体基板中に、これとは逆導電形
の埋め込み層が形成されていることを特徴とする特許請
求の範囲第1項に記載の半導体集積回路の製造方法。
(2) The method for manufacturing a semiconductor integrated circuit according to claim 1, wherein a buried layer of a conductivity type opposite to that of the semiconductor substrate is formed directly under the island region.
JP20458683A 1983-10-31 1983-10-31 Manufacture of semiconductor integrated circuit Pending JPS6095939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20458683A JPS6095939A (en) 1983-10-31 1983-10-31 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20458683A JPS6095939A (en) 1983-10-31 1983-10-31 Manufacture of semiconductor integrated circuit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27924691A Division JPH053192A (en) 1991-10-25 1991-10-25 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS6095939A true JPS6095939A (en) 1985-05-29

Family

ID=16492914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20458683A Pending JPS6095939A (en) 1983-10-31 1983-10-31 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS6095939A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305536A (en) * 1988-06-03 1989-12-08 Fuji Electric Co Ltd Semiconductor integrated circuit device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758338A (en) * 1980-09-26 1982-04-08 Hitachi Ltd Semiconductor integrated device
JPS58143565A (en) * 1982-02-19 1983-08-26 Matsushita Electronics Corp Semiconductor circuit wiring body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758338A (en) * 1980-09-26 1982-04-08 Hitachi Ltd Semiconductor integrated device
JPS58143565A (en) * 1982-02-19 1983-08-26 Matsushita Electronics Corp Semiconductor circuit wiring body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01305536A (en) * 1988-06-03 1989-12-08 Fuji Electric Co Ltd Semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
JP2539777B2 (en) Method of forming semiconductor element
JPH04106932A (en) Manufacture of bipolar transistor
JPS5811107B2 (en) Programmable memory cell with semiconductor diode
US4051506A (en) Complementary semiconductor device
JPS6321351B2 (en)
US4128845A (en) Semiconductor integrated circuit devices having inverted frustum-shape contact layers
US3617822A (en) Semiconductor integrated circuit
JP2605030B2 (en) Quadrature bipolar transistor
US3825451A (en) Method for fabricating polycrystalline structures for integrated circuits
US4409609A (en) Semiconductor device and method of manufacturing the same
JPH04112565A (en) Semiconductor resistance element and manufacture thereof
JPS6095939A (en) Manufacture of semiconductor integrated circuit
US4692784A (en) Dielectric insulation type semiconductor integrated circuit having low withstand voltage devices and high withstand voltage devices
JPS5818784B2 (en) Hand-crafted construction work
JPS6095969A (en) Manufacture of semiconductor integrated circuit
JPS6262466B2 (en)
JPS5828731B2 (en) All silicon materials available.
JPH053192A (en) Semiconductor integrated circuit
JP3157245B2 (en) Semiconductor device and method of manufacturing the same
JPS632143B2 (en)
JPS6196748A (en) Dielectric isolated substrate and manufacture thereof
JP3158404B2 (en) Method for manufacturing semiconductor device
JPS5921039A (en) Semiconductor device
JP3120432B2 (en) Semiconductor device
JPS6140140B2 (en)