JPS609159A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS609159A
JPS609159A JP11738883A JP11738883A JPS609159A JP S609159 A JPS609159 A JP S609159A JP 11738883 A JP11738883 A JP 11738883A JP 11738883 A JP11738883 A JP 11738883A JP S609159 A JPS609159 A JP S609159A
Authority
JP
Japan
Prior art keywords
layer
contact
contact region
substrate
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11738883A
Other languages
Japanese (ja)
Inventor
Minoru Inoue
実 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11738883A priority Critical patent/JPS609159A/en
Publication of JPS609159A publication Critical patent/JPS609159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Abstract

PURPOSE:To improve a step coverage in a minute contact region while preventing the breakage of a junction, and to increase the degree of integration by interposing a metallic layer being in contact in an ohmic manner in the contact region and applying and forming an aluminum wiring layer on the metallic layer. CONSTITUTION:An insulating layer 11 formed on a substrate is bored, and windows for leading out electrodes are bored and treated to form contact regions 12. A silicide or a nitride consisting of a high melting-point metal shaping a barrier layer 13 is grown, and an Al wiring layer 14 is formed on the barrier layer 13. Consequently, a steep stepped section is removed, and a reaction between Si and Al and a reaction between Al and an insulator are inhibited and a contact region in desired width is obtained. Accordingly, an emitter electrode 15, a base electrode 16 and a collector electrode 17 are obtained by patterning the barrier layers 11 grown on the substrate in a sputtering manner and the Al layer 14, and a bipolar semiconductor element aiming at the increase of the degree of integration is acquired.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発BAはMOS又はBipor等の高密度集積回路に
係シ、特に高集積化に有効な配線層形成に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present BA relates to high-density integrated circuits such as MOS or Bipor, and particularly relates to the formation of wiring layers effective for high integration.

(b) 技術の背景 集積回路基板の回路構成に用いられる一般的な配線層材
料としてアルミニウムまたはアルミニウムとシリコンの
合金が多く用いられている。その大きな特長は抵抗値が
小さくシリコン酸化膜等に対して密着性に優れ、p形及
びn膨拡散層とオーミックなコンタクトが形成できる事
である。しかしアルミニウム膜はシリコンと共晶反応を
起すため半導体デバイスプロセス中に繰返し行なわれる
熱処理中にアルミニウムと拡散層とが接する界面で共晶
合金を作り、シリコン層に深いエッチピットを生じ、接
合破壊を起すこと7jKある。
(b) Background of the Technology Aluminum or an alloy of aluminum and silicon is often used as a general wiring layer material used in the circuit configuration of an integrated circuit board. Its major feature is that it has a low resistance value, excellent adhesion to silicon oxide films, etc., and can form ohmic contacts with p-type and n-swelled diffusion layers. However, since aluminum film causes a eutectic reaction with silicon, a eutectic alloy is formed at the interface where aluminum and the diffusion layer come into contact during repeated heat treatments during the semiconductor device process, causing deep etch pits in the silicon layer and causing junction breakdown. There are 7jK things to wake up.

この障害は半導体素子の高集積化に伴い拡散領域がよシ
浅くなるためよシ深刻なものとなる。
This problem becomes more serious as the diffusion region becomes shallower as semiconductor devices become more highly integrated.

この対策として高融点金属の化合物をバリア材としてア
ルミニウム配線層とシリコン層間に介在させて障壁とす
る方法は有効な一手段である。
As a countermeasure against this problem, one effective method is to use a high melting point metal compound as a barrier material between the aluminum wiring layer and the silicon layer.

(c) 従来技術と問題点 例えば拡散層のシャロー化にょシ高集積化を自損したバ
イポーラ半導体素子でI′i2〜3μの薄いエピタキシ
ャル層を形成し浅いベース、エミッタ領域を形成するこ
とにょシブバイス特性を向上させている。
(c) Conventional technology and problems For example, in a bipolar semiconductor device that suffers from high integration due to shallow diffusion layers, it is necessary to form a thin epitaxial layer of I'i 2 to 3μ to form shallow base and emitter regions. Improved characteristics.

しかし一方電極形成は浅いエミッタに対するアルミニウ
ムのコンタクト形成が問題となる。その具体例′t−第
1図によ)説明する。
However, when forming electrodes, forming an aluminum contact with a shallow emitter poses a problem. A specific example thereof (see FIG. 1) will be explained.

第1図は従来のバイポーラ半導体素子におけるペース領
域及び抵抗領域を示す断面図である。
FIG. 1 is a cross-sectional view showing a pace region and a resistance region in a conventional bipolar semiconductor device.

第1図はp型基板にn型エピタキシャル層を形成した後
、その層内にp型拡散層1を形成した場合を示している
。更にこのp膨拡散層1内及び隣接する領域にn膨拡散
層2,3を図のように形成しp形及びn形波散層1〜3
にエミッタ電極4、ベース電極5、コレクタ電極6を形
成する。その取り出し電極はエピタキシャル層に形成し
た絶縁膜(PSG)7を公知のフォトエッチ工程により
窓開きを行なった後にアルミニウム薄膜層をスパッタ法
によシ形成し、更に湿式又は乾式エツチングによシネ要
な部分を除去することによシ配線層が形成される。この
場合浅いエミッタ領域ではアルミニウム配線I−とシリ
コン層(n膨拡散層)とが接する界面において、繰返さ
れる熱処理によってアルミニウムとシリコンが反応を起
し、深いピント8を生じpn接合の破壊をひき起す。更
に高集積化に伴いコンタクト領域の大きさも微細化され
てダるために図に示すように段差側面での配線層の膜厚
が平坦部よシ薄くなり、断線の可能性も出てくる。また
段差側面に堆積した膜は平坦部の膜に比し密度が低く、
特に湿式エツチングではエツチングレイトが犬きくなシ
段切れを生じ易くなる。
FIG. 1 shows a case where an n-type epitaxial layer is formed on a p-type substrate, and then a p-type diffusion layer 1 is formed in that layer. Further, n-swelling diffusion layers 2 and 3 are formed in this p-swelling diffusion layer 1 and in the adjacent region as shown in the figure to form p-type and n-swelling diffusion layers 1 to 3.
An emitter electrode 4, a base electrode 5, and a collector electrode 6 are formed thereon. The lead-out electrode is formed by opening the insulating film (PSG) 7 formed on the epitaxial layer by a known photoetching process, forming a thin aluminum film layer by sputtering, and then forming the film by wet or dry etching. A wiring layer is formed by removing the portion. In this case, in the shallow emitter region, repeated heat treatments cause a reaction between aluminum and silicon at the interface where the aluminum wiring I- and the silicon layer (n-swelling diffusion layer) contact, resulting in a deep focus 8 and causing destruction of the p-n junction. . Furthermore, as the integration becomes higher, the size of the contact area becomes smaller and smaller, so as shown in the figure, the thickness of the wiring layer on the side surface of the step becomes thinner than on the flat part, which increases the possibility of disconnection. In addition, the film deposited on the side of the step has a lower density than the film on the flat part.
Particularly in wet etching, if the etching rate is too high, step breaks are likely to occur.

このようガ障害に対しては基板加熱法は有効な方法であ
る。しかし基板を加熱しながらスパッタ処理すると、ア
ルミニウム配線層と段差側面の絶縁膜7とが反応して絶
縁性のアルミニウム化合物(A120a )が形成され
るため有効的なコンタクト領域の幅は更に小さく々シ良
好なコンタクトが得難くなる。
A substrate heating method is an effective method for dealing with such damage. However, if sputtering is performed while heating the substrate, the aluminum wiring layer and the insulating film 7 on the side surface of the step will react to form an insulating aluminum compound (A120a), so the effective width of the contact area will be even smaller. Good contact becomes difficult to obtain.

(d) 発明の目的 本発EAは上記の点に鑑み、コンタクト領域にオーミッ
クな接触をなす金属層を介在させ、この金属層上にアル
ミニウム配線層を被着形成して成る配線構成を提供し、
半導体素子の性能向上及び高集積化を計ることを目的と
する。
(d) Purpose of the Invention In view of the above points, the present EA provides a wiring structure in which a metal layer that makes ohmic contact is interposed in the contact region, and an aluminum wiring layer is deposited on this metal layer. ,
The purpose is to improve the performance and increase the integration of semiconductor devices.

(e) 発明の構成 上記目的は本発明によれば基板上のコンタクト領域の開
口部端面に接し、且つ該開口部の段差側面及び底面を覆
って成る高融点金属のシリサイドもしくはナイトライド
で構成される少くとも一層のバリア層上にアルミニウム
配線層が形成されることによって達せられる。
(e) Structure of the Invention According to the present invention, the above object is made of a refractory metal silicide or nitride which is in contact with the end face of the opening of the contact region on the substrate and covers the step side and bottom of the opening. This is achieved by forming an aluminum wiring layer on at least one barrier layer.

(f) 発明の実施例 以下本発明の実施例全図面により詳述する。(f) Examples of the invention Embodiments of the present invention will be described in detail below with reference to all the drawings.

第2図、第3図は本発明の一実施例である配線層構成と
した半導体素子を示す断面図であや、第2図は金属膜形
成を示し、第3図はコンタクト形成を示す図1である。
2 and 3 are cross-sectional views showing a semiconductor element having a wiring layer structure according to an embodiment of the present invention. FIG. 2 shows metal film formation, and FIG. 3 shows contact formation. It is.

第2図において基板上に形成した絶縁膜11を周知のフ
ォトエッチ工程に従い開口し、電極取り出し用窓開き処
理してコンタクト領域12を形成する。次いでスパッタ
法によりバリア層13をなす高融点金属のシリサイド、
又はナイトライドを成長させる。この場合被処理試料に
バイアス電位を与え、スパッタ法によシスバッタ成長と
エツチングを同時に進行させることによ)コンタクト領
域12に形成されるノミリア層13はコンタクト領域1
2の底面(即ち拡散層と接する界面)及び段差側面(即
ち絶縁膜11と接する界面)を覆い、且つ開口部を狭め
カいよ“う第2図に1示すように開口部端面18に接す
る程度に被着形成させることができる。バリア層13は
p形n形のいづれの拡散層に対してもオーミックな接触
を示しシリコンを上部アルミニウム層に移動させない障
壁となる事が必要とされるがそれにはチタンナイトライ
ド(TiN )又はタンタルナイトライド(TaN )
等の高融点金属の窒化物或いはモリブデンシリサイド(
MoSi2)、タンタルシリサイド(TaSi2)等の
硅化物が適している。このバリア層13上にアルミニウ
ム配線層14をスパッタ法により形成する。
In FIG. 2, an insulating film 11 formed on a substrate is opened in accordance with a well-known photo-etching process, and a contact region 12 is formed by opening a window for taking out an electrode. Next, a high melting point metal silicide forming the barrier layer 13 is formed by sputtering.
Or grow night rides. In this case, by applying a bias potential to the sample to be processed and simultaneously proceeding cis-butter growth and etching by the sputtering method, the thin layer 13 formed in the contact region 12 is formed in the contact region 1.
In order to cover the bottom surface (i.e., the interface in contact with the diffusion layer) and the step side surface (i.e., the interface in contact with the insulating film 11) of the opening 2, and to narrow the opening, it contacts the end surface 18 of the opening as shown in FIG. The barrier layer 13 is required to have ohmic contact with both the p-type and n-type diffusion layers and to act as a barrier to prevent silicon from migrating to the upper aluminum layer. is titanium nitride (TiN) or tantalum nitride (TaN)
Nitride of high melting point metal such as molybdenum silicide (
Silicides such as MoSi2) and tantalum silicide (TaSi2) are suitable. An aluminum wiring layer 14 is formed on this barrier layer 13 by sputtering.

これにより従来のように急峻な段差部は解消され、しか
もシリコンとアルミニウムの反応及びアルミニウムと絶
縁物との反応は抑えられ所望の幅のコンタクト領域が得
られる。猶上記バリア層だけではオーミックな接触が不
充分である場合には下部によりオーミンクな接触をとシ
易い金属層例えば白金シリコン(PtSi)層を加えて
もよい。基板上にスパッタ成長させたバリア層11及び
アルミニラム層14をバターニングすることによp第3
図に示すようにエミッタ電極15、ベース電極16、コ
レクタ電極17が得られ高集積化を自相したバイポーラ
半導体素子が得られる。本実施例ではバイポーラ半導体
デバイスについて説明したが高集積化を計った隼積回路
素子例えばMO8型IC等にも適用することは勿論であ
る。
As a result, the steep stepped portion unlike in the prior art is eliminated, and the reactions between silicon and aluminum and the reactions between aluminum and insulators are suppressed, and a contact region with a desired width can be obtained. If ohmic contact is insufficient with the barrier layer alone, a metal layer, such as a platinum silicon (PtSi) layer, which facilitates ohmic contact may be added below. By patterning the barrier layer 11 and the aluminum layer 14 grown on the substrate by sputtering,
As shown in the figure, an emitter electrode 15, a base electrode 16, and a collector electrode 17 are obtained, and a bipolar semiconductor device that achieves high integration is obtained. In this embodiment, a bipolar semiconductor device has been described, but it goes without saying that the present invention can also be applied to highly integrated circuit elements such as MO8 type ICs.

(g) 発明の効果 以上詳細に説明したように本発明に示した配線層を構成
することにより、微細なコンタクト領域におけるステッ
プカバレージは改善され、接合破壊全防止し、高集積化
が可能となる等大きな効果がある。
(g) Effects of the Invention As explained in detail above, by configuring the wiring layer shown in the present invention, step coverage in minute contact areas is improved, junction breakdown is completely prevented, and high integration becomes possible. It has a big effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のバイポーラ半導体素子におけるベース領
域及び抵抗領域を示す断面図、第2図。 第3図は本発明の一実施例である配線層構成とした半導
体素子を示す断面図であシ、第2図は金属膜形成を示し
、第3図はコンタクト形成を示す図である。 図中、11゛ ・・酸化膜、12 コンタクト窓、13
 ・・バリア層、14 ・・ アルシミニウム西e1線
Jfi、15、i6,17・ 電極、18 開口部91
括面。
FIG. 1 is a sectional view showing a base region and a resistance region in a conventional bipolar semiconductor device, and FIG. FIG. 3 is a sectional view showing a semiconductor element having a wiring layer structure according to an embodiment of the present invention, FIG. 2 is a diagram showing metal film formation, and FIG. 3 is a diagram showing contact formation. In the figure, 11゛... oxide film, 12 contact window, 13
... Barrier layer, 14 ... Aluminum West e1 line Jfi, 15, i6, 17 Electrode, 18 Opening 91
Full face.

Claims (1)

【特許請求の範囲】[Claims] 基板上のコンタクト領域の開口部端面に接し、且つ該開
口部の段差側面及び底面を政って成る高融点金属のシリ
サイドもしくはナイトライドで構成される少くとも一層
のバリア馬上にアルミニウム配線層が形成されているこ
とを特徴とする半導体装置。
An aluminum wiring layer is formed on at least one barrier layer made of high melting point metal silicide or nitride that is in contact with the end surface of the opening in the contact region on the substrate and forms the step side and bottom surface of the opening. A semiconductor device characterized by:
JP11738883A 1983-06-29 1983-06-29 Semiconductor device Pending JPS609159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11738883A JPS609159A (en) 1983-06-29 1983-06-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11738883A JPS609159A (en) 1983-06-29 1983-06-29 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS609159A true JPS609159A (en) 1985-01-18

Family

ID=14710410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11738883A Pending JPS609159A (en) 1983-06-29 1983-06-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS609159A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104165A (en) * 1985-10-31 1987-05-14 Toshiba Corp Semiconductor device
JPS6358927A (en) * 1986-08-29 1988-03-14 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS63174319A (en) * 1987-01-14 1988-07-18 Hitachi Ltd Manufacture of semiconductor device
JPS63316456A (en) * 1987-06-19 1988-12-23 Hitachi Ltd Semiconductor device and manufacture thereof
US4824801A (en) * 1986-09-09 1989-04-25 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing aluminum bonding pad with PSG coating
US4916397A (en) * 1987-08-03 1990-04-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with bonding pad
JPH07263556A (en) * 1995-03-24 1995-10-13 Hitachi Ltd Semiconductor device
KR100314201B1 (en) * 1997-08-22 2002-10-25 엘지.필립스 엘시디 주식회사 Thin film transistor liquid crystal display device and fabricating method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320857A (en) * 1976-08-11 1978-02-25 Toshiba Corp Semiconductor device
JPS57207377A (en) * 1981-06-15 1982-12-20 Nec Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320857A (en) * 1976-08-11 1978-02-25 Toshiba Corp Semiconductor device
JPS57207377A (en) * 1981-06-15 1982-12-20 Nec Corp Manufacture of semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62104165A (en) * 1985-10-31 1987-05-14 Toshiba Corp Semiconductor device
JPS6358927A (en) * 1986-08-29 1988-03-14 Mitsubishi Electric Corp Manufacture of semiconductor device
US4824801A (en) * 1986-09-09 1989-04-25 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing aluminum bonding pad with PSG coating
JPS63174319A (en) * 1987-01-14 1988-07-18 Hitachi Ltd Manufacture of semiconductor device
JPS63316456A (en) * 1987-06-19 1988-12-23 Hitachi Ltd Semiconductor device and manufacture thereof
US4916397A (en) * 1987-08-03 1990-04-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with bonding pad
JPH07263556A (en) * 1995-03-24 1995-10-13 Hitachi Ltd Semiconductor device
KR100314201B1 (en) * 1997-08-22 2002-10-25 엘지.필립스 엘시디 주식회사 Thin film transistor liquid crystal display device and fabricating method thereof

Similar Documents

Publication Publication Date Title
JPS61142739A (en) Manufacture of semiconductor device
JPH051623B2 (en)
US20030087482A1 (en) Shallow trench contact structure to solve the problem or schottky diode leakage
JPS609159A (en) Semiconductor device
GB2180991A (en) Silicide electrode for semiconductor device
JPS62113421A (en) Manufacture of semiconductor device
JPS6364057B2 (en)
JP2679647B2 (en) Semiconductor device
JPS5821821B2 (en) Handout Taisouchinodenkiyokukeiseihouhou
JPS6381948A (en) Multilayer interconnection semiconductor device
JPS6321341B2 (en)
JPS641064B2 (en)
JP2725919B2 (en) Method for manufacturing semiconductor device
JP3372109B2 (en) Semiconductor device
JPH0578181B2 (en)
JP2536423B2 (en) Method for manufacturing semiconductor device
JPS60113967A (en) Manufacture of semiconductor device
KR930007586Y1 (en) Multi-metal layer structure using titanium silicide
JPH07321290A (en) Manufacture of bipolar integrated circuit device
JPS5984468A (en) Semiconductor device
JPS58197882A (en) Manufacture of semiconductor device
JPH0587137B2 (en)
JP2850639B2 (en) Semiconductor device
JP2709200B2 (en) Method for manufacturing semiconductor device
JPS5951130B2 (en) Method for manufacturing semiconductor devices with low leakage current